
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Skylight—A Window on Shingled Disk Operation
Abutalib Aghayev and Peter Desnoyers, Northeastern University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/aghayev

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  135

Skylight—A Window on Shingled Disk Operation

Abutalib Aghayev Peter Desnoyers
Northeastern University

Abstract

We introduce Skylight, a novel methodology that combines
software and hardware techniques to reverse engineer key
properties of drive-managed Shingled Magnetic Recording
(SMR) drives. The software part of Skylight measures
the latency of controlled I/O operations to infer important
properties of drive-managed SMR, including type, structure,
and size of the persistent cache; type of cleaning algorithm;
type of block mapping; and size of bands. The hardware part
of Skylight tracks drive head movements during these tests,
using a high-speed camera through an observation window
drilled through the cover of the drive. These observations
not only confirm inferences from measurements, but resolve
ambiguities that arise from the use of latency measurements
alone. We show the generality and efficacy of our techniques
by running them on top of three emulated and two real SMR
drives, discovering valuable performance-relevant details of
the behavior of the real SMR drives.

1 Introduction

In the nearly 60 years since the hard disk drive (HDD) has
been introduced, it has become the mainstay of computer
storage systems. In 2013 the hard drive industry shipped
over 400 exabytes [1] of storage, or almost 60 gigabytes for
every person on earth. Although facing strong competition
from NAND flash-based solid-state drives (SSDs), magnetic
disks hold a 10× advantage over flash in both total bits
shipped [2] and per-bit cost [3], an advantage that will persist
if density improvements continue at current rates.

The most recent growth in disk capacity is the result of im-
provements to perpendicular magnetic recording (PMR) [4],
which has yielded terabyte drives by enabling bits as short
as 20 nm in tracks 70 nm wide [5], but further increases will
require new technologies [6]. Shingled Magnetic Recording
(SMR) [7] is the first such technology to reach market: 5 TB
drives are available from Seagate [8] and shipments of 8 TB
and 10 TB drives have been announced by Seagate [9] and

HGST [10]. Other technologies (Heat-Assisted Magnetic
Recording [11] and Bit-Patterned Media [12]) remain in the
research stage, and may in fact use shingled recording when
they are released [13].

Shingled recording spaces tracks more closely, so they
overlap like rows of shingles on a roof, squeezing more tracks
and bits onto each platter [7]. The increase in density comes at
a cost in complexity, as modifying a disk sector will corrupt
other data on the overlapped tracks, requiring copying to
avoid data loss [14–17]. Rather than push this work onto the
host file system [18,19], SMR drives shipped to date preserve
compatibility with existing drives by implementing a Shingle
Translation Layer (STL) [20,21] that hides this complexity.

Like an SSD, an SMR drive combines out-of-place writes
with dynamic mapping in order to efficiently update data,
resulting in a drive with performance much different from
that of a Conventional Magnetic Recording (CMR) drive
due to seek overhead for out-of-order operations. However
unlike SSDs, which have been extensively measured and
characterized [22,23], little is known about the behavior and
performance of SMR drives and their translation layers, or
how to optimize file systems, storage arrays, and applications
to best use them.

We introduce a methodology for measuring and char-
acterizing such drives, developing a specific series of
micro-benchmarks for this characterization process, much as
has been done in the past for conventional drives [24–26]. We
augment these timing measurements with a novel technique
that tracks actual head movements via high-speed camera
and image processing and provides a source of reliable
information in cases where timing results are ambiguous.

We validate this methodology on three different emulated
drives that use STLs previously described in the litera-
ture [20, 21, 27], implemented as a Linux device mapper
target [28] over a conventional drive, demonstrating accurate
inference of properties. We then apply this methodology to
5 TB and 8 TB SMR drives provided by Seagate, inferring
the STL algorithm and its properties and providing the first
public characterization of such drives.

136  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Using our approach we are able to discover important
characteristics of the Seagate SMR drives and their
translation layer, including the following:
Cache type and size: The drives use a persistent disk
cache of 20 GiB and 25 GiB on the 5 TB and 8 TB drives,
respectively, with high random write speed until the cache
is full. The effective cache size is a function of write size
and queue depth.
Persistent cache structure: The persistent disk cache
is written as journal entries with quantized sizes—a
phenomenon absent from the academic literature on SMRs.
Block Mapping: Non-cached data is statically mapped, us-
ing a fixed assignment of logical block addresses (LBAs) to
physical block addresses (PBAs), similar to that used in CMR
drives, with implications for performance and durability.
Band size: SMR drives organize data in bands—a set of
contiguous tracks that are re-written as a unit; the examined
drives have a small band size of 15–40 MiB.
Cleaning mechanism: Aggressive cleaning during idle
times moves data from the persistent cache to bands;
cleaning duration is 0.6–1.6 s per modified band.

Our results show the details that may be discovered using
Skylight, most of which impact (negatively or positively)
the performance of different workloads, as described
in § 6. These results—and the toolset allowing similar
measurements on new drives—should thus be useful to users
of SMR drives, both in determining what workloads are
best suited for these drives and in modifying applications
to better use them. In addition, we hope that they will be of
use to designers of SMR drives and their translation layers,
by illustrating the effects of low-level design decisions on
system-level performance.

In the rest of the paper we give an overview of Shingled
Magnetic Recording (§ 2) followed by the description of
emulated and real drives examined (§ 3). We then present
our characterization methodology and apply it to all of the
drives (§ 4); finally, we survey related work (§ 5) and present
our conclusions (§ 6).

2 Background

Shingled recording is a response to limitations on areal
density with perpendicular magnetic recording due to the su-
perparamagnetic limit [6]. In brief, for bits to become smaller,
write heads must become narrower, resulting in weaker mag-
netic fields. This requires lower coercivity (easily recordable)
media, which is more vulnerable to bit flips due to thermal
noise, requiring larger bits for reliability. As the head gets
smaller this minimum bit size gets larger, until it reaches the
width of the head and further scaling is impossible.

Several technologies have been proposed to go beyond
this limit, of which SMR is the simplest [7]. To decrease
the bit size further, SMR reduces the track width while
keeping the head size constant, resulting in a head that writes

Figure 1: Shingled disk tracks with head width k=2

a path several tracks wide. Tracks are then overlapped like
rows of shingles on a roof, as seen in Figure 1. Writing
these overlapping tracks requires only incremental changes
in manufacturing, but much greater system changes, as
it becomes impossible to re-write a single sector without
destroying data on the overlapped sectors.

For maximum capacity an SMR drive could be written
from beginning to end, utilizing all tracks. Modifying any
of this data, however, would require reading and re-writing
the data that would be damaged by that write, and data to be
damaged by the re-write, etc. until the end of the surface is
reached. This cascade of copying may be halted by inserting
guard regions—tracks written at the full head width—so that
the tracks before the guard region may be re-written without
affecting any tracks following it, as shown in Figure 2. These
guard regions divide each disk surface into re-writable bands;
since the guards hold a single track’s worth of data, storage
efficiency for a band size of b tracks is b

b+k−1 .
Given knowledge of these bands, a host file system can

ensure they are only written sequentially, for example, by im-
plementing a log-structured file system [18,29]. Standards are
being developed to allow a drive to identify these bands to the
host [19]: host-aware drives report sequential-write-preferred
bands (an internal STL handles non-sequential writes), and
host-managed drives report sequential-write-required bands.
These standards are still in draft form, and to date no drives
based on them are available on the open market.

Alternately the drive-managed disks present a standard
re-writable block interface that is implemented by an internal
Shingle Translation Layer, much as an SSD uses a Flash
Translation Layer (FTL). Although the two are logically
similar, appropriate algorithms differ due to differences in
the constraints placed by the underlying media: (a) high seek
times for non-sequential access, (b) lack of high-speed reads,
(c) use of large (10s to 100s of MB) cleaning units, and (d)
lack of wear-out, eliminating the need for wear leveling.

These translation layers typically store all data in bands
where it is mapped at a coarse granularity, and devote a
small fraction of the disk to a persistent cache, as shown
in Figure 2, which contains copies of recently-written data.
Data that should be retrieved from the persistent cache
may be identified by checking a persistent cache map (or

2

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  137

Platter
Persistent

Cache

Band 1

Band 2
Band 3

Band N

Spindle

TracksGuard Regions

Figure 2: Surface of a platter in a hypothetical SMR drive. A persistent
cache consisting of 9 tracks is located at the outer diameter. The guard
region that separates the persistent cache from the first band is simply a
track that is written at a full head width of k tracks. Although the guard
region occupies the width of k tracks, it contains a single track’s worth of
data and the remaining k-1 tracks are wasted. The bands consist of 4 tracks,
also separated with a guard region. Overwriting a sector in the last track
of any band will not affect the following band. Overwriting a sector in any
of the tracks will require reading and re-writing all of the tracks starting
at the affected track and ending at the guard region within the band.

exception map) [20, 21]. Data is moved back from the
persistent cache to bands by the process of cleaning, which
performs read-modify-write (RMW) on every band whose
data was overwritten. The cleaning process may be lazy,
running only when the free cache space is low, or aggressive,
running during idle times.

In one translation approach, a static mapping algorith-
mically assigns a native location [20] (a PBA) to each
LBA in the same way as is done in a CMR drive. An
alternate approach uses coarse-grained dynamic mapping for
non-cached LBAs [20], in combination with a small number
of free bands. During cleaning, the drive writes an updated
band to one of these free bands and then updates the dynamic
map, potentially eliminating the need for a temporary staging
area for cleaning updates and sequential writes.

In any of these cases drive operation may change based
on the setting of the volatile cache (enabled or disabled) [30].
When the volatile cache is disabled, writes are required to
be persistent before completion is reported to the host. When
it is enabled, persistence is only guaranteed after a FLUSH
command or a write command with the flush (FUA) flag set.

3 Test Drives

We now describe the drives we study. First, we discuss how
we emulate three SMR drives using our implementation of
two STLs described in the literature. Second, we describe
the real SMR drives we study in this paper and the real CMR
drive we use for emulating SMR drives.

3.1 Emulated Drives

We implement Cassuto et al.’s set-associative STL [20]
and a variant of their S-blocks STL [20,31], which we call
fully-associative STL, as Linux device mapper targets. These
are kernel modules that export a pseudo block device to
user-space that internally behaves like a drive-managed
SMR—the module translates incoming requests using the
translation algorithm and executes them on a CMR drive.

The set-associative STL manages the disk as a set of N
iso-capacity (same-sized) data bands, with typical sizes of
20–40 MiB, and uses a small (1–10%) section of the disk
as the persistent cache. The persistent cache is also managed
as a set of n iso-capacity cache bands where n�N. When
a block in data band a is to be written, a cache band chosen
through (a mod n); the next empty block in this cache
band is written and the persistent cache map is updated.
Further accesses to the block are served from the cache band
until cleaning moves the block to its native location, which
happens when the cache band becomes full.

The fully-associative STL, on the other hand, divides the
disk into large (we used 40 GiB) zones and manages each
zone independently. A zone starts with 5% of its capacity pro-
visioned to free bands for handling updates. When a block in
logical band a is to be written to the corresponding physical
band b, a free band c is chosen and written to and the persis-
tent cache map is updated. When the number of free bands
falls below a threshold, cleaning merges the bands b and c
and writes it to a new band d and remaps the logical band a
to the physical band d, freeing bands b and c in the process.
This dynamic mapping of bands allows the fully-associative
STL to handle streaming writes with zero overhead.

To evaluate the accuracy of our emulation strategy, we
implemented a pass-through device mapper target and found
negligible overhead for our tests, confirming a previous
study [32]. Although in theory, this emulation approach may
seem disadvantaged by the lack of access to exact sector
layout, in practice this is not the case—even in real SMR
drives, the STL running inside the drive is implemented on
top of a layer that provides linear PBAs by hiding sector
layout and defect management [33]. Therefore, we believe
that the device mapper target running on top of a CMR drive
provides an accurate model for predicting the behavior of
an STL implemented by the controller of an SMR drive.

Table 1 shows the three emulated SMR drive config-
urations we use in our tests. The first two drives use the
set-associative STL, and they differ in the type of persistent
cache and band size. The last drive uses the fully-associative
STL and disk for the persistent cache. We do not have a
drive configuration combining the fully-associative STL and
flash for persistent cache, since the fully-associative STL
was designed for a drive with a disk cache and uses multiple
disk caches evenly spread out on a disk to avoid long seeks
during cleaning.

3

138  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Drive Name STL Persistent Cache
Type and Size

Disk Cache Multiplicity Cleaning Type Band Size Mapping Type Size

Emulated-SMR-1 Set-associative Disk, 37.2 GiB Single at ID Lazy 40 MiB Static 3.9 TB
Emulated-SMR-2 Set-associative Flash, 9.98 GiB N/A Lazy 25 MiB Static 3.9 TB
Emulated-SMR-3 Fully-associative Disk, 37.2 GiB Multiple Aggressive 20 MiB Dynamic 3.9 TB

Table 1: Emulated SMR drive configurations.

To emulate an SMR drive with a flash cache (Emulate-
SMR-2) we use the Emulate-SMR-1 implementation,
but use a device mapper linear target to redirect the
underlying LBAs corresponding to the persistent cache,
storing them on an SSD.

To check the correctness of the emulated SMR drives
we ran repeated burn-in tests using fio [34]. We also
formatted emulated drives with ext4, compiled the Linux
kernel on top, and successfully booted the system with the
compiled kernel. The source code for STLs (1,200 lines of
C) and a testing framework (250 lines of Go) are available
at http://sssl.ccs.neu.edu/skylight.

3.2 Real Drives
Two real SMR drives were tested: Seagate ST5000AS0011,
a 5900 RPM desktop drive (rotation time ≈10 ms) with four
platters, eight heads, and 5 TB capacity (termed Seagate-
SMR below), and Seagate ST8000AS0011, a similar drive
with six platters, twelve heads and 8 TB capacity. Emulated
drives use a Seagate ST4000NC001 (Seagate-CMR), a real
CMR drive identical in drive mechanics and specification
(except the 4 TB capacity) to the ST5000AS0011. Results for
the 8 TB and 5 TB SMR drives were similar; to save space,
we only present results for the publicly-available 5 TB drive.

4 Characterization Tests

To motivate our drive characterization methodology we first
describe the goals of our measurements. We then describe
the mechanisms and methodology for the tests, and finally
present results for each tested drive. For emulated SMR
drives, we show that the tests produce accurate answers,
based on implemented parameters; for real SMR drives we
discover their properties. The behavior of the real SMR drives
under some of the tests engenders further investigation, lead-
ing to the discovery of important details about their operation.

4.1 Characterization Goals
The goal of our measurements is to determine key drive
characteristics and parameters:
Drive type: In the absence of information from the vendor,
is a drive an SMR or a CMR?
Persistent cache type: Does the drive use flash or disk for
the persistent cache? The type of the persistent cache affects

Figure 3: SMR drive with the observation window encircled in red. Head
assembly is visible parked at the inner diameter.

the performance of random writes and reliable—volatile
cache-disabled—sequential writes. If the drive uses disk for
persistent cache, is it a single cache, or is it distributed across
the drive [20, 31]? The layout of the persistent disk cache
affects the cleaning performance and the performance of the
sequential read of a sparsely overwritten linear region.
Cleaning: Does the drive use aggressive cleaning, improving
performance for low duty-cycle applications, or lazy cleaning,
which may be better for throughput-oriented ones? Can we
predict the performance impact of cleaning?
Persistent cache size: After some number of out-of-place
writes the drive will need to begin a cleaning process, moving
data from the persistent cache to bands so that it can accept
new writes, negatively affecting performance. What is this
limit, as a function of total blocks written, number of write
operations, and other factors?
Band size: Since a band is the smallest unit that may be
re-written efficiently, knowledge of band size is important
for optimizing SMR drive workloads [20,27]. What are the
band sizes for a drive, and are these sizes constant over time
and space [35]?
Block mapping: The mapping type affects performance of
both cleaning and reliable sequential writes. For LBAs that
are not in the persistent cache, is there a static mapping from
LBAs to PBAs, or is this mapping dynamic?
Zone structure: Determining the zone structure of a drive
is a common step in understanding block mapping and band
size, although the structure itself has little effect on external
performance.

4

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  139

 0

 10

L
at

en
cy

 (
m

s)
Emulated-SMR-1

 0.1
 0.2

Emulated-SMR-2

 0

 10
Emulated-SMR-3

 0
 10
 20

Seagate-CMR

 10
 20
 30
 40

0 50 100 150 200 250

Operation Number

Seagate-SMR
325 ms

Figure 4: Discovering drive type using latency of random writes. Y-axis
varies in each graph.

ID

map

OD

 0 1 2 3 4 5 6

Time (s)

Figure 5: Seagate-SMR head position during random writes.

4.2 Test Mechanisms

The software part of Skylight uses fio to generate micro-
benchmarks that elicit the drive characteristics. The hardware
part of Skylight tracks the head movement during these tests.
It resolves ambiguities in the interpretation of the latency data
obtained from the micro-benchmarks and leads to discoveries
that are not possible with micro-benchmarks alone. To
make head tracking possible, we installed (under clean-room
conditions) a transparent window in the drive casing over the
region traversed by the head. Figure 3 shows the head assem-
bly parked at the inner diameter (ID). We recorded the head
movements using Casio EX-ZR500 camera at 1,000 frames
per second and processed the recordings with ffmpeg to
generate head location value for each video frame.

We ran the tests on a 64-bit Intel Core-i3 Haswell system
with 16 GiB RAM and 64-bit Linux kernel version 3.14.
Unless otherwise stated, we disabled kernel read-ahead,
drive look-ahead and drive volatile cache using hdparm.

Extensions to fio developed for these tests have been
integrated back and are available in the latest fio release.
Slow-motion clips for the head position graphs shown in
the paper, as well as the tests themselves, are available at
http://sssl.ccs.neu.edu/skylight.

4.3 Drive Type and Persistent Cache Type

Test 1 exploits the unusual random write behavior of the
SMR drives to differentiate them from CMR drives. While
random writes to a CMR drive incur varying latency due
to random seek time and rotational delay, random writes
to an SMR drive are sequentially logged to the persistent
cache with a fixed latency. If random writes are not local,
SMR drives using separate persistent caches by the LBA
range [20] may still incur varying write latency. Therefore,
random writes are done within a small region to ensure that
a single persistent cache is used.

Test 1: Discovering Drive Type

1 Write blocks in the first 1 GiB in random order to the drive.
2 if latency is fixed then the drive is SMR else the drive is CMR.

Figure 4 shows the results for this test. Emulated-SMR-1
sequentially writes incoming random writes to the persistent
cache. It fills one empty block after another and due to syn-
chronicity of the writes it misses the next empty block by the
time the next write arrives. Therefore, it waits for a complete
rotation resulting in a 10 ms write latency, which is the rota-
tion time of the underlying CMR drive. The sub-millisecond
latency of Emulated-SMR-2 shows that this drive uses flash
for the persistent cache. The latency of Emulated-SMR-3
is identical to that of Emulated-SMR-1, suggesting a similar
setup. The varying latency of Seagate-CMR identifies it as
a conventional drive. Seagate-SMR shows a fixed ≈25 ms
latency with a ≈325 ms bump at the 240th write. While the
fixed latency indicates that it is an SMR drive, we resort to
the head position graph to understand why it takes 25 ms
to write a single block and what causes the 325 ms latency.

Figure 5 shows that the head, initially parked at the ID,
seeks to the outer diameter (OD) for the first write. It stays
there during the first 239 writes (incidentally, showing that
the persistent cache is at the OD), and on the 240th write
it seeks to the center, staying there for ≈285 ms before
seeking back and continuing to write.

Is all of 25 ms latency associated with every block write
spent writing or is some of it spent in rotational delay? When
we repeat the test multiple times, the completion time of the
first write ranges between 41 and 52 ms, while the remaining
writes complete in 25 ms. The latency of the first write al-
ways consists of a seek from the ID to the OD (≈16 ms). We
presume that the remaining time is spent in rotational delay—
likely waiting for the beginning of a delimited location—and
writing (25 ms). Depending on where the head lands after the
seek, the latency of the first write changes between 41 ms and
52 ms. The remaining writes are written as they arrive, with-
out seek time and rotational delay, each taking 25 ms. Hence,
a single block host write results in a 2.5 track internal write.
In the following section we explore this phenomenon further.

5

140  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

7

3 3

7

Figure 6: Surface of a disk platter in a hypothetical SMR drive divided
into two 2.5 track imaginary regions. The left figure shows the placement
of random blocks 3 and 7 when writing synchronously. Each internal write
contains a single block and takes 25 ms (50 ms in total) to complete. The
drive reports 25 ms write latency for each block; reading the blocks in the
written order results in a 5 ms latency. The right figure shows the placement
of blocks when writing asynchronously with high queue depth. A single
internal write contains both of the blocks, taking 25 ms to complete. The
drive still reports 25 ms write latency for each block; reading the blocks
back in the written order results in a 10 ms latency due to missed rotation.

 20

 40

 60

 80

 100

 120

 5800 5900 6000 6100 6200 6300

L
at

en
cy

 (
m

s)

Operation Number

4-26 KiB
28-54 KiB
56-82 KiB

84-110 KiB
256 KiB

Figure 7: Random write latency of different write sizes on Seagate-SMR,
when writing at the queue depth of 31.

4.3.1 Journal Entries with Quantized Sizes

If after Test 1 we immediately read blocks in the written
order, read latency is fixed at ≈5 ms, indicating 0.5 track
distance (covering a complete track takes a full rotation,
which is 10 ms for the drive; therefore 5 ms translates to
0.5 track distance) between blocks. On the other hand, if we
write blocks asynchronously at the maximum queue depth
of 31 [36] and immediately read them, latency is fixed at
≈10 ms, indicating a missed rotation due to contiguous
placement. Furthermore, although the drive still reports
25 ms completion time for every write, asynchronous writes
complete faster—for the 256 write operations, asynchronous
writes complete in 216 ms whereas synchronous writes com-
plete in 6,539 ms, as seen in Figure 5. Gathering these facts,
we arrive at Figure 6. Writing asynchronously with high
queue depth allows the drive to pack multiple blocks into

a single internal write, placing them contiguously (shown on
the right). The drive reports the completion of individual host
writes packed into the same internal write once the internal
write completes. Thus, although each of the host writes in the
same internal write is reported to take 25 ms, it is the same
25 ms that went into writing the internal write. As a result, in
the asynchronous case, the drive does fewer internal writes,
which accounts for the fast completion time. The contiguous
placement also explains the 10 ms latency when reading
blocks in the written order. Writing synchronously, however,
results in doing a separate internal write for every block
(shown on the left), taking longer to complete. Placing blocks
starting at the beginning of 2.5 track internal writes explains
the 5 ms latency when reading blocks in the written order.

To understand how the internal write size changes with the
increasing host write size, we keep writing at the maximum
queue depth, gradually increasing the write size. Figure 7
shows that the writes in the range of 4 KiB–26 KiB result
in 25 ms latency, suggesting that 31 host writes in this size
range fit in a single internal write. As we jump to the 28 KiB
writes, the latency increases by ≈5 ms (or 0.5 track) and
remains approximately constant for the writes of sizes up
to 54 KiB. We observe a similar jump in latency as we cross
from 54 KiB to 56 KiB and also from 82 KiB to 84 KiB.
This shows that the internal write size increases in 0.5 track
increments. Given that the persistent cache is written using a
“log-structured journaling mechanism” [37], we infer that the
0.5 track of 2.5 track minimum internal write is the journal
entry that grows in 0.5 track increments, and the remaining
2 tracks contain out-of-band data, like parts of the persistent
cache map affected by the host writes. The purpose of this
quantization of journal entries is not known, but may be in
order to reduce rotational delay or simplify delimiting and
locating them. We further hypothesize that the 325 ms delay
in Figure 4, observed every 240th write, is a map merge
operation that stores the updated map at the middle tracks.

As the write size increases to 256 KiB we see varying
delays, and inspection of completion times shows less than
31 writes completing in each burst, implying a bound on the
journal entry size. Different completion times for large writes
suggest that for these, the journal entry size is determined
dynamically, likely based on the available drive resources
at the time when the journal entry is formed.

4.4 Disk Cache Location and Layout

We next determine the location and layout of the disk cache,
exploiting a phenomenon called fragmented reads [20].
When sequentially reading a region in an SMR drive, if the
cache contains newer version of some of the blocks in the
region, the head has to seek to the persistent cache and back,
physically fragmenting a logically sequential read. In Test 2,
we use these variations in seek time to discover the location
and layout of the disk cache.

6

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  141

 0

 10

 20

 30
L

at
en

cy
 (

m
s)

Emulated-SMR-1 0 TB
2 TB

3.9 TB

 0

 10

 20 Emulated-SMR-2 0 TB
2 TB

3.9 TB

 0

 10

 20

 30 Emulated-SMR-3 0 TB
2 TB

3.9 TB

 0
 10
 20
 30
 40

0 200 400 600 800 1000 1200 1400

Operation Number

Seagate-SMR 0 TB
2.5 TB

5 TB

Figure 8: Discovering disk cache structure and location using fragmented
reads.

ID

2.5 TB

OD

 5000 5050 5100 5150 5200 5250

Time (ms)

0 TB
2.5 TB

5 TB

Figure 9: Seagate-SMR head position during fragmented reads.

Test 2: Discovering Disk Cache Location and Layout

1 Starting at a given offset, write a block and skip a block, and so on,
writing 512 blocks in total.

2 Starting at the same offset, read 1024 blocks; call average latency
lato f f set .

3 Repeat steps 1 and 2 at the offsets high, low, mid.
4 if lathigh < latmid < latlow then

There is a single disk cache at the ID.
else if lathigh > latmid > latlow then

There is a single disk cache at the OD.
else if lathigh = latmid = latlow then

There are multiple disk caches.
else

assert(lathigh = latlow and lathigh > latmid)
There is a single disk cache in the middle.

The test works by choosing a small region and writing ev-
ery other block in it and then reading the region sequentially
from the beginning, forcing a fragmented read. LBA num-
bering conventionally starts at the OD and grows towards
the ID. Therefore, a fragmented read at low LBAs on a drive
with the disk cache located at the OD would incur negligible
seek time, whereas a fragmented read at high LBAs on the
same drive would incur high seek time. Conversely, on a
drive with the disk cache located at the ID, a fragmented read
would incur high seek time at low LBAs and negligible seek
time at high LBAs. On a drive with the disk cache located at
the middle diameter (MD), fragmented reads at low and high
LBAs would incur similar high seek times and they would
incur negligible seek times at middle LBAs. Finally, on a

drive with multiple disk caches evenly distributed across the
drive, the fragmented read latency would be mostly due to
rotational delay and vary little across the LBA space. Guided
by these assumptions, to identify the location of the disk
cache, the test chooses a small region at low, middle, and
high LBAs and forces fragmented reads at these regions.

Figure 8 shows the latency of fragmented reads at three
offsets on all SMR drives. The test correctly identifies the
Emulated-SMR-1 as having a single cache at the ID. For
Emulated-SMR-2 with flash cache, latency is seen to be
negligible for flash reads, and a full missed rotation for
each disk read. Emulated-SMR-3 is also correctly identified
as having multiple disk caches—the latency graph of all
fragmented reads overlap, all having the same 10 ms average
latency. For Seagate-SMR1 we confirm that it has a single
disk cache at OD.

Figure 9 shows the Seagate-SMR head position during
fragmented reads at offsets of 0 TB, 2.5 TB and 5 TB. For
offsets of 2.5 TB and 5 TB, we see that the head seeks back
and forth between the OD and near-center and between the
OD and the ID, respectively, occasionally missing a rotation.
The cache-to-data distance for LBAs near 0 TB was too
small for the resolution of our camera.

4.5 Cleaning
The fragmented read effect is also used in Test 3 to determine
whether the drive uses aggressive or lazy cleaning, by
creating a fragmented region and then pausing to allow an
aggressive cleaning to run before reading the region back.

Test 3: Discovering Cleaning Type

1 Starting at a given offset, write a block and skip a block and so on,
writing 512 blocks in total.

2 Pause for 3–5 seconds.
3 Starting at the same offset, read 1024 blocks.
4 if latency is fixed then cleaning is aggressive else cleaning is lazy.

Figure 10 shows the read latency graph of step 3 from
Test 3 at an offset of 2.5 TB, with a three second pause in
step 2. For all drives, offsets were chosen to land within a
single band (§ 4.7). After a pause the top two emulated drives
continue to show fragmented read behavior, indicating lazy
cleaning, while in Emulated-SMR-3 and Seagate-SMR reads
are no longer fragmented, indicating aggressive cleaning.

Figure 11 shows the Seagate-SMR head position during
the 3.5 second period starting at the beginning of step 2.
Two short seeks from the OD to the ID and back are seen
in the first 200 ms; their purpose is not known. The RMW
operation for cleaning a band starts at 1,242 ms after the
last write, when the head seeks to the band at 2.5 TB offset,
reads for 180 ms and seeks back to the cache at the OD
where it spends 1,210 ms. We believe this time is spent

1Test performed with volatile cache enabled with hdparm -W1.

7

142  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

 0

 10

 20

 30
L

at
en

cy
 (

m
s)

Emulated-SMR-1

 0

 10

 20 Emulated-SMR-2

 0

 5

 10

 15 Emulated-SMR-3

 0

 5

 10

 15

0 200 400 600 800 1000

Operation Number

Seagate-SMR

Figure 10: Discovering cleaning type.

ID

map
2.5 TB

OD

 0 500 1000 1500 2000 2500 3000 3500

Time (ms)

Figure 11: Seagate-SMR head position during the 3.5 second period
starting at the beginning of step 2 of Test 3.

forming an updated band and persisting it to the disk cache,
to protect against power failure during band overwrite. Next,
the head seeks to the band, taking 227 ms to overwrite it and
then seeks to the center to update the map. Hence, cleaning
a band with half of its content overwritten takes ≈1.6 s.
We believe the center to contain the map because the head
always moves to this position after performing a RMW, and
stays there for a short period before eventually parking at
the ID. At 3 seconds reads begin and the head seeks back to
the band location, where it stays until reads complete (only
the first 500 ms is seen in Figure 11).

We confirmed that the operation starting at 1,242 ms
is indeed an RMW: when step 3 is begun before the
entire cleaning sequence has completed, read behavior is
unchanged from Test 2. We did not explore the details of
the RMW; alternatives like partial read-modify-write [38]
may also have been used.

4.5.1 Seagate-SMR Cleaning Algorithm

We next start exploring performance-relevant details that are
specific to the Seagate-SMR cleaning algorithm, by running
Test 4. In step 1, as the drive receives random writes, it sequen-
tially logs them to the persistent cache as they arrive. There-
fore, immediately reading the blocks back in the written order
should result in a fixed rotational delay with no seek time.
During the pause in step 3, cleaning process moves the blocks
from the persistent cache to their native locations. As a result,

 0

 10

 20

 30

L
at

en
cy

 (
m

s)

0 min

 0

 10

 20

 30 10 min

 0

 10

 20

 30 30 min

 0

 10

 20

 30

0 500 1000 1500 2000 2500 3000 3500 4000

Operation Number

50 min

Figure 12: Latency of reads of random writes immediately after the writes
and after 10–20 minute pauses.

reading after the pause should incur varying seek time and
rotational delay for the blocks moved by the cleaning process,
whereas unmoved blocks should still incur a fixed latency.

Test 4: Exploring Cleaning Algorithm

1 Write 4096 random blocks.
2 Read back the blocks in the written order.
3 Pause for 10–20 minutes.
4 Repeat steps 2 and 3.

In Figure 12 read latency is shown immediately after step
2, and then after 10, 30, and 50 minutes. We observe that the
latency is fixed when we read the blocks immediately after
the writes. If we re-read the blocks after a 10-minute pause,
we observe random latencies for the first ≈800 blocks,
indicating that the cleaning process has moved these blocks
to their native locations. Since every block is expected to be
on a different band, the number of operations with random
read latencies after each pause shows the progress of the
cleaning process, that is, the number of bands it has cleaned.
Given that it takes ≈30 minutes to clean ≈3,000 bands, it
takes ≈600 ms to clean a band whose single block has been
overwritten. We also observe a growing number of cleaned
blocks in the unprocessed region (for example, operations
3,000–4,000 in the 30 minute graph); based on this behavior,
we hypothesize that cleaning follows Algorithm 1.

Algorithm 1: Hypothesized Cleaning Algorithm of Seagate-SMR

1 Read the next block from the persistent cache, find the block’s band.
2 Scan the persistent cache identifying blocks belonging to the band.
3 Read-modify-write the band, update the map.

To test this hypothesis we run Test 5. In Figure 13 we
see that after one minute, all of the blocks written in step
1, some of those written in step 2, and all of those written
in step 3 have been cleaned, as indicated by non-uniform

8

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  143

Test 5: Verifying the Hypothesized Cleaning Algorithm

1 Write 128 blocks from a 256 MiB linear region in random order.
2 Write 128 random blocks across the LBA space.
3 Repeat step 1, using different blocks.
4 Pause for one minute; read all blocks in the written order.

 0

 10

 20

 30

L
at

en
cy

 (
m

s)

1 min

 0

 10

 20

 30

0 50 100 150 200 250 300 350

Operation Number

2 min

Figure 13: Verifying hypothesized cleaning algorithm on Seagate-SMR.

latency, while the remainder of step 2 blocks remain in cache,
confirming our hypothesis. After two minutes all blocks
have been cleaned. (The higher latency for step 2 blocks is
due to their higher mean seek distance.)

4.6 Persistent Cache Size
We discover the size of the persistent cache by ensuring that
the cache is empty and then measuring how much data may
be written before cleaning begins. We use random writes
across the LBA space to fill the cache, because sequential
writes may fill the drive bypassing the cache [20] and
cleaning may never start. Also, with sequential writes, a
drive with multiple caches may fill only one of the caches
and start cleaning before all of the caches are full [20]. With
random writes, bypassing the cache is not possible; also, they
will fill multiple caches at the same rate and start cleaning
when all of the caches are almost full.

The simple task of filling the cache is complicated in
drives using extent mapping: a cache is considered full
when the extent map is full or when the disk cache is full,
whichever happens first. The latter is further complicated
by journal entries with quantized sizes—as seen previously
(§ 4.3.1), a single 4 KB write may consume as much cache
space as dozens of 8 KB writes. Due to this overhead, actual
size of the disk cache is larger than what is available to host
writes—we differentiate the two by calling them persistent
cache raw size and persistent cache size, respectively.

Figure 14 shows three possible scenarios on a hypothetical
drive with a persistent cache raw size of 36 blocks and a
12 entry extent map. The minimum journal entry size is 2

blocks, and it grows in units of 2 blocks to the maximum
of 16 blocks; out-of-band data of 2 blocks is written with
every journal entry; the persistent cache size is 32 blocks.

Part (a) of Figure 14 shows the case of queue depth 1
and 1-block writes. After the host issues 9 writes, the drive
puts every write to a separate 2-block journal entry, fills the
cache with 9 journal entries and starts cleaning. Every write
consumes a slot in the map, shown by the arrows. Due to
low queue depth, the drive leaves one empty block in each
journal entry, wasting 9 blocks. Exploiting this behavior,
Test 6 discovers the persistent cache raw size. In this and the
following tests, we detect the start of cleaning by the drop
of the IOPS to near zero.

Test 6: Discovering Persistent Cache Raw Size

1 Write with a small size and low queue depth until cleaning starts.
2 Persistent cache raw size = number of writes ×

(minimum journal entry size + out-of-band data size).

Part (b) of Figure 14 shows the case of queue depth 4
and 1-block writes. After the host issues 12 writes, the drive
forms three 4-block journal entries. Writing these journal
entries to the cache fills the map and the drive starts cleaning
despite a half-empty cache. We use Test 7 to discover the
persistent cache map size.

Test 7: Discovering Persistent Cache Map Size

1 Write with a small size and high queue depth until cleaning starts.
2 Persistent cache map size = number of writes.

Finally, part (c) of Figure 14 shows the case of queue
depth 4 and 4-block writes. After the host issues 8 writes, the
drive forms two 16-block journal entries, filling the cache.
Due to high queue depth and large write size, the drive is
able to fill the cache (without wasting any blocks) before the
map fills. We use Test 8 to discover the persistent cache size.

Test 8: Discovering Persistent Cache Size

1 Write with a large size and high queue depth until cleaning starts.
2 Persistent cache size = total host write size.

Table 2 shows the result of the tests on Seagate-SMR.
In the first row, we discover persistent cache raw size
using Test 6. Writing with 4 KiB size and queue depth
of 1 produces constant 25 ms latency (§ 4.3), that is 2.5
rotations. Track size is ≈2 MiB at the OD, therefore, 22,800
operations correspond to ≈100 GiB.

In rows 2 and 3 we discover the persistent cache map size
using Test 7. For write sizes of 4 KiB and 64 KiB cleaning
starts after ≈182,200 writes, which corresponds to 0.7 GiB
and 11.12 GiB of host writes, respectively. This confirms that
in both cases the drive hits the map size limit, corresponding
to scenario (b) in Figure 14. Assuming that the drive uses

9

144  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

a) Queue Depth = 1, Write Size = 1 block

b) Queue Depth = 4, Write Size = 1 block

c) Queue Depth = 4, Write Size = 4 blocks

Persistent Cache

Persistent Cache Map

Journal entries are differentiated
with alternating colors, green
and cyan. Out-of-band data blocks
are shown in yellow with diagonal
stripes.

Writes are differentiated with
alternating vertical and horizontal
stripes. Free map entries are white,
occupied map entres are purple.

Figure 14: Three different scenarios triggering cleaning on drives using journal entries with quantized sizes and extent mapping. The text on the left explains
the meaning of the colors.

Drive Write
Size

QD Operation
Count

Host
Writes

Internal
Writes

Sea-SMR

4 KiB 1 22,800 89 MiB 100 GiB
4 KiB 31 182,270 0.7 GiB N/A

64 KiB 31 182,231 11.12 GiB N/A
128 KiB 31 137,496 16.78 GiB N/A
256 KiB 31 67,830 16.56 GiB N/A

Em-SMR-1 4 KiB 1 9,175,056 35 GiB 35 GiB
Em-SMR-2 4 KiB 1 2,464,153 9.4 GiB 9.4 GiB
Em-SMR-3 4 KiB 1 9,175,056 35 GiB 35 GiB

Table 2: Discovering persistent cache parameters.

a low watermark to trigger cleaning, we estimate that the
map size is 200,000 entries.

In rows 4 and 5 we discover the persistent cache size
using Test 8. With 128 KiB writes we write ≈17 GiB in
fewer operations than in row 3, indicating that we are hitting
the size limit. To confirm this, we increase write size to
256 KiB in row 5; as expected, the number of operations
drops by half while the total write size stays the same. Again,
assuming that the drive has hit the low watermark, we
estimate that the persistent cache size is 20 GiB.

Journal entries with quantized sizes and extent mapping
are absent topics in academic literature on SMR, so emulated
drives implement neither feature. Running Test 6 on
emulated drives produces all three answers, since in these
drives, the cache is block-mapped, and the cache size and
cache raw size are the same. Furthermore, set-associative
STL divides the persistent cache into cache bands and
assigns data bands to them using modulo arithmetic.
Therefore, despite having a single cache, under random
writes it behaves similarly to a fully-associative cache. The
bottom rows of Table 2 show that in emulated drives, Test 8
discovers the cache size (see Table 1) with 95% accuracy.

4.7 Band Size
STLs proposed to date [15,20,31] clean a single band at a
time, by reading unmodified data from a band and updates
from the cache, merging them, and writing the merge result
back to a band. Test 9 determines the band size, by measuring
the granularity at which this cleaning process occurs.

Test 9: Discovering the Band Size

1 Select an accuracy granularity a, and a band size estimate b.
2 Choose a linear region of size 100×b and divide it into a-sized blocks.
3 Write 4 KiB to the beginning of every a-sized block, in random order.
4 Force cleaning to run for a few seconds and read 4 KiB from the

beginning of every a-sized block in sequential order.
5 Consecutive reads with identical high latency identify a cleaned band.

Assuming that the linear region chosen in Test 9 lies within
a region of equal track length, for data that is not in the persis-
tent cache, 4 KB reads at a fixed stride a should see identical
latencies—that is, a rotational delay equivalent to (a mod T)
bytes where T is the track length. Conversely reads of data
from cache will see varying delays in the case of a disk cache
due to the different (and random) order in which they were
written or sub-millisecond delays in the case of a flash cache.

With aggressive cleaning, after pausing to allow the disk
to clean a few bands, a linear read of the written blocks will
identify the bands that have been cleaned. For a drive with
lazy cleaning the linear region is chosen so that writes fill the
persistent cache and force a few bands to be cleaned, which
again may be detected by a linear read of the written data.

In Figure 15 we see the results of Test 9 for a=1 MiB and
b=50 MiB, respectively, with the region located at the 2.5 TB
offset; for each drive we zoom in to show an individual band
that has been cleaned. We correctly identify the band size for
the emulated drives (see Table 1). The band size of Seagate-
SMR at this location is seen to be 30 MiB; running tests at dif-
ferent offsets shows that bands are iso-capacity within a zone

10

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  145

 0

 10

3960 3970 3980 3990 4000 4010 4020 4030 4040 4050 4060

L
at

en
cy

 (
m

s)

Emulated-SMR-1

 0
 10

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

Emulated-SMR-2

 0
 10

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

Emulated-SMR-3

 0
 10

420 430 440 450 460 470 480 490 500 510 520

Region Offset (MiB)

Seagate-SMR

Figure 15: Discovering band size.

ID

2.5 TB

OD

 3700 3800 3900 4000 4100 4200 4300 4400

Time (ms)

Figure 16: Head position during the sequential read for Seagate-SMR,
corresponding to the time period in Figure 15.

(§ 4.9) but vary from 36 MiB at the OD to 17 MiB at the ID.
Figure 16 shows the head position of Seagate-SMR

corresponding to the time period in Figure 15. It shows
that the head remains at the OD during the reads from the
persistent cache up to 454 MiB, then seeks to 2.5 TB offset
and stays there for 30 MiB, and then seeks back to the cache
at OD, confirming that the blocks in the band are read from
their native locations.

4.8 Block Mapping
Once we discover the band size (§ 4.7), we can use Test 10
to determine the mapping type. This test exploits varying
inter-track switching latency between different track pairs
to detect if a band was remapped. After overwriting the
first two tracks of band b, cleaning will move the band to its
new location—a different physical location only if dynamic
mapping is used. Plotting latency graphs of step 2 and step
4 will produce the same pattern for the static mapping and
a different pattern for the dynamic mapping.

Adapting this test to a drive with lazy cleaning involves
some extra work. First, we should start the test on a drive
after a secure erase, so that the persistent cache is empty.
Due to lazy cleaning, the graph of step 4 will be the graph
of switching between a track and the persistent cache.
Therefore, we will fill the cache until cleaning starts, and
repeat step 2 once in a while, comparing its graph to the
previous two: if it is similar to the last, then data is still in

Test 10: Discovering mapping type.

1 Choose two adjacent iso-capacity bands a and b; set n to the
number of blocks in a track.

2 for i←0 to i<2 do
for j←0 to j<n do

Read block j of track 0 of band a
Read block j of track i of band b

3 Overwrite the first two tracks of band b; force cleaning to run.
4 Repeat step 2.

 0

 15

L
at

en
cy

 (
m

s)

Emulated-SMR-3 before cleaning

 0

 15
Emulated-SMR-3 after cleaning

 0

 15
Seagate-SMR before cleaning

 0

 15

0 100 200 300 400 500

Operation Number

Seagate-SMR after cleaning

Figure 17: Mapping Type Detection.

the cache, if it is similar to the first, then the drive uses static
mapping, otherwise, the drive uses dynamic mapping.

We used track and block terms to concisely describe the
algorithm above, but the size chosen for these algorithmic
parameters need not match track size and block size of the
underlying drive. Figure 17, for example, shows the plots for
the test on Emulated-SMR-3 and Seagate-SMR, using 2 MiB
for the track size and 16 KiB for the block size. The latency
pattern for the Seagate-SMR does not change, indicating a
static mapping, but it changes for Emulated-SMR-3, which
indeed uses dynamic mapping. We omit the graphs of the
remaining drives to save space.

4.9 Zone Structure

We use sequential reads (Test 11) to discover the zone
structure of Seagate-SMR. While there are no such drives
yet, on drives with dynamic mapping a secure erase that
would restore the mapping to the default state may be
necessary for this test to work. Figure 18 shows the zone
profile of Seagate-SMR, with a zoom to the beginning.

Test 11: Discovering Zone Structure

1 Enable kernel read-ahead and drive look-ahead.
2 Sequentially read the whole drive in 1 MiB blocks.

11

146  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000 30000 35000

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Time (s)

 160

 180

 200

 2000 3000

Figure 18: Sequential read throughput of Seagate-SMR.

 1500 2000 2500 3000

O
D

Time (s)

(a) Head Position at the Outer Diameter.

 30500 31000 31500

ID

Time (s)

(b) Head Position at the Inner Diameter.

 14500 15000

M
D

Time (s)

(c) Head Position at the Middle Diameter.

Figure 19: Seagate-SMR head position during sequential reads at different
offsets.

Similar to CMR drives, the throughput falls as we reach
higher LBAs; unlike CMR drives, there is a pattern that
repeats throughout the graph, shown by the zoomed part.
This pattern has an axis of symmetry indicated by the dotted
vertical line at 2,264th second. There are eight distinct
plateaus to the left and to the right of the axis with similar
throughputs. The fixed throughput in a single plateau and
a sharp change in throughput between plateaus suggest a
wide radial stroke and a head switch. Plateaus corresponds
to large zones of size 18–20 GiB, gradually decreasing to
4 GiB as we approach higher LBAs. The slight decrease
in throughput in symmetric plateaus on the right is due to
moving from a larger to smaller radii, where sector per track
count decreases; therefore, throughput decreases as well.

We confirmed these hypotheses using the head position
graph shown in Figure 19 (a), which corresponds to the

time interval of the zoomed graph of Figure 18. Unlike with
CMR drives, where we could not observe head switches due
to narrow radial strokes, with this SMR drive head switches
are visible to an unaided eye. Figure 19 (a) shows that the
head starts at the OD and slowly moves towards the MD
completing this inwards move at 1,457th second, indicated
by the vertical dotted line. At this point, the head has just
completed a wide radial stroke reading gigabytes from the
top surface of the first platter, and it performs a jump back
to the OD and starts a similar stroke on the bottom surface
of the first platter. The direction of the head movement
indicates that the shingling direction is towards the ID at the
OD. The head completes the descent through the platters
at 2,264th second—indicated by the vertical solid line—and
starts its ascent reading surfaces in the reverse order. These
wide radial strokes create “horizontal zones” that consist
of thousands of tracks on the same surface, as opposed to
“vertical zones” spanning multiple platters in CMR drives.
We expect these horizontal zones to be the norm in SMR
drives, since they facilitate SMR mechanisms like allocation
of iso-capacity bands, static mapping, and dynamic band
size adjustment [35]. Figure 19 (b) corresponds to the end of
Figure 18, shows that the direction of the head movement is
reversed at the ID, indicating that both at the OD and at the
ID, shingling direction is towards the middle diameter. To our
surprise, Figure 19 (c) shows that a conventional serpentine
layout with wide serpents is used at the MD. We speculate
that although the whole surface is managed as if it is shingled,
there is a large region in the middle that is not shingled.

5 Related Work

Little has been published on the subject of system-level
behavior of SMR drives. Although several works (for
example, Amer et al. [15] and Le et al. [39]) have discussed
requirements and possibilities for use of shingled drives in
systems, only three papers to date—Cassuto et al. [20], Lin
et al. [40], and Hall et al. [21]—present example translation
layers and simulation results. A range of STL approaches
is found in the patent literature [27,31,35,41], but evaluation
and analysis is lacking. Several SMR-specific file systems
have been proposed, such as SMRfs [14], SFS [18], and
HiSMRfs [42]. He and Du [43] propose a static mapping to
minimize re-writes for in-place updates, which requires high
guard overhead (20%) and assumes file system free space is
contiguous in the upper LBA region. Pitchumani et al. [32]
present an emulator implemented as a Linux device mapper
target that mimics shingled writing on top of a CMR drive.
Tan et al. [44] describe a simulation of S-blocks algorithm,
with a more accurate simulator calibrated with data from a
real CMR drive. To date no work (to the authors’ knowledge)
has presented measurements of read and write operations on
an SMR drive, or performance-accurate emulation of STLs.

This work draws heavily on earlier disk characterization

12

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  147

Drive Model

Property ST5000AS0011 ST8000AS0011

Drive Type SMR SMR
Persistent Cache Type Disk Disk
Cache Layout and Location Single, at the OD Single, at the OD
Cache Size 20 GiB 25 GiB
Cache Map Size 200,000 250,000
Band Size 17–36 MiB 15–40 MiB
Block Mapping Static Static
Cleaning Type Aggressive Aggressive
Cleaning Algorithm FIFO FIFO
Cleaning Time 0.6–1.6 s/band 0.6–1.6 s/band
Zone Structure 4–20 GiB 5–40 GiB
Shingling Direction Towards MD N/A

Table 3: Properties of the 5 TB and the 8 TB Seagate drives discovered
using Skylight methodology. The benchmarks worked out of the box on
the 8 TB drive. Since the 8 TB drive was on loan, we did not drill a hole
on it; therefore, shingling direction for it is not available.

studies that have used micro-benchmarks to elicit details of
internal performance, such as Schlosser et al. [45], Gim et
al. [26], Krevat et al. [46], Talagala et al. [25], Worthington et
al. [24]. Due to the presence of a translation layer, however,
the specific parameters examined in this work (and the
micro-benchmarks for measuring them) are different.

6 Conclusions and Recommendations

As Table 3 shows, the Skylight methodology enables us to
discover key properties of two drive-managed SMR disks
automatically. With manual intervention, it allows us to
completely reverse engineer a drive. The purpose of doing so
is not just to satisfy our curiosity, however, but to guide both
their use and evolution. In particular, we draw the following
conclusions from our measurements of the 5 TB Seagate
drive:

1. Write latency with the volatile cache disabled is high
(Test 1). This appears to be an artifact of specific design
choices rather than fundamental requirements, and we
hope for it to drop in later firmware revisions.

2. Sequential throughput (with the volatile cache disabled)
is much lower (by 3× or more, depending on write
size) than for conventional drives. (We omitted these
test results, as performance is identical to the random
writes in Test 1.) Due to the use of static mapping
(Test 10), achieving full sequential throughput requires
enabling volatile cache.

3. Random I/O throughput (with the volatile cache en-
abled or with high queue depth) is high (Test 7)—15×
that of the equivalent CMR drive. This is a general
property of any SMR drive using a persistent cache.

4. Throughput may degrade precipitously when the cache
fills after many writes (Table 2). The point at which

this occurs depends on write size and queue depth2.
5. Background cleaning begins after ≈1 second of idle

time, and proceeds in steps requiring 0.6–1.6 seconds
of uninterrupted idle time to clean a single band.
The duration of the step depends on the amount of
data updated in the band. Cleaning a band whose
single block was overwritten may take 0.6 seconds
(Figure 12), whereas cleaning a band with half of its
content overwritten may take 1.6 seconds (Figure 11).
The number of the steps required is proportional to the
number of bands—contiguous regions of 15–40 MB
(§ 4.7)—that have been modified.

6. Sequential reads of randomly-written data will result in
random-like read performance until cleaning completes
(§ 4.4).

In summary, SMR drives like the ones we studied should
offer good performance if the following conditions are met:
(a) the volatile cache is enabled or a high queue depth is used,
(b) writes display strong spatial locality, modifying only a
few bands at any particular time, (c) non-sequential writes
(or all writes, if the volatile cache is disabled) occur in bursts
of less than 16 GB or 180,000 operations (Table 2), and (d)
long powered-on idle periods are available for background
cleaning. From the use of aggressive cleaning that presumes
long idle periods, we may conclude that the drive is adapted
to desktop use, but may perform poorly on server workloads.
Further work will include investigation of STL algorithms
that may offer a better balance of performance for both.

Acknowledgments

This work was supported by NetApp, and NSF award
CNS-1149232. We thank the anonymous reviewers, Remzi
Arpaci-Dusseau, Tim Feldman, and our shepherd, Kimberly
Keeton, for their feedback.

References

[1] Seagate Technology PLC Fiscal Fourth Quarter and
Year End 2013 Financial Results Supplemental Com-
mentary, July 2013. Available from http://www.

seagate.com/investors.

[2] Drew Riley. Samsung’s SSD Global Summit: Samsung:
Flexing Its Dominance In The NAND Market, August
2013.

[3] DRAMeXchange. NAND Flash Spot Price, September
2014. http://dramexchange.com.

2Although results with the volatile cache enabled are not presented in
§ 4.6, they are similar to those for a queue depth of 31.

13

148  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

[4] S. N. Piramanayagam. Perpendicular recording media
for hard disk drives. Journal of Applied Physics,
102(1):011301, July 2007.

[5] Terascale HDD. Data sheet DS1793.1-1306US,
Seagate Technology PLC, June 2013.

[6] D.A Thompson and J.S. Best. The future of magnetic
data storage techology. IBM Journal of Research and
Development, 44(3):311–322, May 2000.

[7] R. Wood, Mason Williams, A Kavcic, and Jim Miles.
The Feasibility of Magnetic Recording at 10 Terabits
Per Square Inch on Conventional Media. IEEE Trans-
actions on Magnetics, 45(2):917–923, February 2009.

[8] Seagate Desktop HDD: ST5000DM000,
ST4000DM001. Product Manual 100743772,
Seagate Technology LLC, December 2013.

[9] Seagate Ships Worlds First 8TB Hard
Drives, August 2014. Available from
http://www.seagate.com/about/newsroom/.

[10] HGST Unveils Intelligent, Dynamic Storage Solutions
To Transform The Data Center, September 2014. Avail-
able from http://www.hgst.com/press-room/.

[11] M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A
Challener, R.E. Rottmayer, Ganping Ju, Yiao-Tee Hsia,
and M.F. Erden. Heat Assisted Magnetic Record-
ing. Proceedings of the IEEE, 96(11):1810–1835,
November 2008.

[12] Elizabeth A Dobisz, Z.Z. Bandic, Tsai-Wei Wu,
and T. Albrecht. Patterned Media: Nanofabrication
Challenges of Future Disk Drives. Proceedings of the
IEEE, 96(11):1836–1846, November 2008.

[13] Sumei Wang, Yao Wang, and R.H. Victora. Shin-
gled Magnetic Recording on Bit Patterned Media
at 10 Tb/in2. IEEE Transactions on Magnetics,
49(7):3644–3647, July 2013.

[14] Garth Gibson and Milo Polte. Directions for Shingled-
Write and Two-Dimensional Magnetic Recording
System Architectures: Synergies with Solid-State
Disks. Technical Report CMU-PDL-09-104, CMU
Parallel Data Laboratory, May 2009.

[15] Ahmed Amer, Darrell D. E. Long, Ethan L. Miller,
Jehan-Francois Paris, and S. J. Thomas Schwarz.
Design Issues for a Shingled Write Disk System.
In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST),
MSST ’10, pages 1–12, Washington, DC, USA, 2010.
IEEE Computer Society.

[16] Garth Gibson and Greg Ganger. Principles of
Operation for Shingled Disk Devices. Technical Report
CMU-PDL-11-107, CMU Parallel Data Laboratory,
April 2011.

[17] Tim Feldman and Garth Gibson. Shingled magnetic
recording: Areal density increase requires new data
management. USENIX ;login issue, 38(3), 2013.

[18] D. Le Moal, Z. Bandic, and C. Guyot. Shingled file
system host-side management of Shingled Magnetic
Recording disks. In Proceedings of the 2012 IEEE
International Conference on Consumer Electronics
(ICCE), pages 425–426, January 2012.

[19] INCITS T10 Technical Committee. Information
technology - Zoned Block Commands (ZBC). Draft
Standard T10/BSR INCITS 536, American National
Standards Institute, Inc., September 2014. Available
from http://www.t10.org/drafts.htm.

[20] Yuval Cassuto, Marco A. A. Sanvido, Cyril Guyot,
David R. Hall, and Zvonimir Z. Bandic. Indirection
Systems for Shingled-recording Disk Drives. In
Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST),
MSST ’10, pages 1–14, Washington, DC, USA, 2010.
IEEE Computer Society.

[21] David Hall, John H Marcos, and Jonathan D Coker.
Data handling algorithms for autonomous shingled
magnetic recording hdds. IEEE Transactions on
Magnetics, 48(5):1777–1781, 2012.

[22] Luc Bouganim, Bjorn Jnsson, and Philippe Bonnet.
uFLIP: understanding flash IO patterns. In Proceedings
of the Int’l Conf. on Innovative Data Systems Research
(CIDR), Asilomar, California, 2009.

[23] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System
Implications of Flash Memory Based Solid State
Drives. In Proceedings of the Eleventh International
Joint Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[24] Bruce L. Worthington, Gregory R. Ganger, Yale N.
Patt, and John Wilkes. On-line Extraction of SCSI
Disk Drive Parameters. In Proceedings of the 1995
ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems,
SIGMETRICS ’95/PERFORMANCE ’95, pages
146–156, New York, NY, USA, 1995. ACM.

[25] Nisha Talagala, Remzi H. Arpaci-Dusseau, and
D. Patterson. Microbenchmark-based Extraction of

14

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  149

Local and Global Disk Characteristics. Technical
Report UCB/CSD-99-1063, EECS Department,
University of California, Berkeley, 1999.

[26] Jongmin Gim and Youjip Won. Extract and infer
quickly: Obtaining sector geometry of modern hard
disk drives. ACM Transactions on Storage (TOS),
6(2):6:1–6:26, July 2010.

[27] Jonathan Darrel Coker and David Robison Hall.
Indirection memory architecture with reduced memory
requirements for shingled magnetic recording devices,
November 5 2013. US Patent 8,578,122.

[28] Linux Device-Mapper. Device-Mapper Resource Page.
https://sourceware.org/dm/, 2001.

[29] Mendel Rosenblum and John K. Ousterhout. The
Design and Implementation of a Log-structured File
System. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, SOSP
’91, pages 1–15, New York, NY, USA, 1991. ACM.

[30] Serial ATA International Organization. Serial ATA
Revision 3.1 Specification. Technical report, Serial
ATA International Organization, July 2011.

[31] David Robison Hall. Shingle-written magnetic
recording (SMR) device with hybrid E-region, April 1
2014. US Patent 8,687,303.

[32] Rekha Pitchumani, Andy Hospodor, Ahmed Amer,
Yangwook Kang, Ethan L. Miller, and Darrell D. E.
Long. Emulating a Shingled Write Disk. In Proceed-
ings of the 2012 IEEE 20th International Symposium
on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS ’12,
pages 339–346, Washington, DC, USA, 2012. IEEE
Computer Society.

[33] Tim Feldman. Personal communication, August 2014.

[34] Jens Axboe. Flexible I/O Tester. git:

//git.kernel.dk/fio.git.

[35] Timothy Richard Feldman. Dynamic storage regions,
February 14 2011. US Patent App. 13/026,535.

[36] Libata FAQ. https://ata.wiki.kernel.org/

index.php/Libata_FAQ.

[37] Tim Feldman. Host-Aware SMR. OpenZFS Developer
Summit, November 2014. Available from https:

//www.youtube.com/watch?v=b1yqjV8qemU.

[38] Sundar Poudyal. Partial write system, March 13 2013.
US Patent App. 13/799,827.

[39] Quoc M. Le, Kumar SathyanarayanaRaju, Ahmed
Amer, and JoAnne Holliday. Workload Impact on
Shingled Write Disks: All-Writes Can Be Alright.
In Proceedings of the 2011 IEEE 19th Annual
International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication
Systems, MASCOTS ’11, pages 444–446, Washington,
DC, USA, 2011. IEEE Computer Society.

[40] Chung-I Lin, Dongchul Park, Weiping He, and David
H. C. Du. H-SWD: Incorporating Hot Data Identifica-
tion into Shingled Write Disks. In Proceedings of the
2012 IEEE 20th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems, MASCOTS ’12, pages 321–330,
Washington, DC, USA, 2012. IEEE Computer Society.

[41] Robert M Fallone and William B Boyle. Data storage
device employing a run-length mapping table and a
single address mapping table, May 14 2013. US Patent
8,443,167.

[42] Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and
Chun-Teck Lim. HiSMRfs: A high performance file
system for shingled storage array. In Proceedings of the
2014 IEEE 30th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–6, June 2014.

[43] Weiping He and David H. C. Du. Novel Address
Mappings for Shingled Write Disks. In Proceedings of
the 6th USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’14, pages 5–5, Berkeley,
CA, USA, 2014. USENIX Association.

[44] S. Tan, W. Xi, Z.Y. Ching, C. Jin, and C.T. Lim.
Simulation for a Shingled Magnetic Recording Disk.
IEEE Transactions on Magnetics, 49(6):2677–2681,
June 2013.

[45] Steven W. Schlosser, Jiri Schindler, Stratos Papado-
manolakis, Minglong Shao, Anastassia Ailamaki,
Christos Faloutsos, and Gregory R. Ganger. On Multi-
dimensional Data and Modern Disks. In Proceedings of
the 4th Conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, pages 17–
17, Berkeley, CA, USA, 2005. USENIX Association.

[46] Elie Krevat, Joseph Tucek, and Gregory R. Ganger.
Disks Are Like Snowflakes: No Two Are Alike. In
Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS’13, pages 14–14,
Berkeley, CA, USA, 2011. USENIX Association.

15

