
Strata:
A Cross Media File System

1

Youngjin Kwon, Henrique Fingler, Tyler Hunt,
Simon Peter, Emmett Witchel, Thomas Anderson

Let’s build a fast server

2

Requirements

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10 TB

• Updates must be crash consistent

NoSQL store, Database, File server, Mail server …

Storage diversification

Latency $/GB

DRAM 100 ns 8.6

NVM (soon) 300 ns 4.0

SSD 10 us 0.25

HDD 10 ms 0.02 B
et

te
r p

er
fo

rm
an

ce

H
ig

he
r c

ap
ac

ity

3

Storage diversification

Latency $/GB

DRAM 100 ns 8.6

NVM (soon) 300 ns 4.0

SSD 10 us 0.25

HDD 10 ms 0.02 B
et

te
r p

er
fo

rm
an

ce

H
ig

he
r c

ap
ac

ity

3

Byte-addressable: cache-line granularity IO

Storage diversification

Latency $/GB

DRAM 100 ns 8.6

NVM (soon) 300 ns 4.0

SSD 10 us 0.25

HDD 10 ms 0.02 B
et

te
r p

er
fo

rm
an

ce

H
ig

he
r c

ap
ac

ity

3

Large erasure blocks need to be sequentially written
Random writes: 5~6x slowdown due to GC [FAST’15]

Byte-addressable: cache-line granularity IO

Application

A fast server on today’s file system

4

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

91%
Kernel file system

NVM

Kernel file system:
NOVA [FAST 16, SOSP 17]

Application

A fast server on today’s file system

4

Small, random IO is slow!

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

91%
Kernel file system

NVM

Kernel file system:
NOVA [FAST 16, SOSP 17]

Application

A fast server on today’s file system

4

Small, random IO is slow!

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

91%
Kernel file system

NVM

1 KB

IO latency (us)
0 1.5 3 4.5 6

Write to device Kernel code
91%

Kernel file system:
NOVA [FAST 16, SOSP 17]

Application

A fast server on today’s file system

4

Small, random IO is slow!

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

91%
Kernel file system

NVM

1 KB

IO latency (us)
0 1.5 3 4.5 6

Write to device Kernel code
91%

Kernel file system:
NOVA [FAST 16, SOSP 17] NVM is so fast that kernel is the bottleneck

A fast server on today’s file system

5

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Kernel file system

NVM

Application

A fast server on today’s file system

5

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Need huge capacity, but
NVM alone is too expensive!
($40K for 10TB)

Kernel file system

NVM

Application

A fast server on today’s file system

5

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Need huge capacity, but
NVM alone is too expensive!
($40K for 10TB)

Kernel file system

NVM

Application

 For low-cost capacity with high performance,  
 must leverage multiple device types

A fast server on today’s file system

6

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Block-level caching

NVM
SSD
HDD

Kernel file system

Application

A fast server on today’s file system

6

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

• Block-level caching manages data in blocks,  
but NVM is byte-addressable

• Extra level of indirection

Block-level caching

NVM
SSD
HDD

Kernel file system

Application

A fast server on today’s file system

6

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

• Block-level caching manages data in blocks,  
but NVM is byte-addressable

• Extra level of indirection

Block-level caching

NVM
SSD
HDD

Kernel file system

Application

1 KB

IO latency (us)

0 3 6 9 12

NOVA Block-level caching

Better

A fast server on today’s file system

6

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

• Block-level caching manages data in blocks,  
but NVM is byte-addressable

• Extra level of indirection

Block-level caching

NVM
SSD
HDD

Kernel file system

Application

1 KB

IO latency (us)

0 3 6 9 12

NOVA Block-level caching

Better

Block-level caching is too slow

A fast server on today’s file system

7

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

A fast server on today’s file system

7

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Pillai et al., OSDI 2014

SQLite
HDFS

ZooKeeper
LevelDB

HSQLDB
Mercurial

Git

Crash vulnerabilities
0 2 4 6 8 10

A fast server on today’s file system

7

• Small updates (1 Kbytes) dominate
• Dataset scales up to 10TB
• Updates must be crash consistent

Pillai et al., OSDI 2014

SQLite
HDFS

ZooKeeper
LevelDB

HSQLDB
Mercurial

Git

Crash vulnerabilities
0 2 4 6 8 10

Applications struggle for crash consistency

Problems in today’s file systems

8

• Kernel mediates every operation
NVM is so fast that kernel is the bottleneck

• Tied to a single type of device
For low-cost capacity with high performance,
must leverage multiple device types
NVM (soon), SSD, HDD

• Aggressive caching in DRAM,  
write to device only when you must (fsync)

 Applications struggle for crash consistency

Strata:
A Cross Media File System

9

Performance: especially small, random IO
• Fast user-level device access

Low-cost capacity: leverage NVM, SSD & HDD
• Transparent data migration across different storage media
• Efficiently handle device IO properties

Simplicity: intuitive crash consistency model
• In-order, synchronous IO
• No fsync() required

Strata: main design principle

Log operations to NVM at user-level

10

Digest and migrate data in kernel

Strata: main design principle

Log operations to NVM at user-level

Performance: Kernel bypass, but private

10

Digest and migrate data in kernel

Strata: main design principle

Log operations to NVM at user-level

Simplicity: Intuitive crash consistency
Performance: Kernel bypass, but private

10

Digest and migrate data in kernel

Strata: main design principle

Log operations to NVM at user-level

Simplicity: Intuitive crash consistency
Performance: Kernel bypass, but private

Coordinate multi-process accesses

10

Digest and migrate data in kernel

Strata: main design principle

Log operations to NVM at user-level

Simplicity: Intuitive crash consistency
Performance: Kernel bypass, but private

Coordinate multi-process accesses

10

Digest and migrate data in kernel

Apply log operations to shared data

Strata: main design principle

Log operations to NVM at user-level

Simplicity: Intuitive crash consistency
Performance: Kernel bypass, but private

Coordinate multi-process accesses

10

Digest and migrate data in kernel

Apply log operations to shared data

LibFS

KernelFS

Outline
• LibFS: Log operations to NVM at user-level

• Fast user-level access
• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel
• Asynchronous digest
• Transparent data migration
• Shared file access

• Evaluation

11

Log operations to NVM at user-level

12

unmodified
application

Strata:
LibFS

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

rename

Log operations to NVM at user-level

12

• Fast writes

• Directly access fast NVM

• Sequentially append data

• Cache-line granularity

• Blind writes

unmodified
application

Strata:
LibFS

Kernel-
bypass

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

rename

awang
Sticky Note
just write the byte range, no read modify write

awang
Sticky Note
no DRAM copy

Log operations to NVM at user-level

12

• Fast writes

• Directly access fast NVM

• Sequentially append data

• Cache-line granularity

• Blind writes

unmodified
application

Strata:
LibFS

Kernel-
bypass

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

• Crash consistency

• On crash, kernel replays log
rename

unmodified
application

Intuitive crash consistency

13

Strata:
LibFS

Kernel-
bypass

NVM

Synchronous IO

POSIX API

Private operation log

unmodified
application

Intuitive crash consistency

13

Strata:
LibFS

Kernel-
bypass

NVM

Synchronous IO

• When each system call returns:

• Data/metadata is durable

• In-order update

• Atomic write

• Limited size (log size)

POSIX API

Private operation log

unmodified
application

Intuitive crash consistency

13

Strata:
LibFS

Kernel-
bypass

NVM

Synchronous IO

• When each system call returns:

• Data/metadata is durable

• In-order update

• Atomic write

• Limited size (log size)

POSIX API

Private operation log

fsync() is no-op

unmodified
application

Intuitive crash consistency

13

Strata:
LibFS

Kernel-
bypass

NVM

Synchronous IO

• When each system call returns:

• Data/metadata is durable

• In-order update

• Atomic write

• Limited size (log size)

POSIX API

Fast synchronous IO: NVM and kernel-bypass

Private operation log

fsync() is no-op

Outline
• LibFS: Log operations to NVM at user-level

• Fast user-level access
• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel
• Asynchronous digest
• Transparent data migration
• Shared file access

• Evaluation

14

15

Digest data in kernel

NVM
NVM Shared areaPrivate operation log

Application

Strata:
LibFS

POSIX API

Strata:
KernelFS

15

Digest data in kernel

Write

NVM
NVM Shared areaPrivate operation log

Application

Strata:
LibFS

POSIX API

Strata:
KernelFS

15

Digest data in kernel

Write

NVM

Digest

NVM Shared areaPrivate operation log

Application

Strata:
LibFS

POSIX API

Strata:
KernelFS

15

• Visibility:  
make private log visible  
to other applications

• Data layout:  
turn write-optimized to  
read-optimized format
(extent tree)

• Large, batched IO

• Coalesce log

Digest data in kernel

Write

NVM

Digest

NVM Shared areaPrivate operation log

Application

Strata:
LibFS

POSIX API

Strata:
KernelFS

Digest optimization:
Log coalescing

SQLite, Mail server: crash consistent update using write ahead logging

16

Digest eliminates unneeded work

. . .
. . .

Remove  
temporary durable writes

Private operation log

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared area

Digest optimization:
Log coalescing

SQLite, Mail server: crash consistent update using write ahead logging

16

Create journal file
Write data to journal file
Write data to database file
Delete journal file

Digest eliminates unneeded work

. . .
. . .

Remove  
temporary durable writes

Private operation log

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared area

Digest optimization:
Log coalescing

SQLite, Mail server: crash consistent update using write ahead logging

16

Create journal file
Write data to journal file
Write data to database file
Delete journal file

Digest eliminates unneeded work

. . .
. . .

Write data to database file

Remove  
temporary durable writes

Private operation log

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared area

Digest optimization:
Log coalescing

SQLite, Mail server: crash consistent update using write ahead logging

16

Create journal file
Write data to journal file
Write data to database file
Delete journal file

Digest eliminates unneeded work

. . .
. . .

Write data to database file

Remove  
temporary durable writes

Private operation log

Application

Strata:
LibFS

Strata:
KernelFS

Throughput optimization:
Log coalescing saves IO while digesting

NVM Shared area

17

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

Digest and migrate data in kernel

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM data

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM dataLogs

Digest

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM dataLogs

Digest

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM data

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM data

• Handle device IO properties

• Migrate 1 GB blocks

• Avoid SSD garbage
collection overhead

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate operation log

18

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data
to lower layers

Digest and migrate data in kernel

 NVM data

Resembles log-structured merge (LSM) tree

• Handle device IO properties

• Migrate 1 GB blocks

• Avoid SSD garbage
collection overhead

Read: hierarchical search

19

Application

Strata:
LibFS

Strata:
KernelFS

NVM Shared areaPrivate OP log

SSD Shared area

HDD Shared area

 NVM data

 SSD data

 HDD data

 Log data

21

3

4

Search order

Shared file access

20

• Leases grant access rights to applications [SOSP’89]
• Required for files and directories
• Function like lock, but revocable
• Exclusive writer, shared readers

Shared file access

20

• Leases grant access rights to applications [SOSP’89]
• Required for files and directories
• Function like lock, but revocable
• Exclusive writer, shared readers

• On revocation, LibFS digests leased data
• Private data made public before losing lease

• Leases serialize concurrent updates

Outline
• LibFS: Log operations to NVM at user-level

• Fast user-level access
• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel
• Asynchronous digest
• Transparent data migration
• Shared file access

• Evaluation

21

Experimental setup
• 2x Intel Xeon E5-2640 CPU, 64 GB DRAM

• 400 GB NVMe SSD, 1 TB HDD
• Ubuntu 16.04 LTS, Linux kernel 4.8.12

• Emulated NVM
• Use 40 GB of DRAM
• Performance model [Y. Zhang et al. MSST 2015]

• Throttle latency & throughput in software

22

Evaluation questions

23

• Latency:

• Does Strata efficiently support small, random writes?

• Does asynchronous digest have an impact on latency?

• Throughput:

• Strata writes data twice (logging and digesting).  
Can Strata sustain high throughput?

• How well does Strata perform  
when managing data across storage layers?

Related work

24

• NVM file systems
PMFS[EuroSys 14]: In-place update file system

• NOVA[FAST 16]: log-structured file system

• EXT4-DAX: NVM support for EXT4

• SSD file system

• F2FS[FAST 15]: log-structured file system

Microbenchmark:
write latency

25

• Strata logs to NVM

• Compare to NVM kernel file
systems: 
PMFS, NOVA, EXT4-DAX

• Strata, NOVA

• In-order, synchronous IO

• Atomic write

• PMFS, EXT4-DAX

• No atomic write 0

2

4

6

8

10

IO size

128 B 1 KB 4 KB 16 KB

Strata PMFS
NOVA EXT4-DAX

Latency (us)

B
etter

17 21 23 29

Microbenchmark:
write latency

25

• Strata logs to NVM

• Compare to NVM kernel file
systems: 
PMFS, NOVA, EXT4-DAX

• Strata, NOVA

• In-order, synchronous IO

• Atomic write

• PMFS, EXT4-DAX

• No atomic write 0

2

4

6

8

10

IO size

128 B 1 KB 4 KB 16 KB

Strata PMFS
NOVA EXT4-DAX

Latency (us)

B
etter

17 21 23 29

Avg.: 26% better
Tail : 43% better

Latency: persistent RPC

26

0

15

30

45

60

RPC size (IO size)
1 KB 4 KB 64 KB

Strata PMFS
NOVA EXT4-DAX
No persist

B
etter

98

Latency (us)

• Foundation of most servers

• Persist RPC data before
sending ACK to client

• RPC over RDMA

• 40 Gb/s Infiniband NIC

• For small IO (1 KB)

• 25% slower than No persist

• 35% faster than PMFS 
 7x faster than EXT4-DAX

Latency: persistent RPC

26

0

15

30

45

60

RPC size (IO size)
1 KB 4 KB 64 KB

Strata PMFS
NOVA EXT4-DAX
No persist

B
etter

98

Latency (us)

• Foundation of most servers

• Persist RPC data before
sending ACK to client

• RPC over RDMA

• 40 Gb/s Infiniband NIC

• For small IO (1 KB)

• 25% slower than No persist

• 35% faster than PMFS 
 7x faster than EXT4-DAX

35% better

Latency: LevelDB

0

10

20

30

Write  
sync.

Write  
seq.

Write  
rand.

Overwrite Read 
rand.

Strata PMFS
NOVA EXT4-DAX

35.2 49.2 37.7

27

B
etterLatency (us)

• LevelDB (NVM)

• Key size: 16 B

• Value size: 1 KB

• 300,000 objects

• Workload causes
asynchronous digests

• Fast user-level logging

• Random write
• 25% better than PMFS

• Random read
• Tied with PMFS

Latency: LevelDB

0

10

20

30

Write  
sync.

Write  
seq.

Write  
rand.

Overwrite Read 
rand.

Strata PMFS
NOVA EXT4-DAX

35.2 49.2 37.7

27

B
etter

25% better

Tied
Latency (us)

• LevelDB (NVM)

• Key size: 16 B

• Value size: 1 KB

• 300,000 objects

• Workload causes
asynchronous digests

• Fast user-level logging

• Random write
• 25% better than PMFS

• Random read
• Tied with PMFS

Latency: LevelDB

0

10

20

30

Write  
sync.

Write  
seq.

Write  
rand.

Overwrite Read 
rand.

Strata PMFS
NOVA EXT4-DAX

35.2 49.2 37.7

27

B
etter

25% better

Tied
Latency (us)

• LevelDB (NVM)

• Key size: 16 B

• Value size: 1 KB

• 300,000 objects

• Workload causes
asynchronous digests

• Fast user-level logging

• Random write
• 25% better than PMFS

• Random read
• Tied with PMFS

IO latency not impacted by asynchronous digest

Evaluation questions

28

• Latency:

• Does Strata efficiently support small, random writes?

• Does asynchronous digest have an impact on latency?

• Throughput:

• Strata writes data twice (logging and digesting).  
Can Strata sustain high throughput?

• How well does Strata perform  
when managing data across storage layers?

Throughput: Varmail

29

Mail server workload from Filebench
• Using only NVM
• 10000 files
• Read/Write ratio is 1:1
• Write-ahead logging Create journal file

Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS

Application

LibFS

Log coalescing

Throughput: Varmail

29

Mail server workload from Filebench
• Using only NVM
• 10000 files
• Read/Write ratio is 1:1
• Write-ahead logging

Strata
PMFS
NOVA

EXT4-DAX

Throughput (op/s)

0K 100K 200K 300K 400K
Better

29% better

Create journal file
Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS

Application

LibFS

Log coalescing

Throughput: Varmail

29

Mail server workload from Filebench
• Using only NVM
• 10000 files
• Read/Write ratio is 1:1
• Write-ahead logging

Log coalescing eliminates 86% of log entries, saving 14 GB of IO

Strata
PMFS
NOVA

EXT4-DAX

Throughput (op/s)

0K 100K 200K 300K 400K
Better

29% better

Create journal file
Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS

Application

LibFS

Log coalescing

Throughput: Varmail

29

Mail server workload from Filebench
• Using only NVM
• 10000 files
• Read/Write ratio is 1:1
• Write-ahead logging

Log coalescing eliminates 86% of log entries, saving 14 GB of IO

Strata
PMFS
NOVA

EXT4-DAX

Throughput (op/s)

0K 100K 200K 300K 400K
Better

29% better

Create journal file
Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS

Application

LibFS

Log coalescing
 No kernel file system has both low latency and high throughput:

• PMFS: better latency
• NOVA: better throughput

 Strata achieves both low latency and high throughput

Throughput: data migration

30

File server workload from Filebench
• Working set starts at NVM, grows to SSD, HDD
• Read/Write ratio is 1:2

Throughput: data migration

30

File server workload from Filebench
• Working set starts at NVM, grows to SSD, HDD
• Read/Write ratio is 1:2

User-level migration
• LRU: whole file granularity
• Treat each file system as a black-box
• NVM: NOVA, SSD: F2FS, HDD: EXT4

Throughput: data migration

30

File server workload from Filebench
• Working set starts at NVM, grows to SSD, HDD
• Read/Write ratio is 1:2

User-level migration
• LRU: whole file granularity
• Treat each file system as a black-box
• NVM: NOVA, SSD: F2FS, HDD: EXT4

Block-level caching
• Linux LVM cache, formatted with F2FS

Throughput: data migration

30

File server workload from Filebench
• Working set starts at NVM, grows to SSD, HDD
• Read/Write ratio is 1:2

User-level migration
• LRU: whole file granularity
• Treat each file system as a black-box
• NVM: NOVA, SSD: F2FS, HDD: EXT4

Strata
User-level migration
Block-level caching

Avg. throughput (ops/s)
0K 2K 4K 6K 8K 10K

2x faster

Block-level caching
• Linux LVM cache, formatted with F2FS

Throughput: data migration

30

File server workload from Filebench
• Working set starts at NVM, grows to SSD, HDD
• Read/Write ratio is 1:2

User-level migration
• LRU: whole file granularity
• Treat each file system as a black-box
• NVM: NOVA, SSD: F2FS, HDD: EXT4

22% faster than  
user-level migration
Cross layer optimization:
placing hot metadata  
in faster layers

Strata
User-level migration
Block-level caching

Avg. throughput (ops/s)
0K 2K 4K 6K 8K 10K

2x faster

Block-level caching
• Linux LVM cache, formatted with F2FS

Conclusion

Source code is available at
https://github.com/ut-osa/strata

31

Server applications need fast, small random IO on vast datasets
with intuitive crash consistency

Strata, a cross media file system, addresses these concerns

Performance: low latency, high throughput
• Novel split of LibFS, KernelFS
• Fast user-level access

Low-cost capacity: leverage NVM, SSD & HDD
• Asynchronous digest
• Transparent data migration with large, sequential IO

Simplicity: intuitive crash consistency model
• In-order, synchronous IO

Backup

32

Device management
overhead

SS
D

Th
ro

ug
hp

ut
 (M

B/
s)

0

250

500

750

1000

SSD utilization
0.1 0.25 0.5 0.6 0.7 0.8 0.9 1

64 MB 128 MB 256 MB
512 MB 1024 MB

For example, SSD Random write:

Sequential writes avoid management overhead
33

5-6x difference
by hardware GC

SSD, HDD prefer large sequential IO

