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* 20 M videos
* 30 M requests to 800K videos per day
* typical front end server
  * can hold 500 videos in RAM
  * 100K videos on disk


Simple Content Serving Architecture
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The Problem

* The front-end server disks are a secondary bottleneck.

» Eliminating redundant caching of content also reduces the
load on the storage farm.

» An intelligent request-routing policy can produce far more
caching efficiency than even a perfect cache promotion
policy that must labor under random request routing.

» The cache promotion algorithm not enough.
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popular videos are cached on many front end servers


Problems@from Geographic Distribution
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* content may not be local
* nearby cluster may not cache the target video


Problems from Geographic Distribution
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Problems from Geographic Distribution
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Requirements

» Merge different delivery pools@and manage the

diverse requirements in an adaptive way.

" Minimize caching disruptions when front-end
server leaves or enters the pool - re-address as
few files as possible to different servers.

» Proportional distribution of files among servers
does not necessarily result in a proportional
distribution of requests (Power Law)&
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* example pools:  download streams, multimedia streams
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Sticky Note
file access popularity follows the Zipf's power distribution
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potentially heterogeneous


SPOCA and Zebra

» Used in production in a global scenario for web-scale
load.

= Shows real world improvements over the simple off-the-
shelf solution.

* Implements load balancing, fault tolerance, popular
content handling, and efficient cache utilization with a
single simple mechanism.
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Traditional Approach
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Complete Picture

’b"cinn

USENIX 14 6/21/11 YAHOO’



Complete Picture — Inside Data Center
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Zebra Algorithm

* Handles the geographic component of request routing and
content caching

» Based on content popularity, Zebra decides when requests
should be routed to content’'s home locale and when the
content should be cached in the nearest locale

* We use bloom filters to determine popularity.
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Tracking popularity

add(vid1) \

Bloom

Filter
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Checking Popularity

contains(vid1) \

Bloom

Filter
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What's the problem here?

= Everything will become popular.
= No way to expire content in bloom filter

*\We use a sequence of bloom filters to track
popularity.

USENIX 19 6/21/11 YA.HOO’



Bloom Filter Representation
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Bloom Filter Representation
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Bloom Filter Representation

evid1 *vid3
*vid5 e vid526
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Bloom Filter Representation
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Bloom Filter Representation

contains(vid3)

*vid8 evid1 *vid3
*vid5 e vid526

USENIX o s YAHOO!



Bloom Filter Representation

contains(vid3)
Unified Filter
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Key Points

» Zebra determines which serving cluster will
handle a given request based on geolocality and
popularity.

» SPOCA determines which front-end server within
that cluster will cache and serve the request.
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SPOCA Algorithm

= Goal: Maximize cache utilization at the front-end servers.

» Simple content to server assignment function based on a
sparse hash space.@

» Each front-end server is assigned a portion of the hash
space according to its capacity.@

» The SPOCA routing function uses a hash function@o map names to a
point in a hash space.

» Input = the name of the requested content

» Output = the server that will handle the request.

. Re—hashing@nappens till the result maps to a valid hash
space.
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limit caching of a file to just enough servers

Andy
Sticky Note
* no need to store the mapping table
* perfect consistency
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Sticky Note
load balancing
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Sticky Note
resilient to failures
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1% to 25% for initial servers


SPOCA hash map example

H(vidl)
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Failure Handling
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Elasticity
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new server can capture loads from existing servers



Popular Content

= SPOCA minimizes the number of servers to maximize the
aggregate number of cached objects.

» For popular content we need to route requests to multiple
front-end servers.

» We store the hashed address of any requested content for
a brief popularity window, 150 seconds in our case.

* When the popularity window expires, the stored hash for
each object is discarded.

USENIX 31 6/21/11 YAHOO'


Andy
Sticky Note
as the starting point of the next round of hash


H(vidl)

Server 1

O]
Server 2

)

H(H(vid1))

Server 4
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Popularity Window
Before the Request:

{}

Popularity Window
After the Request:
{(vid1l, H(H(vidl1)))}
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the starting point for the next round of hash within a 150-second window


Popularity Window
Before the Request:
{(vid1l, H(H(vidl1)))}

Popularity Window
After the Request:
{(vid1l, H(H(H(vid1))))}

H(H(H(vid1))) S et
Server 2
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Scaling 5x w/o software improvements

Scaling content 5x with no software improvements
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uncached storage requests


Scaling 5x with software improvements
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Memory cache hits
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* reduce the cache window size from 300 to 240 seconds
* better cache hit rate
   * fewer machines serving popular files


Cache Hit and Misses*

226 131 135137 [310 1314

Download Cache Miss 9.7% 7.2% 4.3%

Download Cache HIT 90.3% 92.8% 95.7%
Flash Cache Miss 21.8% 13.5% 22.0%
Flash RAM hit 57.2% 81.4% 66.1%

* Download and Flash Pools in S1S data center
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Conclusion

» Zebra and SPOCA do not have any hard state to maintain
or per object meta-data

» Eliminates any per object storage overhead or
management, simplifying operations.

» Consolidate content serving into a single pool of servers
that can handle files from a variety of different workloads.

= Decouple serving and caching layers.

» Cost savings and end user satisfaction are key success
metrics.
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