Semantics of Caching with SPOCA - A

Stateless, Proportional,
Optimally-Consistent Addressing

Algorithm

Ashish Chawla, Benjamin Reed, Karl Juhnke, Ghousuddin Syed
Yahoo! Inc

USENIX YAaHoO!

Video Platform

BN T e

. }’g‘
.3 ™ - ;: [y« “.'

“SENIX 2 6/21/11 YAHOO’

Video PlatformE

USENIX 3 6/21/11 YAHOO’

Andy
Sticky Note
* 20 M videos
* 30 M requests to 800K videos per day
* typical front end server
 * can hold 500 videos in RAM
 * 100K videos on disk

Simple Content Serving Architecture

USENIX 4 6/21/11 YAHOO’

Outline

= Introduction

* Problem Definition

» SPOCA and Requirements
= Evaluations

= Conclusion

USENIX 5 6/21/11 YAHOO’

The Problem

* The front-end server disks are a secondary bottleneck.

» Eliminating redundant caching of content also reduces the
load on the storage farm.

» An intelligent request-routing policy can produce far more
caching efficiency than even a perfect cache promotion
policy that must labor under random request routing.

» The cache promotion algorithm not enough.

USENIX 6 6/21/11 YAHOO'

Andy
Sticky Note
popular videos are cached on many front end servers

Problems@from Geographic Distribution

AWl

. }*&%
{ f'. e s 5 \

USENIX 7 6/21/11 YAHOO’

Andy
Sticky Note
* content may not be local
* nearby cluster may not cache the target video

Problems from Geographic Distribution

z g A

";-, { : : ' 4
b ‘ ; . - 2] -

\; W i, Ml - -
i "’5 W e > v5 v89 | vi23 | v843
das e LAt iceland 'S ~ —7
A };’_ \ -‘.'c‘:,'- _;-§n¢en ‘ ~ \
M ‘ R 2 Norge - 3 L B Russia
S i ,‘;(" e S £ - X \ -

.- Canada: W, E5G
vi | vass | vi | vioo | v2ee7 |

3=
i

USENIX 8

Poccs_iu

6/21/11

Problems from Geographic Distribution

Lol ™ T | _ - A e

. \}a%

USENIX 9 6/21/11 YAHOO’

Outline

= |ntroduction
= Problem Definition

* SPOCA and Requirements
= Evaluations

= Conclusion

USENIX 10 6/21/11 YAHOO'

Requirements

» Merge different delivery pools@and manage the

diverse requirements in an adaptive way.

" Minimize caching disruptions when front-end
server leaves or enters the pool - re-address as
few files as possible to different servers.

» Proportional distribution of files among servers
does not necessarily result in a proportional
distribution of requests (Power Law)&

USENIX 1 6/21/11 YAHOO'

Andy
Sticky Note
* example pools: download streams, multimedia streams

Andy
Sticky Note
file access popularity follows the Zipf's power distribution
Y
||
||
| \
| _______
-----------------X

Andy
Sticky Note
potentially heterogeneous

SPOCA and Zebra

» Used in production in a global scenario for web-scale
load.

= Shows real world improvements over the simple off-the-
shelf solution.

* Implements load balancing, fault tolerance, popular
content handling, and efficient cache utilization with a
single simple mechanism.

USENIX 12 6/21/11 YAHOO’

Traditional Approach

USENIX 13 6/21/11 YAHOO’

Complete Picture

’b"cinn

USENIX 14 6/21/11 YAHOO’

Complete Picture — Inside Data Center

"B i

T

- »
s B e
- f
- =I5 ‘ Route to Content
. S BRI B Cache Location
ke [b
Response — Cached IP -t &l
Einkones: ‘.‘..‘W

e I8

4

,

USENIX 15 6/21/11 YAHOO’

Zebra Algorithm

* Handles the geographic component of request routing and
content caching

» Based on content popularity, Zebra decides when requests
should be routed to content’'s home locale and when the
content should be cached in the nearest locale

* We use bloom filters to determine popularity.

USENIX 16 6/21/11 YA.HOO’

Tracking popularity

add(vid1) \

Bloom

Filter

USENIX " s YAHOO!

Checking Popularity

contains(vid1) \

Bloom

Filter

USENIX e s YAHOO!

What's the problem here?

= Everything will become popular.
= No way to expire content in bloom filter

*\We use a sequence of bloom filters to track
popularity.

USENIX 19 6/21/11 YA.HOO’

Bloom Filter Representation

o J 1§ 2

evid1 *vid3 *vid2
*vid5 vid526 evIid/752

USENIX & s YAHOO!

Bloom Filter Representation

o J 1§ 2

evid1 *vid3
*vid5 e vid526

USENIX g s YAHOO!

Bloom Filter Representation

evid1 *vid3
*vid5 e vid526

add(vid8)

USENIX 2 s YAHOO!

Bloom Filter Representation

o J 1§ 2

*vid8 evid1 *vid3
*vid5 e vid526

USENIX > s YAHOO!

Bloom Filter Representation

contains(vid3)

*vid8 evid1 *vid3
*vid5 e vid526

USENIX o s YAHOO!

Bloom Filter Representation

contains(vid3)
Unified Filter

V'O VIU

B B

*vIid8 e vid1 *vIid8
*vid5 e vid526

USENIX » s YAHOO!

Key Points

» Zebra determines which serving cluster will
handle a given request based on geolocality and
popularity.

» SPOCA determines which front-end server within
that cluster will cache and serve the request.

USENIX 2 e YAHOO!

SPOCA Algorithm

= Goal: Maximize cache utilization at the front-end servers.

» Simple content to server assignment function based on a
sparse hash space.@

» Each front-end server is assigned a portion of the hash
space according to its capacity.@

» The SPOCA routing function uses a hash function@o map names to a
point in a hash space.

» Input = the name of the requested content

» Output = the server that will handle the request.

. Re—hashing@nappens till the result maps to a valid hash
space.

USENIX 2 e YAHOO!

Andy
Sticky Note
limit caching of a file to just enough servers

Andy
Sticky Note
* no need to store the mapping table
* perfect consistency

Andy
Sticky Note
load balancing

Andy
Sticky Note
resilient to failures

Andy
Sticky Note
1% to 25% for initial servers

SPOCA hash map example

H(vidl)

Server 1

O’’’
Server 2

Storage
Farm

H(H(vidl))

Server 3

Server 4

USENIX : s YAHOO!

Failure Handling

H(vidl)
Server 1
Server 2
Storage
Farm
H(H(vidl))

AR
Server 4

USENIX 29 s YAHOO!

Elasticity

AR
Server 5

H(vidl)

Server 1

O’’’
Server 2

Storage
Farm

Server 3

Server 4

USENIX ° s YAHOO!

Andy
Sticky Note
new server can capture loads from existing servers

Popular Content

= SPOCA minimizes the number of servers to maximize the
aggregate number of cached objects.

» For popular content we need to route requests to multiple
front-end servers.

» We store the hashed address of any requested content for
a brief popularity window, 150 seconds in our case.

* When the popularity window expires, the stored hash for
each object is discarded.

USENIX 31 6/21/11 YAHOO'

Andy
Sticky Note
as the starting point of the next round of hash

H(vidl)

Server 1

O]
Server 2

)

H(H(vid1))

Server 4

USENIX g

Popularity Window
Before the Request:

{}

Popularity Window
After the Request:
{(vid1l, H(H(vidl1)))}

6/21/11

YaHoO!

Andy
Sticky Note
the starting point for the next round of hash within a 150-second window

Popularity Window
Before the Request:
{(vid1l, H(H(vidl1)))}

Popularity Window
After the Request:
{(vid1l, H(H(H(vid1))))}

H(H(H(vid1))) S et
Server 2

USENIX » s YAHOO!

Outline

= Introduction

* Problem Definition

» SPOCA and Requirements
» Evaluations

= Conclusion

“SENIX 34 6/21/11 YAHOO’

Scaling 5x w/o software improvements

Scaling content 5x with no software improvements

l —Filer storage —Filer streaming |

/ T 200

2000 150

3000

2500

Filer storage (terabytes)

Daily filer streaming (terabytes)

1500
T 100
1000
T 50
0 T T T T T T T T 0
0 1 2 3 4 5 6 7 8 9

Unique streams per day (millions)

USENIX » s YAHOO!

Andy
Sticky Note
uncached storage requests

Scaling 5x with software improvements

USENIX

3000

2500

2000

—
[6)]
o
o

—
o
o
o

Filer storage (terabytes)

500

Scaling content 5x with software improvements

| —Filer storage —Filer streaming ‘

T 100

T 50

1 2 3 4 5 6 7 8
Unique streams per day (millions)

T 200

150

Daily filer streaming (terabytes)

36

6/21/11

YaHoO!

Memory cache hits
=

6.00%

80.00%

70.00% | /\; ———— T 5.00%

60.00%
/ - 4.00%
50.00%

40.00% \
30.00% \ - 2.00%
20.00%

\ - - 1.00%

3.00%

0 00% T T T T T T T T T T T T T T T T T]C IC T T T l_ 'm 0.00%
. [- > 0> > > © C S S5 S
P © 8 § 8 &8 83 & &8 8 8 & 58 & 8 & 5 55 533 3 3 8
L2 22322333333233=22322246d4¢%
oo T N N O © - N
SN T N S R - & A T
Dates

===RAM Hit “==Cache Miss

USENIX a7 6/21/11 YAHOO'

Andy
Sticky Note
* reduce the cache window size from 300 to 240 seconds
* better cache hit rate
 * fewer machines serving popular files

Cache Hit and Misses*

226 131 135137 [310 1314

Download Cache Miss 9.7% 7.2% 4.3%

Download Cache HIT 90.3% 92.8% 95.7%
Flash Cache Miss 21.8% 13.5% 22.0%
Flash RAM hit 57.2% 81.4% 66.1%

* Download and Flash Pools in S1S data center

USENIX .

3.7%

96.3%
14.8%
71.5%

1.8% 0.4%
98.2% 99.6%
25% 0.7%
90.0% 90.1%

6/21/11 YAHOO’

Conclusion

» Zebra and SPOCA do not have any hard state to maintain
or per object meta-data

» Eliminates any per object storage overhead or
management, simplifying operations.

» Consolidate content serving into a single pool of servers
that can handle files from a variety of different workloads.

= Decouple serving and caching layers.

» Cost savings and end user satisfaction are key success
metrics.

USENIX & e YAHOO!

USENIX 40 o YAHOO!

