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Let’s build a fast server
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Requirements 

• Small updates (1 Kbytes) dominate 

• Dataset scales up to 10 TB 

• Updates must be crash consistent

NoSQL store, Database, File server, Mail server …
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Large erasure blocks need to be sequentially written 
Random writes: 5~6x slowdown due to GC [FAST’15]

Byte-addressable: cache-line granularity IO
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• Dataset scales up to 10TB  
• Updates must be crash consistent

91%
Kernel file system

NVM

1 KB

IO latency (us)
0 1.5 3 4.5 6

Write to device Kernel code
91%

Kernel file system: 
NOVA [FAST 16, SOSP 17] NVM is so fast that kernel is the bottleneck
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 For low-cost capacity with high performance,  
 must leverage multiple device types
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• Small updates (1 Kbytes) dominate 
• Dataset scales up to 10TB  
• Updates must be crash consistent

• Block-level caching manages data in blocks,  
but NVM is byte-addressable 

• Extra level of indirection

Block-level caching

NVM 
SSD 
HDD

Kernel file system

Application

1 KB

IO latency (us)

0 3 6 9 12

NOVA Block-level caching

Better

Block-level caching is too slow
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Problems in today’s file systems
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• Kernel mediates every operation 
NVM is so fast that kernel is the bottleneck 

• Tied to a single type of device 
For low-cost capacity with high performance, 
must leverage multiple device types 
NVM (soon), SSD, HDD 

• Aggressive caching in DRAM,  
write to device only when you must (fsync) 

  Applications struggle for crash consistency



Strata:  
A Cross Media File System

9

Performance: especially small, random IO 
• Fast user-level device access 

Low-cost capacity: leverage NVM, SSD & HDD  
• Transparent data migration across different storage media 
• Efficiently handle device IO properties 

Simplicity: intuitive crash consistency model 
• In-order, synchronous IO 
• No fsync() required
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Apply log operations to shared data

LibFS

KernelFS



Outline
• LibFS: Log operations to NVM at user-level 

• Fast user-level access 
• In-order, synchronous IO 

• KernelFS: Digest and migrate data in kernel 
• Asynchronous digest 
• Transparent data migration 
• Shared file access 

• Evaluation
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• Fast writes 

• Directly access fast NVM 

• Sequentially append data 

• Cache-line granularity 

• Blind writes

unmodified 
application

Strata: 
LibFS

Kernel-
bypass

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

rename

awang
Sticky Note
just write the byte range, no read modify write


awang
Sticky Note
no DRAM copy
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• Fast writes 

• Directly access fast NVM 

• Sequentially append data 

• Cache-line granularity 

• Blind writes

unmodified 
application

Strata: 
LibFS

Kernel-
bypass

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

• Crash consistency 

• On crash, kernel replays log
rename
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Strata: 
LibFS

Kernel-
bypass

NVM

Synchronous IO

• When each system call returns: 

• Data/metadata is durable 

• In-order update 

• Atomic write 

• Limited size (log size)

POSIX API

Fast synchronous IO: NVM and kernel-bypass

Private operation log

fsync() is no-op
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• Visibility:  
make private log visible  
to other applications 

• Data layout:  
turn write-optimized to  
read-optimized format 
(extent tree) 

• Large, batched IO 

• Coalesce log

Digest data in kernel 

Write

NVM

Digest

NVM Shared areaPrivate operation log

Application

Strata: 
LibFS

POSIX API

Strata: 
KernelFS



Digest optimization: 
Log coalescing

SQLite, Mail server: crash consistent update using write ahead logging

16

Digest eliminates unneeded work

. . .
. . .

Remove  
temporary durable writes

Private operation log

Application
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Create journal file
Write data to journal file
Write data to database file
Delete journal file

Digest eliminates unneeded work

. . .
. . .

Write data to database file

Remove  
temporary durable writes

Private operation log

Application

Strata: 
LibFS

Strata: 
KernelFS

Throughput optimization: 
Log coalescing saves IO while digesting

NVM Shared area
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• Handle device IO properties 

• Migrate 1 GB blocks 

• Avoid SSD garbage 
collection overhead
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SSD Shared area

HDD Shared area

• Low-cost capacity 

• KernelFS migrates cold data 
to lower layers

Digest and migrate data in kernel 

     NVM data

Resembles log-structured merge (LSM) tree

• Handle device IO properties 

• Migrate 1 GB blocks 

• Avoid SSD garbage 
collection overhead



Read: hierarchical search
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Application

Strata: 
LibFS

Strata: 
KernelFS

NVM Shared areaPrivate OP log

SSD Shared area

HDD Shared area

     NVM data

     SSD data

     HDD data

     Log data
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3

4

Search order
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• Required for files and directories 
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• Leases grant access rights to applications [SOSP’89]   
• Required for files and directories 
• Function like lock, but revocable 
• Exclusive writer, shared readers

• On revocation, LibFS digests leased data 
• Private data made public before losing lease 

• Leases serialize concurrent updates



Outline
• LibFS: Log operations to NVM at user-level 

• Fast user-level access 
• In-order, synchronous IO 

• KernelFS: Digest and migrate data in kernel 
• Asynchronous digest 
• Transparent data migration 
• Shared file access 

• Evaluation

21



Experimental setup
• 2x Intel Xeon E5-2640 CPU, 64 GB DRAM 

• 400 GB NVMe SSD, 1 TB HDD 
• Ubuntu 16.04 LTS, Linux kernel 4.8.12 

• Emulated NVM 
• Use 40 GB of DRAM 
• Performance model [Y. Zhang et al. MSST 2015] 

• Throttle latency & throughput in software

22



Evaluation questions
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• Latency: 

• Does Strata efficiently support small, random writes? 

• Does asynchronous digest have an impact on latency? 

• Throughput: 

• Strata writes data twice (logging and digesting).  
Can Strata sustain high throughput? 

• How well does Strata perform  
when managing data across storage layers?



Related work
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• NVM file systems 
PMFS[EuroSys 14]: In-place update file system 

• NOVA[FAST 16]: log-structured file system 

•  EXT4-DAX: NVM support for EXT4 

• SSD file system 

•  F2FS[FAST 15]: log-structured file system
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• LevelDB (NVM) 

• Key size: 16 B 

• Value size: 1 KB 

• 300,000 objects 

• Workload causes 
asynchronous digests 

• Fast user-level logging 

• Random write 
• 25% better than PMFS 

• Random read  
• Tied with PMFS

IO latency not impacted by asynchronous digest
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• Latency: 

• Does Strata efficiently support small, random writes? 

• Does asynchronous digest have an impact on latency? 

• Throughput: 

• Strata writes data twice (logging and digesting).  
Can Strata sustain high throughput? 

• How well does Strata perform  
when managing data across storage layers?
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Mail server workload from Filebench 
• Using only NVM 
• 10000 files 
• Read/Write ratio is 1:1 
• Write-ahead logging

Log coalescing eliminates 86% of log entries, saving 14 GB of IO
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Create journal file
Write data to journal
Write data to database file
Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes  
temporary durable writes

KernelFS
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Log coalescing
  No kernel file system has both low latency and high throughput: 

• PMFS: better latency 
• NOVA: better throughput 

  Strata achieves both low latency and high throughput
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File server workload from Filebench 
• Working set starts at NVM, grows to SSD, HDD  
• Read/Write ratio is 1:2

User-level migration  
• LRU: whole file granularity  
• Treat each file system as a black-box 
• NVM: NOVA, SSD: F2FS, HDD: EXT4

22% faster than  
user-level migration 
Cross layer optimization: 
placing hot metadata  
in faster layers

Strata
User-level migration
Block-level caching

Avg. throughput (ops/s)
0K 2K 4K 6K 8K 10K

2x faster

Block-level caching 
• Linux LVM cache, formatted with F2FS



Conclusion

Source code is available at  
https://github.com/ut-osa/strata

31

Server applications need fast, small random IO on vast datasets 
with intuitive crash consistency

Strata, a cross media file system, addresses these concerns

Performance: low latency, high throughput 
• Novel split of LibFS, KernelFS 
• Fast user-level access 

Low-cost capacity: leverage NVM, SSD & HDD 
• Asynchronous digest 
• Transparent data migration with large, sequential IO 

Simplicity: intuitive crash consistency model 
• In-order, synchronous IO



Backup
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Device management 
overhead
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For example, SSD Random write:

Sequential writes avoid management overhead
33

5-6x difference 
by hardware GC

SSD, HDD prefer large sequential IO




