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Abstract 

We propose a novel reversible jump Markov 
chain Monte Carlo (MCMC) simulated an­
nealing algorithm to optimize radial basis 
function (RBF) networks. This algorithm 
enables us to maximize the joint posterior 
distribution of the network parameters and 
the number of basis functions. It performs 
a global search in the joint space of the pa­
rameters and number of parameters, thereby 
surmounting the problem of local minima. 
We also show that by calibrating a Bayesian 
model, we can obtain the classical AIC, BIC 
and MDL model selection criteria within a 
penalized likelihood framework. Finally, we 
show theoretically and empirically that the 
algorithm converges to the modes of the full 
posterior distribution in an efficient way. 

1 INTRODUCTION 

In this paper, we show that traditional model selection 
criteria within a penalized likelihood framework, such 
as Akaike's information criterion (AIC), minimum de­
scription length (MDL) and the Bayesian information 
criterion (BIC) (Akaike 1974, Schwarz 1985, Rissanen 
1987), can be shown to correspond to particular hyper­
parameter choices in a Bayesian formulation. That 
is, it is possible to calibrate the prior choices so that 
the problem of model selection within the penalized 
likelihood context can be mapped exactly to a prob­
lem of model selection via posterior probabilities. This 
technique has been previously applied in the areas of 
variable selection (George and Foster 1997) and the 
detection of harmonics in noisy signals (Andrieu and 
Doucet 1998). 
After resolving the calibration problem, maximum 
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likelihood estimation, with the aforementioned model 
selection criteria, is performed by maximizing the cali­
brated posterior distribution. To accomplish this goal, 
we propose an MCMC simulated annealing algorithm, 
which makes use of a homogeneous reversible jump 
MCMC kernel as proposal. This approach has the ad­
vantage that we can start with an arbitrary model or­
der and the algorithm will perform dimension jumps 
until it finds the "true" model order. That is, one 
does not have to resort to the more expensive task 
of running a fixed dimension algorithm for each pos­
sible model order and subsequently selecting the best 
model. We also present a convergence theorem for the 
algorithm. The complexity of the problem does not al­
low for a comprehensive discussion in this short paper. 
Readers are encouraged to consult our technical report 
for further results and details (Andrieu, de Freitas and 
Doucet 1999) 1. 

2 MODEL SPECIFICATION 

We adopt the approximation scheme of Holmes and 
Mallick (1998), consisting of a mixture of k RBFs and 
a linear regression term. (The work can, however, be 
straightforwardly extended to many other interesting 
inference and learning prcolems, such as fMRI time se­
ries modeling, wavelet networks, multivariate adaptive 
regression splines (MARS), Bayesian networks, etc.) 
This model is given by: 

k 
Y t = b + /31 Xt + llt k = 0 

Yt = L aj¢(11xt- JLjll) + b + f3'xt + llt k � 1 
j=l 

where 11·11 denotes a distance metric (usually Euclidean 
or Mahalanobis), Jlj E JRd denotes the j-th RBF centre 
for a model with k RBFs, aj E IRe denotes the j-th 
RBF amplitude and b E IRe and f3 E JRd x IRe denote 

1The software is available at the following website 
http://www.cs.berkeley.edu/-jfgf. 
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the linear regression parameters. The noise sequence 
nt E JRc is assumed to be zero-mean white Gaussian. It 
is important to mention that although the dependency 
of b, f3 and nt on k has not been made explicit, these 
parameters are indeed affected by the value of k. 
Depending on our a priori knowledge about the 
smoothness of the mapping, we can choose differ­
ent types of basis functions (Girosi, Jones and Pog­
gio 1995). The most common choices are linear, cu­
bic, thin plate spline and Gaussian. For convenience, 
the approximation model is expressed in vector-matrix 
form2: 

Y = D (IL1:k,1:d' X1:N,1:d) a1:1+d+k,1:c + llt 

That is: 

y= 

D= 

Y1,1 · · · Y1,c 
Y2,1 · · · Y2,c 

YN,l · · 'YN,c 

1 X1,1 · · · Xl,d 
1 X2,1 · · · X2,d 

b1 ···be 
/31,1 · · · f31,c 

a = f3d,l · · · f3d,c 
a1,1 · · · a1,c 

¢(x1,1L1) . . .  ¢ (xl,ILk) 
¢ (x2, IL1) · · · ¢(x2, ILk) 

where the noise process is assumed to be normally dis­
tributed nt ,...., N(O, aD for i = 1, . . .  , c. It should be 
stressed that u2 depends implicitly on the model or­
der k. The number k of RBFs and their parameters 
() � { al:m,l:c, ILl:k,l:d' ui:J, with m = 1 + d + k, are 
unknown. Given the data set { x, y }, the objective is 
to estimate k and () E E> k. 

3 PROBABILI STIC MODEL 

In (Andrieu, de Freitas and Doucet 1999, Andrieu, 
de Freitas and Doucet 2000), we follow a Bayesian 

2The notation Yl:N,l:c is used to denote anN by c ma­
trix, where N is the number of data and c the number of 

outputs. That is, Yl:N,j � (y1,j, Y2,j, ... ,YN,j )' denotes 
all the observations corresponding to the j-th output (j-th 
column of y). To simplify the notation, Yt is equivalent to 
Yt,l:c· That is, if one index does not appear, it is implied 
that we are referring to all of its possible values. Similarly, 
y is equivalent to Yl:N,l:c· The shorter notation will be 
favored, while the longer notation will be invoked to avoid 
ambiguities and emphasize certain dependencies. This no­
tation, although complex, is essential to avoid ambiguities 
in the design of the reversible jump algorithm. 

approach where the unknowns k and () are regarded 
as being drawn from appropriate prior distributions. 
These priors reflect our degree of belief in the relevant 
values of these quantities (Bernardo and Smith 1994). 
An hierarchical prior structure is used to treat the pri­
ors' parameters (hyper-parameters) as random vari­
ables drawn from suitable distributions (hyper-priors). 
Here, we focus on performing model selection using 
classical criteria such AIC, BIC and MDL. We show 
that performing model selection using these criteria is 
equivalent to computing the joint maximum a poste­
riori (MAP) of a "calibrated" posterior distribution. 
This interpretation allows one to develop very efficient 
simulated annealing algorithms to solve this difficult 
global optimization problem. 

3.1 PENALIZED LIKELIHOOD MODEL 
SELECTION 

Traditionally, penalized likelihood model order selec­
tion strategies, based on standard information crite­
ria, require the evaluation of the maximum likelihood 
(ML) estimates for each model order. The number of 
required evaluations can be prohibitively expensive un­
less appropriate heuristics are available. Subsequently, 
a particular model Ms is selected if it is the one that 
minimizes the sum of the log-likelihood and a penalty 
term that depends on the model dimension (Djuric 
1998, Gelfand and Dey 1997). In mathematical terms, 
this estimate is given by: 

Ms =  arg min {-log(p(ylk,O,x))+P} (1) 
Mk :kE{O, ... ,kmax} 

where 0 = (a1:m, fi1:k' u�) is the ML estimate of() for 
model Mk. Pis a penalty term that depends on the 
model order. Examples of ML penalties include the 
well known AIC, BIC and MDL information criteria 
(Akaike 1974, Schwarz 1985, Rissanen 1987). The ex­
pressions for these in the case of Gaussian observation 
noise are: 

and ' Pmc = PMDL = 21og(N) 

where ( denotes the number of model parameters 
(k(c + 1) + c (1 +d) in the case of an RBF network). 
These criteria are motivated by different factors: AIC 
is based on expected information, BIC is an asymp­
totic Bayes factor and MDL involves evaluating the 
minimum information required to transmit some data 
and a model, which describes the data, over a commu­
nications channel. 
Using the conventional estimate of the variance for 
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Gaussian distributions: 
�2 1 ( D(

� ) � ) ' 
U i = N Yl:N,i - l-£1:k, X Ol:m,i 

X (Yl:N,i- D (jll:k, x)iil:m,i) 
1 I = NYl:N,iPi,kYl:N,i 

where P i,k is the least squares orthogonal projection 
matrix: 

we can re-express equation (1) as follows: 

Ms = . arg max { [IT (Y�:N,iPi,kYl:N,i)-N/2] 
Mk .kE{O, ... ,kmax} i=l 

x exp(-P)} (2) 

3.2 BAYESIAN MODEL 

We place the following uninformative prior on the pa­
rameters: 

where S1 denotes the joint space of k and JL and II 
is the standard set indicator variable. This prior is 
represented by the Bayesian network of Figure 1. 

Figure 1: Directed acyclic graph for the Bayesian 
prior. 

For this prior it is possible to integrate out the variance 
and coefficients to obtain the following expression for 

the marginal posterior distribution p(k, l-£1:k lx, y): 

Let us now define the MAP estimate of this distribu­
tion as follows: 

(k, 1-£1:k)MAP = arg max p(k, l-£1:k lx, y) (4) 
k,/1-,,k EO 

Comparing equations (2) and (3), we note that these 
expressions agree whenever: 

p(k) ex: exp(-P) ex: exp(-Ck) 

This proportionality ensures that the expression for 
the calibrated posterior p(k, l-£1:klx, y) corresponds to 
the term that needs to be maximized in the penalized 
likelihood framework (equation (2)). Note that for the 
purposes of optimization, we only need the proportion­
ality condition with C = c+ 1 for the AIC criterion and 
C = (c + 1) log (N)/2 for the MDL and BIC criteria. 
It has thus been shown that by calibrating the pri­
ors in the Bayesian formulation, one can obtain the 
expression that needs to be maximized in the classi­
cal penalized likelihood formulation with AIC, MDL 
and BIC model selection criteria. Consequently, the 
penalized likelihood framework can be interpreted as 
a problem of maximizing the joint posterior posterior 
distribution p(k, 1-£1:k lx, y). 

The sufficient conditions that need to be satisfied so 
that the distribution p(k,JLl:klx,y) is proper are not 
overly restrictive. Firstly, S1 has to be a compact 
set, which is not a problem in our setting. Sec­
ondly, Y�:N,ip i,kYl:N,i has to be larger than zero for 
i = 1, ... , c. In (Andrieu, de Freitas and Doucet 
1999), it is shown that this is the case unless Yl:N,i 
spans the space of the columns of D(JLl:k, x), in which 
case Y�:N,iPi,kYl:N,i = 0. This event has zero mea­
sure. 

4 REVER SIBLE JUMP 

SIMULATED ANNEALING 

We can solve the stochastic optimization problem 
posed in the previous subsection by using a simulated 
annealing strategy. The simulated annealing method 
(Geman and Geman 1984, Van Laarhoven and Arts 
1987) involves simulating a non-homogeneous Markov 
chain whose invariant distribution at iteration i is no 
longer equal to n(z), but to: 

7r;(z) ex: 7rl/T; (z) 

where T; is a decreasing cooling schedule with 
limi-++oo T; = 0. The reason for doing this is that, 
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under weak regularity assumptions on 1r(z), 7r00(z) is 
a probability density that concentrates itself on the set 
of global maxima of 1r(z). 

The simulated annealing method with distribution 
7f (z) and proposal distribution q ( z*l z) involves 
sampling a candidate value z* given the current 
value z according to q ( z*l z). The Markov chain 
moves towards z* with probability AsA (z, z*) 

min { 1, (1r1/T; (z) q ( z*l z)) -
l7fl/T; (z*) q (zl z*) }, 

otherwise it remains equal to z. 

To obtain an efficient algorithm it is of paramount im­
portance to choose and efficient proposal distribution. 
If we choose a homogeneous transition kernel K(z, z*) 
that satisfies the following reversibility property: 

1r(z*)K(z*, z) = 1r(z)K(z, z*) 

it follows that: 
. { 7f(l/T;-l)(z*) } AsA = mm 1, 7f(l/T;-l)(z) 

(5) 

We propose to use as transition kernel a reversible 
jump MCMC algorithm (Green 1995). This is a gen­
eral state-space Metropolis-Hastings (MH) algorithm 
(see (Andrieu, Djuric and Doucet 1999) for an intro­
duction). One proposes candidates according to a set 
of proposal distributions. These candidates are ran­
domly accepted according to an acceptance ratio which 
ensures reversibility and thus invariance of the Markov 
chain with respect to the posterior distribution. Here, 
the chain must move across subspaces of different di­
mensions, and therefore the proposal distributions are 
more complex: see (Green 1995, Richardson and Green 
1997) for details. For our problem, the following moves 
have been selected: 

1. Birth of a new basis by proposing its location in 
an interval surrounding the input data. 

2. Death of an existing basis by removing it at ran­
dom. 

3. Merge a randomly chosen basis function and its 
closest neighbor into a single basis function. 

4. Split a randomly chosen basis function into two 
neighbor basis functions, such that the distance 
between them is shorter than the distance be­
tween the proposed basis function and any other 
existing basis function. This distance constraint 
ensures reversibility. 

5. Update the RBF centres. 

These moves are defined by heuristic considerations, 
the only condition to be fulfilled being to maintain the 
correct invariant distribution. A particular choice will 
only have influence on the convergence rate of the algo­
rithm. The birth and death moves allow the network 
to grow from k to k + 1 and decrease from k to k - 1 
respectively. The split and merge moves also perform 
dimension changes from k to k + 1 and k to k - 1. The 
merge move serves to avoid the problem of placing too 
many basis functions in the same neighborhood. On 
the other hand, the split move is useful in regions of the 
data where there are close components. Other moves 
may be proposed, but the ones suggested here have 
been found to lead to satisfactory results. 
The resulting transition kernel of the simulated 
Markov chain is then a mixture of the different tran­
sition kernels associated with the moves described 
above. This means that at each iteration one of the 
candidate moves, birth, death, merge, split or update, 
is randomly chosen. The probabilities for choosing 
these moves are bk, dk, mko Sk and uk respectively, 
such that bk+dk+mk+sk+uk = 1 for all 0 � k � kmax· 
A move is performed if the algorithm accepts it. For 
k = 0 the death, split and merge moves are impossible, 
so that d0 � 0, s0 � 0 and m0 � 0. The merge move 
is also not permitted for k = 1, that is m1 � 0. For 
k = kmax, the birth and split moves are not allowed 
and therefore bkmax � 0 and Skmax � 0. 
Consequently, the following algorithm, with bk = dk = 

mk = sk = uk = 0.2, can find the joint MAP estimate 
of ILI:k and k: 

Reversible Jump Simulated Annealing 

1. Initialization: set ( k(O)' (}(O)) E e. 

2. Iteration i. 

• Sample u '"" U[o,l] and set the temperature with a 
cooling schedule. 

• If ( u ::; bk<iJ) 
- then "birth" move (See Section 3.2.2). 
- else if ( u ::; bk(i) + dk<il) then "death" move 

(See Section 3.2.2). 
else if (u::; bk(iJ + dk(i) + sk<•J) then "split" 
move (See Section 3.2.3). 
else if ( u ::; bk<•J + dk<•J + sk<•l + mk(i)) then 
"merge" move (See Section 3.2.3). 
else update the RBF centres (See Section 
3.2.1). 

End If. 

• Perform an MH step with the annealed acceptance 
ratio (equation (5)). 

3. i t- i + 1 and go to 2. 
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4. Compute the coefficients a1:m by least squares (optimal 
in this case) : 

------------------------------------------• 

In the algorithm, we fixed the mixing mixture coeffi­
cients bk> dk,mk and sk to 0.2. The simulated anneal­
ing moves are explained in the following subsections. 

Remark 1 Note that our algorithm has allowed us to 
integrate out the coefficients a1,m. It can thus be stated 
that the variance of this Rao Blackwellised estimate is 
less than the variance that would have resulted if we 
had sampled a1:m jointly with J.L and k {Casella and 
Robert 1996, Liu, Wong and Kong 1994). 

4.0.1 Update Move 

The radial basis centres are sampled one-at-a-time us­
ing an MH algorithm. To accomplish this, we use a 
mixture of random walk proposals and a global pro­
posal surrounding the input data: see (Andrieu, de 
Freitas and Doucet 1999) for details. The resulting tar­
get distribution p(J.Lj,l:dlx, y, J.L-j,l:d) is proportional 
to: 

[IT (Y�:N,ip i,kYI:N,i) (  -if)] exp(-P) 
t=l 

and, consequently, the acceptance ratio ARJSA is 
given by: 

where Pi,k is similar to P;,k with J.Ll:k,l:d re­
placed by {J.Ll,l:d' J.L2,1 :d' · · · , J.Lj-l,l:d' J.Lj,l:d' 
J.Lj+l,l:d1 .. .  'J.Lk,l:d}. 

4.0.2 Birth and Death Moves 

Suppose that the current state of the Markov chain is 
in {k} x ek, then the birth and death moves are given 
by: 

Birth move 

• Propose a new RBF centre at random from the space 
surrounding x. 

• Evaluate Abirth. see equation(7) , and sample u,...., U[o,I] 

• If u < Abirth then the state of the Markov chain be­
come� (k + 1, J.l.I:k+d, else it remains equal to (k, J.t!:k). 

Death move 

• Choose the basis centre, to be deleted, at random among 
the k existing bases. 

• Evaluate Adeath. see equation (7) , and sample u,...., U[o,I] 

• If u :S Adeath then the state of the Markov chain be­
comes (k- 1, J.I.I:k-I), else it remains equal to (k, J.t!:k). 

---------------------------------------• 

The acceptance ratio for the proposed birth move is 
deduced from the following expression (Green 1995): 

rbirth � (posterior distributions ratio) 
x (proposal ratio) x (Jacobian) (6) 

That is: 

. _ [rrc 
( Y�:N,;Pi,kYl:N,i 

) 
(.!Y.)] �exp (-C) rbtrth - 1 

2 

i=l YI:N,;Pi,k+!Yl:N,i k + 1 

The Jacobian in this case is equal to 1. Similarly, 

_ [rrc 
( Y�:N,;Pi,kYl:N,i 

) 
(Jf)] kexp (C) 

rdeath - 1 p 0< 
i=l Y1:N,i i,k-lYl:N,i :S 

Hence, the acceptance probabilities corresponding to 
the described moves are: 

Abirth =min {1, rbirth}' Adeath =min {1, rdeath} 

4.0.3 Split and Merge Moves 

(7) 

The merge move involves randomly selecting a basis 
function (J.L1) and then combining it with its closest 
neighbor (J.L2) into a single basis function J.L, whose 
new location is: 

The corresponding split move that guarantees re­
versibility is: 

(8) 

where .;-* is a simulation parameter and Ums ,...., U[o,l] · 
Note that to ensure reversibility, the merge move is 
only performed if IIJ.L1- J.L211 < 2.;-*. Suppose now that 
the current state of the Markov chain is in { k} X e k' 
then: 
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Split move 

• Randomly choose an existing RBF centre. 

• Substitute it for two neighbor basis functions, whose cen­
tres are obtained using equation (8). The distance (typi­
cally Euclidean) between the new bases has to be shorter 
than the distance between the proposed basis function 
and any other existing basis function. 

• Evaluate Asplit. see equation(9}, and sample u ""U[o,l] 

• If u � Asplit then the state of the Markov chain be­
comes (k + 1, ILl:k+l), else it remains equal to (k, p1,k). 

Merge move 

• Choose a basis centre at random among the k existing 
bases. Then find the closest basis function to it applying 
some distance metric, e.g. Euclidean. 

• If Jlp1 - p2JI < 2.;*, substitute the two basis functions 
for a single basis function in accordance with equation 
(4.0.3). 

• Evaluate Amerge. see equation (9), and sample u "" 

U[o,l] . 

• If u � Amerge then the state of the Markov chain be­
comes (k -1, ILI:k-l). else it remains equal to (k, p1,k). 

------------------------------------------• 

The acceptance ratios for the proposed split and merge 
moves are given by: 

. _ [rrc 
( Y�:N,ip i,kYl:N,i ) ( q. )] kc;* exp( -C) 

r spltt - 1 p k 1 i=l Y1:N,i i,k+lYl:N,i + 

and 

_ [rrc 
( Y�:N,iPi,kYl:N,i ) (/f)] kexp(C) 

rmerge - 1 p *(k 1) i=l Yl:N,i i,k-lYl:N,i c; -

The Jacobian corresponding to the split move is equal 
to: 

J . _18(JLi,JL2)I-I1 11_2* spltt -
O(JL, Urns) 

- -c;* c;* - c; 

The acceptance probabilities for these moves are: 

Asplit = min {1, r split} , Amerge = min { 1, r merge}  
(9) 

5 CONVERGENCE 

We have the following convergence theorem: 

Theorem 1 Under certain assumptions found in 
(Andrieu, Breyer and Doucet 1999), the series of 
( (J(i), k(i)) converges in probability to the set of global 
maxima, that is for a constant E > 0, it follows that: 

Proof. In (Andrieu, de Freitas and Doucet 1999), we 
show that the transition kernels for each temperature 
are uniformly geometrically ergodic. Hence, as a corol­
lary of (Andrieu, Breyer and Doucet 1999, Theorem 
1), the convergence result for the simulated annealing 
MCMC algorithm follows • 

6 EXPERIMENT: ROBOT ARM 

MAPPING 

The robot arm data set is often used as a benchmark 
to compare neural network algorithms3. It involves 
implementing a model to map the joint angle of a 
robot arm (x1, x2) to the position of the end of the 
arm (Yl, Y2). The data were generated from: 

Y1 2.0 cos( xi) + 1.3 cos(x1 + x2) + E1 
Y2 2.0 sin( xi) + 1.3 sin(x1 + x2) + E2 

where Ei "" N(O, a2); a = 0.05. We use the first 200 
observations of the data set to train our models and the 
last 200 observations to test them. In the simulations, 
we selected cubic basis functions. 

We tested the reversible jump simulated annealing 
algorithms with the AIC and MDL criteria on this 
problem. The results for the MDL criterion are de­
picted in Figure 2. We note that the posterior in­
creases stochastically with the number of iterations 
and, eventually, converges to a maximum. The fig­
ure also illustrates the convergence of the train and 
test set errors for each network in the Markov chain. 
For the final network, we chose the one that maxi­
mized the posterior. This network consisted of 12 
basis functions and incurred a mean-square error of 
0.00512 in the test set. Following the same proce­
dure, the AIC network consisted of 27 basis func­
tions and incurred an error of 0.00520 in the test set. 
Our mean square errors are of the same magnitude 
as the ones reported by other researchers (Holmes 
and Mallick 1998, Mackay 1992, Neal 1996, Rios In­
sua and Muller 1998); slightly better. Our results in 

3The robot arm data set can be found at 
http://wol.ra.phy.cam.ac.uk/mackay/ 
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Figure 2: Performance of the reversible jump simu­
lated annealing algorithm for 200 iterations on the 
robot arm data, with the MDL criterion. 

(Andrieu, de Freitas and Doucet 1999) indicate that 
the full Bayesian hierarchical model provides slightly 
more accurate results. The Monte Carlo integrations 
are, however, much more computationally demanding 
than the stochastic optimization task. They can take 
take up to 500000 iterations, whether the algorithm 
discussed here only required 200 iterations to obtain a 
reasonable solution. 

7 CONCLUSIONS 

We presented an efficient MCMC stochastic optimiza­
tion algorithm that performs parameter estimation 
and model selection simultaneously. We also showed 
that starting from a full hierarchical Bayesian prior 
for neural networks, it is possible to derive the clas­
sical AIC, BIC and MDL penalized likelihood model 
selection criteria. Finally, we presented a convergence 
proof for the algorithm and showed, by means of an 
experiment, that the method produces very accurate 
results. 
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