
Slacker Outline
Background

• Containers: lightweight isolation
• Docker: file-system provisioning

Container Workloads

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

Why use containers?

Why use containers?
(it’s trendy)

Why use containers?
(it’s trendy)

(efficient solution to classic problem)

Big Goal: Sharing and Isolation

App A App B

want: multitenancy
Physical Machine

Big Goal: Sharing and Isolation

App A App B

don’t want: crashes
Physical Machine

Big Goal: Sharing and Isolation

App A App B

don’t want: crashes
Physical Machine

Big Goal: Sharing and Isolation

App A App B

don’t want: unfairness
Physical Machine

Big Goal: Sharing and Isolation

App A App B

don’t want: leaks
Physical Machine

sensitive
data

Solution: Virtualization
namespaces and scheduling provide illusion of private resources

Evolution of Virtualization
1st generation: process virtualization

• isolate within OS (e.g., virtual memory)
• fast, but incomplete (missing ports, file system, etc.)

App A

process

App B

process
Operating System
process virtualization

Evolution of Virtualization
1st generation: process virtualization

• isolate within OS (e.g., virtual memory)
• fast, but incomplete (missing ports, file system, etc.)

2nd generation: machine virtualization
• isolate around OS
• complete, but slow (redundancy, emulation)

App A

process

App B

process
VM
OSOS

VM

App A App B

Operating System
process virtualization machine virtualization

Evolution of Virtualization
1st generation: process virtualization

• isolate within OS (e.g., virtual memory)
• fast, but incomplete (missing ports, file system, etc.)

2nd generation: machine virtualization
• isolate around OS
• complete, but slow (redundancy, emulation)

App A

process

App B

process
VM
OSOS

VM

App A App B

Operating System
process virtualization machine virtualization

Evolution of Virtualization
1st generation: process virtualization

• isolate within OS (e.g., virtual memory)
• fast, but incomplete (missing ports, file system, etc.)

2nd generation: machine virtualization
• isolate around OS
• complete, but slow (redundancy, emulation)

3rd generation: container virtualization
• extend process virtualization: ports, file system, etc.
• fast and complete

Evolution of Virtualization
1st generation: process virtualization

• isolate within OS (e.g., virtual memory)
• fast, but incomplete (missing ports, file system, etc.)

2nd generation: machine virtualization
• isolate around OS
• complete, but slow (redundancy, emulation)

3rd generation: container virtualization
• extend process virtualization: ports, file system, etc.
• fast and complete???

many storage
challenges

New Storage Challenges
Crash isolation

Physical Disentanglement in a Container-Based File System.  
Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,  
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. OSDI ‘14.

Performance isolation
Split-level I/O Scheduling For Virtualized Environments.  
Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya, Anand
Krishnamurthy, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,  
Remzi H. Arpaci-Dusseau. SOSP ‘15.

File-system provisioning
Slacker: Fast Distribution with Lazy Docker Containers.
Tyler Harter, Brandon Salmon, Rose Liu,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. FAST ‘16.

today

Slacker Outline
Background

• Containers: lightweight isolation
• Docker: file-system provisioning

Container Workloads

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

Docker Background
Deployment tool built on containers

An application is defined by a file-system image
• application binary
• shared libraries
• etc.

Version-control model
• extend images by committing additional files
• deploy applications by pushing/pulling images

Containers as Repos
LAMP stack example

• commit 1: Linux packages (e.g., Ubuntu)
• commit 2: Apache
• commit 3: MySQL
• commit 4: PHP

Central registries
• Docker HUB
• private registries

Docker “layer”
• commit
• container scratch space

Push, Pull, Run
registry

worker workerworker

registry

worker workerworker

push

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

registry

worker workerworker

pull pull

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

CC C
run runrun

registry

worker workerworker

Push, Pull, Run

CC C

need a new benchmark
to measure Docker push,
pull, and run operations.

run runrun

Slacker Outline
Background

Container Workloads
• HelloBench
• Analysis

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

HelloBench
Goal: stress container startup

• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run

HelloBench
Goal: stress container startup

• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run

HelloBench
Goal: stress container startup

• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run
ready

HelloBench
Goal: stress container startup

• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

Development cycle
• distributed programming/testing

push pull run
ready

development cycle

HelloBench
Goal: stress container startup

• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

Development cycle
• distributed programming/testing

Deployment cycle
• flash crowds, rebalance

push pull run
ready

deployment cycle

Workload Categories
Linux	Distro	
alpine				
busybox														
centos															
cirros															
crux																	
debian															
fedora															
mageia															
opensuse													
oraclelinux										
ubuntu															
ubuntu-
debootstrap			
ubuntu-upstart						

Database	
cassandra												
crate																
elas6csearch								
mariadb														
mongo																
mysql																
percona														
postgres													
redis																
rethinkdb												
!
Web	Framework	
django															
iojs																	
node																	
rails															

Language	
clojure														
gcc																		
golang															
haskell														
hylang															
java																	
jruby																
julia																
mono																	
perl																	
php																		
pypy																	
python															
r-base															
rakudo-star										
ruby																	
thri<														

Web	Server	
glassfish												
h>pd																
je>y																
nginx																
php-zendserver							
tomcat							
!
Other	
drupal															
ghost																
hello-world										
jenkins														
rabbitmq													
registry													
sonarqube																		

Slacker Outline
Background

Container Workloads
• HelloBench
• Analysis

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

Questions
How is data distributed across Docker layers?
!

How much image data is needed for container startup?
!

How similar are reads between runs?

Questions
How is data distributed across Docker layers?
!

How much image data is needed for container startup?
!

How similar are reads between runs?

HelloBench images
• circle: commit
• red: image

Image Data Depth

Image Data Depth

half of data is at depth 9+

Questions
How is data distributed across Docker layers?

• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?

How similar are reads between runs?

Questions
How is data distributed across Docker layers?

• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?

How similar are reads between runs?

Container Amplification

Container Amplification

Container Amplification

only 6.4% of data needed during startup

Questions
How is data distributed across Docker layers?

• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?
• 6.4% of data is needed
• design implication: lazily fetch data

How similar are reads between runs?

Questions
How is data distributed across Docker layers?

• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?
• 6.4% of data is needed
• design implication: lazily fetch data

How similar are reads between runs?

Repeat Runs
measure hits/misses for second of two runs

Repeat Runs

up to 99% of reads could be serviced by a cache

measure hits/misses for second of two runs

Questions
How is data distributed across Docker layers?

• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?
• 6.4% of data is needed
• design implication: lazily fetch data

How similar are reads between runs?
• containers from same image have similar read patterns
• design implication: share cache state between containers

Slacker Outline
Background

Container Workloads

Default Driver: AUFS
• Design
• Performance

Our Driver: Slacker

Evaluation

Conclusion

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

Operations
• push
• pull
• run

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

layers:

…

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

directories:

…

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C
…

PUSH
directories:

A B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B Ctar.gz

PUSH

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B Ctar.gz

PUSH

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

PULL

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

tar.gz

PULL

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Ztar.gz

PULL
directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

PULL
directories:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
directories:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN scratch dir:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

root FS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read B

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read B

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read X

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read X

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z
copy

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z’

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

Z’

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

Slacker Outline
Background

Container Workloads

Default Driver: AUFS
• Design
• Performance

Our Driver: Slacker

Evaluation

Conclusion

AUFS File System

AUFS File System

Deep data is slow

AUFS Storage Driver

AUFS Storage Driver

76% of deployment cycle spent on pull

Slacker Outline
Background

Container Workloads

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

images and
containers

Prefetch vs. Lazy Fetch

registry

images

worker

containers

registry worker

AUFS Slacker

images and
containers

Prefetch vs. Lazy Fetch

registry

images

worker

containers

registry worker

AUFS Slacker

significant copying
• over network
• to/from disk

centralized storage
• easy sharing

Prefetch vs. Lazy Fetch

registry

images

worker

containers

AUFS

images and
containers

registry worker

Slacker

Prefetch vs. Lazy Fetch

images and
containers

registry

Slacker

loopback
ext4

container

NFS File

loopback
ext4

container

Prefetch vs. Lazy Fetch

Slacker
registry

NFS File

loopback
ext4

container

Prefetch vs. Lazy Fetch

Slacker
registry

NFS File

VMstore abstractions…

VMstore Abstractions
Copy-on-Write

• VMstore provides snapshot() and clone()
• block granularity avoids AUFS’s problems with file granularity

snapshot(nfs_path)!
• create read-only copy of NFS file
• return snapshot ID

clone(snapshot_id)!
• create r/w NFS file from snapshot

Slacker Usage
• NFS files ⇒ container storage
• snapshots ⇒ image storage
• clone() ⇒ provision container from image
• snapshot() ⇒ create image from container

Snapshot and Clone

Tintri VMstore

worker A

container

NFS file

Snapshot and Clone

Tintri VMstore

worker A

NFS file

snapshot

Worker A: push

Snapshot and Clone

Tintri VMstore

worker A

NFS file

snapshot

snap NCOW

Worker A: push

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

Worker A: push

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker A: push

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker A: push

img

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Note: registry is only a name server.
Maps layer metadata ⇒ snapshot ID

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B
NN

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

clone N

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

clone N

COW NFS file

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

NFS file

N

snap N

Nimg

Snapshot and Clone

Tintri VMstore

worker A

NFS file snap N

registry

Worker B: pull and run

worker B

NFS file

container

snap N

img

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

Slacker Flattening
File Namespace Level

• flatten layers
• if B is child of A, then “copy” A to B to start. Don’t make B empty

Block Level
• do COW+dedup beneath NFS files, inside VMstore

ext4
dir dir dir dir

copy-on-write ext4
NFS NFS NFS NFS

copy-on-write

ext4 ext4 ext4

AUFS Slacker

namespace

block

Slacker Flattening
File Namespace Level

• flatten layers
• if B is child of A, then “copy” A to B to start. Don’t make B empty

Block Level
• do COW+dedup beneath NFS files, inside VMstore

ext4
A B C D

copy-on-write ext4
A AB ABC ABCD

copy-on-write

ext4 ext4 ext4

AUFS Slacker

namespace

block

Challenge: Framework Assumptions

Assumed Layout Actual Layout

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 runnable

runnable

Challenge: Framework Assumptions

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 pull pull

Assumed Layout Actual Layout

Challenge: Framework Assumptions

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 optimize

Strategy: lazy cloning. Don’t clone non-top
layers until Docker tries to mount them.

Assumed Layout Actual Layout

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

Slacker Driver
Goals

• make push+pull very fast
• utilize powerful primitives of a modern storage server (Tintri VMstore)
• create drop-in replacement; don’t change Docker framework itself

Design
• lazy pull
• layer flattening
• cache sharing

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

storage for 2 containers
started from same image

ABC
image

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

NFS Client:

Challenge: Cache Sharing

cache:

read

ABX ABY

NFS Client:

Challenge: Cache Sharing

cache:

AABX ABY

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A

read

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A

A

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A A

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A A

Challenge: how to avoid
space and I/O waste?

NFS Client:

Challenge: Cache Sharing

cache:

ABX ABY

A A

Strategy: track differences and
deduplicate I/O (more in paper)

001 001

Slacker Outline
Background

Container Workloads

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

Questions
What are deployment and development speedups?

How is long-term performance?
!

Questions
What are deployment and development speedups?

How is long-term performance?

HelloBench Performance

deployment: pull+run
development: push+pull+run

Questions
What are deployment and development speedups?

• 5x and 20x faster respectively (median speedup)

How is long-term performance?

Questions
What are deployment and development speedups?

• 5x and 20x faster respectively (median speedup)

How is long-term performance?

Server Benchmarks
Databases and Web Servers

• PostgreSQL
• Redis
• Apache web server (static)
• io.js Javascript server (dynamic)

Experiment
• measure throughput (after startup)
• run 5 minutes

Server Benchmarks
Databases and Web Servers

• PostgreSQL
• Redis
• Apache web server (static)
• io.js Javascript server (dynamic)

Experiment
• measure throughput (after startup)
• run 5 minutes

Result: Slacker is always at least as fast as AUFS

Questions
What are deployment and development speedups?

• 5x and 20x faster respectively (median speedup)

How is long-term performance?
• there is no long-term penalty for being lazy

Slacker Outline
Background

Container Workloads

Default Driver: AUFS

Our Driver: Slacker

Evaluation

Conclusion

yuw
Typewritten Text
Strengths:1. very nice design of HelloBench, Slacker and MultiMaker.2. Good lverage of VMStore based on their prior work for block ID based snapshot and clone3. Good optimization with lazy fetch and ID-based cache; Modified kernel driver further enables client side caching. Weaknesses:1. The presentation has too many animation and failed to convey the beauty of the design and implementation.2. Could have discussed the implication of Slacker to large parallel file or storage systems because it is unlikely for big data centers to use NSF-based backup.

Conclusion
Containers are inherently lightweight

• but existing frameworks are not

COW between workers is necessary for fast startup
• use shared storage
• utilize VMstore snapshot and clone

Slacker driver
• 5x deployment speedup
• 20x development speedup

HelloBench: https://github.com/Tintri/hello-bench

https://github.com/Tintri/hello-bench

