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Abstract. A new paradigm for network applications emerged in the 1990s as
the centralized mainframe computer model evolved into a PC client/server based
model. This captured a broader scope including business, commerce and finance.
Recent Cloud computing and Big Data deployments suggest that we have now
come full circle with centrally managed trust infrastructures supporting an even
broader application base for any-time, any-where, synchronized access to data
and services. This extends the flexibility/manageability of the client/server
paradigm and allows for ubiquitous lightweight service endpoints such as note-
books, tablets or smart phones that do not need to store sensitive data (other than
cryptographic keys in “sealed storage”).

Even though it may take some time before we understand the full extent of the
Cloud paradigm, some features have already emerged and can be analyzed and
studied. For example for backward compatibility, legacy practices will be main-
tained. In particular, cloud deployment models will comprise several technologies
including public, private and hybrid. Also, past practices strongly support open
virtualization, so clouds can be customized and tailored to specific security set-
tings. Finally, the emerging paradigm will clearly be impacted by social media
technologies and the Internet of Things, suggesting that social behavior, profiling
and causal reasoning will play a major role.

In this paper we analyze the cloud paradigm from a security point of view. Our
goal is to show that for critical applications, not only is the new paradigm more
flexible, but it is also technically easier to secure. Finally, the Cloud has a dark
side, at least from a security point of view. We discuss some of its more obnoxious
features.

1 Introduction

Cloud computing is an evolving paradigm. It is a technology that supplies on demand
computing services as a utility, with price elasticity, continuity of service, quick scaling
and reliability. NIST defines it as [1]: “A model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction”.

Below we briefly overview the cloud models, the provided services and the service
agreements—for more details see the NIST publication 800-144 [2].



Models. There are four general types of cloud deployment models: public clouds, that
supply infrastructure and computational resources to the general public over the
Internet and are owned and operated by cloud providers; community clouds, that
are owned and operated by several organization but have common regulatory and
security policies; and hybrid clouds.

Services. There are three basic cloud on demand computing services: Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS).
The cloud client typically chooses the operating system and development environ-
ment to host the services. Service agreements specify the terms and conditions for
access to cloud services. For most cloud technologies security provisions that go
beyond the basic infrastructure services are carried out by the cloud client.

Service agreements. These specify the terms and conditions for using cloud services,
and include the expected level of service—the Service Level Agreement (SLA) and
the compensation if that level is not reached, licensing details as well as the required
security and privacy support.

Related Work. Most of the cloud computing publications in the literature focus on the
“computing as a utility” business service (e.g., [3—7]). There are only a few publica-
tions that address security issues (e.g., [2, 8,9]), and these use a fragmentary approach
addressing primarily privacy issues.

Motivation. This paper is motivated by the remark in [2]: “While one of the biggest
obstacles facing public cloud computing is security, the cloud computing paradigm
provides opportunities for innovation in provisioning security services that hold the
prospect of improving the overall security of some organizations.”

The rest of this paper is organized as follows. Section 2 is the main part where
we analyze cloud architectures focusing on deployments that can be secured against
malicious actors. There are five subsections. In Subsection 2.1 we analyze the trust
infrastructure of cloud deployments; in Subsection 2.2 we propose an access control
infrastructure that is appropriate for clouds; Subsection 2.3 we discuss Trusted Com-
puting architectures, in Subsection 2.4 the threat model for clouds and in Section 2.5
run-time threats; finally in Subsection 2.6 we combine the developed material to get an
architecture for a Trusted Cloud. In Section 3 we discuss the dark side of the cloud.

2 Cloud architectures for secure applications

The Cloud is an a client-driven Internet infrastructure that manages computing ser-
vices. A cloud monitor mediates between clients, providers and computing services,
and grants access based on service agreements and security policies that establish trust-
links between clients, providers and services.

2.1 Cloud Monitors

We model a cloud monitor by a trust-graph G = (V, E) that is a directed labeled graph
with nodes X, Y, Z, ..., the clients, the cloud providers and the cloud services. There
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are two types of edges: (a) edges X —> Y that link clients X to providers Y with
labels 7, that contain: an SLA, the terms of use, the supported privacy/security policies
and the compensation in the event the provider fails to deliver at the specified level or
violates agreed policies; (b) edges Y ¥, Z that link providers Y to services Z with
labels 7, that contain: the agreement regarding the particular service Z, the supported
privacy/security policies regarding Z and the compensation if Z is not delivered at the
specified level, or if the agreed policies are violated.

Labels of the type 7, capture the confidence the client has in the provider regarding
the supported services, the expected security protection as well as the risks involved (a
function of the criticality of the service and the agreed compensation). Labels of the
type 7, capture the confidence that the client has in the specific service Z and the risks
involved. The trust-graph G is a dynamic system with edges added (or deleted) in real-
time corresponding to new service requests (or completions) or new services becoming
available (or withdrawn).

Trust is not transitive: X —% Y and Y % Z implies X % Z only when
the trust 7., dominates the trust 7, (Figure 1). In this case we write 7., = 7,.. We
have domination if the service agreement and the security policies specified in 7, are
covered by the corresponding service agreement and security policies of 7. In the
following section we discuss the requirements for security policy domination in more
detail.

2.2 Access control models

Access control models are trust infrastructures and manage the resources of computer
and network systems. Bell-LaPadula [10] is one of the first proposed access control
models. It enforces need-to-know (confidentiality) policies. Other models followed.
Biba [11] enforces integrity policies; Clark-Wilson [13] enforces separation of duties
(integrity) policies; and Role Based Access Control (RBAC) [12] enforces authoriza-
tion policies. In these models, clients and resources are assigned appropriate trust labels
selected from a linearly ordered set (or lattice) and access to resources is based on domi-
nation. For example, in Bell-LaPadula a client with “secret” label (clearance) can access
all resources with label (classification) “secret” or lower.

These models focus on managing data resources, not on computing services that are
functions of data. For cloud deployments we have to design new access control models
and specify policies for managing computing services. In this paper we propose to use
the trust levels 7 defined above as labels, appropriately adapted to capture dynamic
management and security policies that enforce need-to-know and separation-of-duties.



For cloud deployments need-to-know refers to the private knowledge that the client
and provider can access while the service Z is accessed: it should be no more than
strictly necessary. For example, a client and provider should not share any secret en-
cryption keys if private channels are needed for service Z. Similarly for private integrity
keys. If long term keys have to be shared then these should be public keys.

Separation of duties refers to the control the provider Y has over the service Z as
specified in 7, it should be no more than strictly necessary. In particular the provider
should not be able to control the service Z, or access computed data while the service
Z is provided, or later on. For example, for Infrastructure-as-a-Service applications, the
cloud provider should not have access to any private data that the IaaS processes for the
cloud client.

2.3 Trusted Computing

The Trusted Computing Group [14] has published specifications for architectures and
interfaces for several computing implementations. Platforms based on these are ex-
pected to meet the functional and reliability requirements of computer systems and to
provide increased assurance of trust. The Trusted Platform Module (TPM) [15] and the
Trusted Network Connect (TNC) [16] are two such architectures.

The TPM is a Trusted Computing (TC) architecture that binds data to platform
configurations of hardware systems to enhance software security. It has two basic ca-
pabilities: remote attestation and sealed storage, and is supported by a range of cryp-
tographic primitives. TPMs employ trusted engines, called roots of trust, to establish
trust in the expected behavior of the system. Trust is based on an integrity protected
boot process in which executable code and associated configuration data are measured
before execution—this requires that a hash of the BIOS code is stored in a Platform
Configuration Register (PCR).

For remote attestation the TPM uses an attestation identity key to assert the state
of the current software environment to a third party—by signing PCR values. Sealed
storage is used to protect cryptographic keys. To encrypt/decrypt/authenticate, keys are
released conditional on the current software state (using current PCR values). The TPMs
must be physically protected from tampering. This includes binding the TPM to physi-
cal parts of the platform (e.g. the motherboard).

The TNC is a TC architecture for trusted network applications. What distinguishes
TNC from other interoperability architectures is the requirement that the OS config-
uration of the client and server is checked prior to a communication channel being
established. A trusted link between a client and server is established only if:

(1) The identity of the client and server is trusted; for this purpose a Public Key Infras-
tructure is used to establish trust-links between a Root Authority and the TPMs of
the client/server.

(7i) The client has real-time access to the server.
(#i7) The client and server are authenticated. A root of trust on the TPM of both parties
is invoked to release the required keys to execute a handshake protocol [16];
(iv) The integrity of communicated data, and if necessary the confidentiality, is enforced
by the TPM.



The TC paradigm has been studied extensively, with TPM- and TNC-compliant sys-
tems implemented in several configurations. There are some concerns regarding imple-
mentations, which mainly involve poor design: the TC paradigm relies heavily on strict
compliance to policies, procedure and hardware design, and unless these are being ad-
hered to, there is no protection. Other concerns involve Digital Rights Management and
“Big Brother” privacy issues. However for critical applications or DoD type networks,
such implementation issues can be addressed and privacy is centrally managed.

2.4 A threat model and security framework for TC-compliant systems

The TPM prevents compromised components of a TC-compliant system from exe-
cuting. As a result, if we exclude run-time (execution) threats, malicious (Byzantine)
threats are reduced to DoS threats that can be addressed with redundancy.

There are two kinds of faults that may affect a TC-compliant computer
system: natural (this includes accidents) and adversarial (intentional/malicious/ insider).
Natural faults can be predicted, in the sense that an upper bound on the probability of
such faults can be estimated. Redundancy can then be used to reduce this probability
to below an acceptable threshold. Malicious DoS faults cannot be predicted. However
they are overt and, because of the TPM and TNC integrity verification, must be physical
(e.g., involve tampering the TPM chip). So there is a cost involved. One way to thwart
them is to make the cost high enough to prevent them.

There are several security models that use economics and risk analysis based on
redundancy [17] that are appropriate for threat models with overt faults. These assume
a bound on adversarial resources and an architecture with sufficient redundancy to make
such DoS attacks prohibitively expensive.

2.5 The good, the bad and the ugly

The good. The TPM protects system components from behaving in an unexpected way.
In particular, prior to the execution of any trusted program an integrity check of its
state (against a stored PCR configuration) is required. Consequently if the program is
compromised it will not be executed by the OS.

The bad. The TPM allows only trusted code to execute. Therefore the integrity of
trusted code (which includes the OS) is a fundamental requirement in order to ensure
trust in the computing infrastructure. The system software must be well designed, with
no security holes backdoors or vulnerabilities that could be exploited by an adversary.
An exploit in the OS may allow the adversary to bypass the protection offered by the
TPM. There are several reasons why the design of software programs may be faulty. A
major reason is the complexity of the execution environment (the OS and CPU hard-
ware). Another is poor software development practices.

The ugly. “Security is not necessarily composable”. Proof-carrying code is not closed
with respect to composability unless the proofs are composable (Universal Compos-
ability [18]). An interesting example involving routing protocols is discussed in [19],
where it is shown that a routing protocol that is secure in isolation is not secure when



executed concurrently with itself. Consequently the TPM provides integrity guarantees
only at load-time, not run-time.

An exploit of the OS may make it possible for the adversary to change the execution
flow of a trusted program. There are several run-time attacks [20] that use metamorphic
malware such as the self-camouflaging Frankenstein [21] or more generally, return ori-
ented programming (ROP) [22]. For these the adversary must be able to control the
execution flow on the stack, and there are ways to prevent this [23]. However as pointed
out earlier, even if there are no exploits, concurrent execution of trusted code (that is
not Universally Composable) may lead to untrusted behavior.

2.6 An Architecture for Trusted Clouds

The basic components of a Cloud are: the clients, the providers, the computing services
and the cloud monitor. For a Trusted Cloud we propose an architecture with:

Trusted service providers.

A trusted cloud monitor (Section 2.1).

An access control model for computing services that supports need to know and
separation of duties policies (Section 2.2).

TC-compliant computing services (Section 2.3).

Lightweight TC-compliant client service endpoints.

The TC deployment is intended to secure computing services for critical infrastructures
and DoD type networks. It prevents the execution of untrusted code, while guaranteeing
adherence to the service agreements. Service providers should be trusted to adhere to
service agreements as well as to the security policies. The cloud monitor should enforce
need-to-know and separation of duties policies. The requirement for lightweight TC-
compliant service endpoints is based on the fact that the Trusted Cloud is the most
appropriate place to store sensitive data (from physical and cyber threats). Ideally a
lightweight operating system should be used—all the code that is needed can be run on
a PaaS.

Assuming that the components of the Cloud are trusted, and that all execution code
is trusted, the only remaining (load-time) threats are DoS attacks, which because of the
redundancy in the Cloud are not a concern. For applications in which real-time access is
critical, services may have to be prioritized. The system must have enough redundancy
to guarantee that all critical computing services are executed in real-time.

3 The Dark Side of the Cloud

Well defined architectures that are based on trusted system behavior in the presence of
an adversary will be secure unless the trust is breached. By assuming that all service
providers are trusted, and that any computing service will not deviate from its expected
behavior (because of the TC controls), we make certain that the only remaining threats
are those that bypass the trust mechanisms. From our discussion in Section 2.5 (the
ugly case) it is clear that concurrent execution of trusted codes may lead to untrusted
(run-time) system behavior. To mitigate such threats, any successful approach will have
to:



(a) Limit the openings for exploitation on platform software. To achieve a smaller at-
tack surface, client endpoint devices must abide by constraints on functionality and
resource usage, operating with a structured, well-defined, enumerated set of du-
ties. Clearly the presence of software flaws is related to the complexity and size of
software.

(b) Employ methods to detect run-time compromise. There is substantial existing work
on techniques for dynamically detecting code faults (dynamic integrity monitoring
and taint analysis) [24-26]. Although most solutions carry a significant computa-
tional overhead, critical applications can justifiably be expected to bear the com-
putational resources. However, the time required to address such threats may be an
issue.
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