
Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR93-198.ps.Z

The Expected Lifetime of \Single-Address-Space"Operating SystemsDavid Kotz and Preston CrowDartmouth CollegeHanover, NHTechnical Report PCS-TR93-198Revised March 15, 1996�AbstractTrends toward shared-memory programming paradigms, large (64-bit) address spaces, and memory-mapped �les have led some to propose the use of a single virtual-address space, shared by all processesand processors. To simplify address-space management, some have claimed that a 64-bit address spaceis su�ciently large that there is no need to ever re-use addresses. Unfortunately, there has been no datato either support or refute these claims, or to aid in the design of appropriate address-space managementpolicies. In this paper, we present the results of extensive kernel-level tracing of the workstations on ourcampus, and discuss the implications for single-address-space operating systems. We found that single-address-space systems will probably not outgrow the available address space, but only if reasonablespace-allocation policies are used, and only if the system can adapt as larger address spaces becomeavailable.1 IntroductionMany researchers have proposed single-address-space operating systems. With such systems, the entirememory hierarchy is mapped into a single large address space, including �les and processes, and oftenremote memories of other machines. A good discussion of the advantages, disadvantages, and other issuesconcerning such systems can be found in [Chase et al. 1994].One of the major problems with single-address-space operating systems is managing the address space.Once space has been allocated, it is often preferable not to reallocate the same space for other purposes.Hence, over time, the address space will eventually be consumed. Previous work has not studied the rate atwhich this consumption will take place.In this paper, we examine the issue of address-space consumption, based on traces of Ultrix-basedworkstations running computer-science, numerical-analysis, and server workloads. Though we recognize that�Revisions from the original release of this report include additional data for server 1, extensive modi�cations to the text,and the addition of Figure 10.This research was supported in part by NASA Graduate Student Research Assistantship NGT-51160, and by DigitalEquipment Corporation through ERP contract number 2043. 1

applications under a single-address-space operating system would behave somewhat di�erently, we believethat the data gathered from these workloads lays a basic foundation for understanding consumption rates.In the next section we examine some of the previous work in single-address-space operating systems,focusing on their assumptions of address-space usage. In Section 3, we discuss our trace collection and theanalysis of current usage patterns. In Section 4, we show how we used this data to predict the lifetime ofsingle-address-space operating systems. Finally, in Section 5, we summarize.2 BackgroundThe MONADS-PC project [Broessler et al. 1987, Rosenberg et al. 1992, Rosenberg 1992] was one of the �rstsystems to place all storage (all processes and all �les) in a single, distributed, virtual-address space. Theyuse custom hardware that partitions the bits of an address into two �elds: a 32-bit address-space numberand a 28-bit o�set. The address-space numbers are never re-used. A newer version of the system, MONADS-MM [Koch and Rosenberg 1990], uses 128-bit addresses, extending the address-space numbers to 96 bits andthe o�sets to 32 bits. The MONADS project does not report on any experience with a long-running systemand its address-space consumption.Hemlock [Garrett et al. 1992] proposes a single 64-bit address space. Persistent and shared data areallocated a non-reusable segment of the address space. Files are mapped into contiguous regions in theaddress space, requiring them to allocate a large address range (4 GB) for each �le to leave room forpotential expansion. This fragmentation may limit the e�ective size of their (64-bit) address space. Anothercharacteristic of their model is that they \reserve a 32-bit portion of the 64-bit virtual address space forprivate code and data." This exception from the otherwise single address space simpli�es some relocationissues and provides a limited form of re-use. Hemlock dynamically links code at run time to allow for di�erentinstances of global data.Opal [Chase et al. 1994] uses other techniques to avoid Hemlock's \private" 32-bit subspace and dynamiclinking. For example, all global variables are referenced as an o�set from a base register, allowing separatestorage for each instance of the program (this technique is also used in the Macintosh operating system[Wakerly 1989]). They concede that conserving and re-using address space is probably necessary.Bartoli et al. point out that that \if ten machines create objects at a rate of ten gigabytes a minute, the[64-bit] address space will last 300 years" [Bartoli et al. 1993]. Hence, a collection of 200 machines would2

only last 15 years, and larger collections would likely be out of the question.Patterson and Hennessy claim that memory requirements for a typical program have grown by a factorof 1.5 to 2 every year, consuming 1/2{1 address bits per year [Patterson and Hennessy 1990]. At this rate,an expansion from 32 bits to 64 bits would only last 32{64 years for traditional operating systems, and asingle-address-space operating system would run out sooner.Though most researchers recognize that even a 64-bit address space presents limits for a single-address-space operating system, there is not any real understanding of the rate of address-space consumption, andthat some data is needed. This problem was the motivation for our work.3 Current usageTo provide a basis for our analysis of single-address-space systems, we �rst measured address-space usage incurrent operating systems. Our goals were to determine the rate that address space was used in our currentoperating systems, and to collect traces to use in trace-driven simulations of future address-managementpolicies. For two servers and two workstation clusters on campus, we traced the events that may consumeaddress space in a single-address-space system, recording every system call that could create or change thesize of �les, shared-memory segments, process data segments, and process stack segments.The data we collected di�ers from most previous studies in that it measures virtual rather than physicalresources. We did not take into account the text-segment size, assuming that it would be allocated at compiletime.1 Table 1 summarizes the traces we collected.To collect this data, we modi�ed the DEC Ultrix 4.3 kernel2 to generate a trace record for all relevantactivities. In particular, we recorded every exec, fork, exit, sbrk, stack increase, shared-memory creation,shared-memory deallocation, unlink, open (for write only), close, truncation, and write.Our method was modeled after the Ultrix error-logging facility. The kernel stored trace records in aninternal 20 KB bu�er, which was accessible through a new device driver that provided a �le-like interface tothe bu�er. A user-level trace daemon opened the device, and issued large (20 KB) read requests. When theinternal bu�er contained su�cient data (15 KB), the kernel triggered the device driver, which then copied thedata to the trace daemon's bu�er, and woke the trace daemon. The kernel bu�er was then available for newdata, while the trace daemon wrote its bu�er to a trace �le. The activity of the trace daemon, and thus of1With dynamic linking, as in Hemlock, the addresses allocated for the text segment could likely be re-used.2DEC and Ultrix are trademarks of Digital Equipment Corporation. Ultrix 4.3 is a variant of Unix 4.2BSD. Unix is atrademark of X/Open. 3

Group Days Records Lost records Processes Lost processesServer 1 23.8 36895501 18564 (0.05%) 1640775 930 (0.06%)Server 2 25.3 6595110 61709 (0.94%) 114435 99 (0.09%)22.9 915718 614 (0.07%) 39041 0 (0.00%)22.9 3667000 6 (0.00%) 40110 0 (0.00%)22.9 378430 1409 (0.37%) 33707 2 (0.01%)22.9 3293680 19351 (0.59%) 122402 92 (0.08%)22.9 417550 26 (0.01%) 45423 3 (0.01%)Cluster 1 23.0 884393 2 (0.00%) 49144 0 (0.00%)22.9 1402850 132692 (9.46%) 51669 0 (0.00%)22.9 1343890 3180 (0.24%) 61480 0 (0.00%)23.0 849289 5995 (0.71%) 54974 0 (0.00%)22.1 601798 2100 (0.35%) 49277 110 (0.22%)23.0 1850030 0 (0.00%) 190958 0 (0.00%)22.9 605955 88 (0.02%) 42666 0 (0.00%)Total 16210583 165463 (1.01%) 780851 331 (0.04%)29.4 9792880 175785 (1.80%) 405368 111 (0.03%)29.4 1082960 16144 (1.49%) 49859 78 (0.16%)Cluster 2 29.4 610202 6051 (0.99%) 48196 58 (0.12%)29.4 486763 5458 (1.12%) 42920 57 (0.13%)Total 11972805 203438 (1.67%) 546343 304 (0.06%)Table 1: Summary of the traces collected. Server 1 was used as a general-purpose Unix compute server by many people oncampus. Server 2 was the primary �le, mail, and ftp server in our computer-science department. Cluster 1 included general-use workstations in the computer-science department, most located in faculty o�ces. Cluster 2 contained workstations usedprimarily by a compute-intensive signal-processing research group. All workstations were DECstation 5000s running Ultrix 4.3.A small fraction of records were lost in the collection process, accounting for a generally even smaller fraction of processes notbeing accounted for (see Section 3 for details). These data were collected in fall 1993.the trace �les, was explicitly excluded from the trace by the kernel. This bu�ering strategy decoupled tracegeneration from disk writes so that no activity was ever signi�cantly delayed to write trace records to disk,and so that the overhead was amortized across large groups of trace records. While it is not a new technique,we highly recommend this simple, unobtrusive, portable mechanism for other trace-collection e�orts.To measure the performance overhead of our tracing activity, we ran 25 trials of the Andrew bench-mark [Satyanarayanan 1989] on the standard Ultrix 4.3 kernel and on our instrumented kernel. The Andrewbenchmark extensively uses most of the system calls we modi�ed for tracing, by creating, searching, anddeleting �les, and compiling programs. We ran 25 trials with the standard kernel and with the tracingkernel. We discarded the �rst trial in each case, due to a cold �le cache. An unpaired t-test [Jain 1991]showed the di�erence to be insigni�cant at the 99% con�dence level, implying that our tracing apparentlyhad no signi�cant e�ect on performance. This result matches our qualitative experience (no users reportedany perceived di�erence). 4

bytes per second records per secondGroup mean 95th max mean 95th maxServer 1 675 2265 87619 17.9 56 3122Server 2 115 630 60968 3.0 13 215919 0 41311 0.5 0 147079 520 19628 1.9 11 7018 0 14364 0.2 0 51365 171 58408 1.7 4 206510 0 32398 0.2 0 755Cluster 1 18 0 22484 0.4 0 80324 28 92524 0.7 1 329527 0 54580 0.7 0 194317 0 85156 0.4 0 303514 0 11005 0.3 0 38540 115 34592 0.9 3 121712 0 45194 0.3 0 1065All 28 40 92524 0.7 1 3295156 1470 66956 3.8 35 238516 0 50096 0.4 0 1782Cluster 2 10 0 11312 0.2 0 4048 0 21196 0.2 0 757All 48 0 66956 1.2 0 2385Table 2: Amount of trace data collected per second in bytes and records. The mean, 95th percentile, and maximum valuesare listed for each machine. The relatively low 95th percentiles indicate that trace data generation was very bursty. Figuresare listed for each machine, as well as the overall �gure for each cluster.After collection, the raw trace �les were post-processed to clean up the data. In particular, the raw trace�les were missing a small percentage of the trace records, as indicated by record-sequence numbers. Thisloss was caused by the trace bu�er occasionally �lling up before the trace daemon could read it, or, in onecase, the trace disk running out of space. In most cases, the e�ect of the missing records was simulated,the data being inferred from subsequent events. For example, a missing process-fork record was inferredfrom a subsequent process-exec or process-exit record. Only a fraction of a percent of processes were missedentirely due to the missing records. When a large number of records were lost, the usage that they wouldhave re
ected was not recorded. As shown in Table 2, trace data generation was very bursty, suggesting thata larger collection bu�er may have been preferable. Fortunately, fewer than two percent of the records weremissing from any trace group, with less than a tenth of a percent of processes unaccounted for, indicatingthat the e�ect on the usage rates should be quite small, most likely underestimating usage by less than 1%.5

0

5

10

15

20

25

T W T F S S M T W T F S S M T W T F S S M T W

G
ig

ab
yt

es

Day of Week

Cluster 1 Memory Use

Data Segment
Stack Segment

File Writes

0

50

100

150

200

250

300

350

400

450

T F S S M T W T F S S M T W T F S S M T W T F S S

G
ig

ab
yt

es

Day of Week

Server 1 Memory Use

Data Segment
Stack Segment

File Writes

0

5

10

15

20

25

30

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T

G
ig

ab
yt

es

Day of Week

Cluster 2 Memory Use

Data Segment
Stack Segment

File Writes

0

5

10

15

20

25

30

35

M T W T F S S M T W T F S S M T W T F S S M T W T

G
ig

ab
yt

es

Day of Week

Server 2 Memory Use

Data Segment
Stack Segment

File Writes

Figure 1: Cumulative address-space usage for all workstations in each trace group, separated by category of memory usage.Curves for Cluster 1 and Cluster 2 are scaled down by the number of machines in each cluster, for easier comparison. SharedMemory, if plotted, would be indistinguishable from zero. x-axis tic-marks represent midnight before the given day of the week.3.1 ResultsIn Figure 1, we show the raw amount of address space allocated (in units of 4 KB pages) over time, for eachof the four trace groups de�ned in Table 1. This �gure is based on a running sum of the size of private-datasegments, stack segments, shared-data segments, and �le creations or extensions. Clearly, most of the usagewas from data segments, with stack segments second. Shared data was rarely used on our systems (only bythe X-windows server, apparently to share the frame bu�er with the device driver), and is not shown in the�gure. Daily and weekly rhythms are clearly visible. Server 1, heavily used for timesharing, used over tentimes as much space. Cluster 2, used by a signal-processing research group, occasionally saw large bursts ofactivity caused by applications with large data segments.6

To discover the nature of the signi�cant address-space users, we compiled a list of the top 40 programs byaddress-space allocated, shown in Table 3. Most of the big users were not huge user applications, but insteadcommon programs like the shells sh and csh, which were run often for scripts, the gzip compression program,which was run by nightly space-saving scripts, is able, which was run by nightly system jobs on server 1,pieces of the C compiler (ugen2.1, cc1, ccom2.1, as12.1, and ld2.1), and periodic background processes (init,sendmail, in.c�ngerd, amd, named-xfer, in.�ngerd, and atrun). Only two programs on this list (mm2, asignal-processing application, and ip, an image-processing application), were user-written applications; all ofthe others were common applications used by many users. Only one (ip) could be called a large application.These data make it clear that policies that statically allocate a large region to every process would waste alot of virtual-address space on many small but common applications.In determining the amount of address space consumed by a process, we had to select a model forinterpreting the fork and exec system calls. There were several alternatives:� Both a fork and an exec would be interpreted as creating a new process, using new address space forstack and data segments. This would result in an overestimation of the space consumed due to thefrequent use of a fork-exec pair of calls in creating a new process.� The address space consumed by a fork call duplicating the data and stack segments of the parentprocess could be ignored, assuming that the use of a combined fork-exec call in a newer operatingsystem would eliminate that usage. While this does e�ectively model the fork-exec paradigm, wefound that some programs, accounting for 28% of all processes, did not follow this paradigm, andwould have their space usage ignored by this interpretive model.� The address space consumed by an exec call could be ignored, assuming that the process could overwritethe previous data and stack segments, only recording address-space consumption if the resulting processhad a larger data or stack segment than the old process. This is the model we selected.In attributing consumption to a program, all consumption by a process was attributed to the lastprogram that was exec'd. In the case where a process did not call exec, the consumption was attributed tothe program that the parent process was running when the fork that created the process was issued. Thismeans that while a shell may have fork'd itself for each non-intrinsic command that the user issued, thespace consumption for the new process was credited to the program the user ran, not to the shell.7

Program Pages Used CPU Seconds UsedName Instances Total Per Instance Total Per Instancesh 180904 44994882 248.7 14147 0.078init 326810 43011749 131.6 538302 1.647sendmail 228187 35268689 154.6 283061 1.240mm2 127976 11190223 87.4 113422 0.886gzip 63545 11006499 173.2 2955 0.047csh 117528 10481445 89.2 34793 0.296in.c�ngerd 204522 8252987 40.4 21685 0.106awk 67463 7901092 117.1 16854 0.250amd 102964 5892972 57.2 3201 0.031mail 31261 3842822 122.9 14429 0.462tset 37929 3480483 91.8 19099 0.504ip 237 3308288 13959.0 425124 1793.772ls 53235 2677470 50.3 5911 0.111elm 29508 2336297 79.17 15492 0.525virtex 2428 2110749 869.3 17598 7.248nn 4848 2102887 433.8 18277 3.770test 103296 1702253 16.5 7156 0.069named-xfer 4029 1498105 371.8 184 0.046cat 45116 1491297 33.1 987 0.022ugen2.1 3792 1357733 358.1 824 0.217compress 8110 1351396 166.6 4082 0.503�nger 38323 1314659 34.3 30063 0.784�lter 31846 1269500 39.9 6599 0.207is able 40422 1199002 29.7 562 0.014cc1 3959 1157576 292.4 11479 2.899stty 31212 1145785 36.7 491 0.016df 3959 1072604 270.9 49 0.012rn 2391 1022723 427.7 16358 6.841as12.1 7214 1002944 139.0 2907 0.403tcsh 14085 996873 70.8 7206 0.512msgs 15688 951683 60.7 2797 0.178ccom2.1 4235 942887 222.6 2755 0.651ld2.1 4204 877609 208.8 2665 0.634grep 34688 834894 24.1 1994 0.057echo 84811 830943 9.8 1011 0.012emacs 2954 817308 276.7 102160 34.584uptime 3734 810873 217.2 381 0.102hostname 20885 808601 38.7 243 0.012in.�ngerd 10046 796413 79.3 2153 0.214movemail 1306 785457 601.4 42 0.0322Table 3: Top 40 programs by total pages used. init was periodically forking a new process for the (usually unused) serialport on some workstations. mm2 was a user's signal-processing application. gzip is a �le-compression program. in.c�ngerdwas run every minute to update status information used by the GNU \�nger" server; in.�ngerd is the result of a query. amdis the auto-mount daemon, managing remote �le-system mounts. ip was a user's image-processing program. is able was partof a nightly system accounting program on Server 1. cc1 and programs with 2.1 in their names are part of the C compiler.named-xfer is a daemon associated with network name services.8

4

16

64

256

1024

4096

16384

65536

262144

1048576

0 1 10 100 1000 10000 100000 1000000

K
by

te
s

CPU Seconds

Space vs. Time

Figure 2: Scatter plot of the address space consumed and the CPU time consumed, for all processes traced in all groups. Thecorrelation coe�cient is 0.0236. The illusion of horizontal lines arises from the allocation of space in 4 KB pages. The illusionof vertical black lines and white gaps, we believe, arises from scheduler anomalies.From Table 3, one wonders whether address space usage was correlated to CPU time used. Figure 2demonstrates a lack of such a correlation in a scatter plot of these two measures for each process traced.The lack of correlation (coe�cient 0.0236) between usage and CPU time meant that we could not expect tosimply extrapolate per-process usage as a function of CPU speed.4 Single-address-space systemsTo be able to predict the lifetime of single-address-space systems, we had to consider more than just thecurrent usage rate. First, we considered some space-allocation policies that might be used in a single-address-space system, to add the cost of fragmentation to the usage rate. Then we considered appropriate methodsto extrapolate the current usage rate into the future. We begin by describing our methods.4.1 Methods4.1.1 Allocation policiesClearly, systems that manage a single virtual-address space by allocating virtual addresses to processesand �les without ever reclaiming the addresses for re-use will eventually run out of the �nite address space.Allocation policies with signi�cant fragmentation would shorten the expected lifetime, and allocation policiesthat allow some re-use would extend the expected lifetime. We used trace-driven simulations to measure thenet rate of address-space usage under a variety of likely allocation policies. Each trace event allocates or9

extends a region of virtual-address space, in multiples of 4 KB pages, called a segment.3 We were concernedwith the internal fragmentation caused by allocating too many pages to a segment, but ignored the smallinternal fragmentation in the last 4 KB page of a segment.Base allocation. For each processor in the distributed system, we allocated a generous 32-bit (4 GB)subspace to the kernel and its data structures. We also allocate 4 GB for every machine's initial collectionof �les, as a conservative estimate of what each new machine would bring to the address space. Note thatthis 8 GB was counted only once per machine.Process allocation. Processes allocated four types of virtual-memory segments: text (code), shared data,private data (heap), and the stack. We assumed that the text segment did not require the allocation of newvirtual memory, since it was either allocated at compile time or was able to be re-used (as in Hemlock).Shared libraries, though not available on the systems we traced, would be treated the same as text segments.We assumed that shared-data segments would never be re-used, but could be allocated with the exactnumber of pages necessary. The actual policy choice made essentially no di�erence in our simulations,because our trace data contained only a tiny amount of shared data. In a single-address-space operatingsystem, shared-data segments could be managed in much the same manner as private-data segments.Private-data and stack segments have traditionally been extendible (to a limit), and thus an allocationpolicy in a single-address-space system may need to allocate more than the initial request to account forgrowth. Overestimates lead to fragmentation losses (virtual addresses allocated but never used). We ex-amined several alternative policies, composed from two orthogonal characteristics. The �rst characteristiccontrasted exact-size allocation, where each segment was allocated exactly the maximum number of pagesused by that segment in the trace, and �xed-size allocation, where each process was allocated a 64 MB datasegment and a 2 MB stack segment.4 The exact policy could be approximated with reasonable user-suppliedstack sizes and non-contiguous heaps. The second characteristic contrasted no re-use, where no segmentwas ever re-used, with re-use, where all freed private-data and stack segments were re-used for subsequentprivate-data or stack segments. Note that, of the four possible combinations, the two re-use policies aresimilar, in that neither causes any space to be lost from external or internal fragmentation over the long3We assume a
at (not segmented) address space. We use the word \segment", in the tradition of names like \text segment"and \stack segment", to mean a logical chunk of virtual address space.4These sizes are the default limits for these segments under Ultrix. Di�erent sizes would not alter the qualitative resultsobserved. 10

term. (Note that the 32-bit subspace of Hemlock [Garrett et al. 1992] is also similar to the �xed re-usepolicy.) Thus, we measured only re-use, exact no-reuse, and �xed no-reuse.File allocation. Though Figure 1 implies that �le data were insigni�cant, it does not account for fragmen-tation caused by address-space allocation policies in a single-address-space system. We considered severalpolicies to determine their e�ect on fragmentation.A �le is traditionally an extendible array of bytes. Newly created �les can grow from an initial size ofzero, so in a single-address-space system, a new �le must be allocated space with room to grow. These \�lesegments" can never be re-used or moved, because a pointer into a deleted �le's segment may be storedin another �le, or because the �le may be restored from a backup tape. With this limitation in mind, weconsidered several policies (note that a higher-level interface could provide a conventional read/write �leabstraction on top of any of these �le-system policies):exact: Each �le was allocated exactly as much space as its own lifetime-maximum size (in pages). Thisunrealistic policy was useful for comparison.�xed: A �xed 4 GB segment was allocated for each �le when it was created (as in Hemlock [Garrett et al. 1992]).Any extraneous space was never recovered.chunked: Growing �les were allocated virtual-address space in chunks, beginning with a one-page chunkfor a new �le. Once the latest chunk was full, a new chunk of twice the size was allocated. Whenthe �le was closed, any unused pages at the end of the last chunk were reserved for future growth.This reservation strategy limited the number of chunks, and hence the amount of metadata needed torepresent a �le, by doubling the size of each chunk as the �le grew, but did cause some fragmentation.Distributed allocation. When a single address space spans multiple machines there must be a coordi-nated mechanism for allocating addresses. The dynamic allocation of space by a centralized allocation serveris clearly inadequate, for both performance and reliability reasons. The other extreme, a static division ofthe entire address space among all machines, does not allow the addition of new machines to the system,or for any one machine to allocate more than its original allotment. A compromise policy seems feasible,in which a centralized (or perhaps hierarchical) allocation system allocates medium-sized chunks of addressspace to machines, from which the machines allocate space for individual requests. When the current chunk11

is consumed, another chunk is requested. Careful selection of the chunk size would limit fragmentation. If,for example, every machine requested as much space as it might need for one week, the centralized servicewould not be overly busy, and the resulting fragmentation would reduce the overall lifetime of the systemby only a week or two.To compute the current rates, we played back our trace data through a simulator that kept track of allallocation. We used a di�erent version of the simulator for each combination of policies.4.1.2 Extrapolating to the futureAny attempt to extrapolate computing trends by more than a few years is naturally speculative. Previousspeculations have been crude at best: most of the back-of-the-envelope calculations in Section 2 extrapolateaddress-space usage by assuming that the yearly address-consumption rate remains constant. A constantrate seems unlikely, given continuing increases in available technology (faster CPUs, larger primary andsecondary memory), sophistication of software, usage of computers, and number of computers. A simplelinear extrapolation based on the current usage rate would overestimate the lifetime of single-address-spacesystems.On the other hand, it is not clear that we could extrapolate based on the assumption that usage increasesdirectly in proportion to the technology. Figure 2 shows that the address-space usage was not correlated withCPU usage, so a doubling of CPU speed (as happens every few years) does not imply a doubling of address-consumption rate on a per-process basis. Of course, a faster CPU presumably would allow more processesto run in the same time, increasing consumption, but our data cannot say by how much. Acceleration in therate of address-space consumption is likely to depend signi�cantly on changing user habits (for example, theadvent of multimedia applications may encourage larger processes and larger �les). This phenomenon wasalso noticed in a retrospective study of �le-system throughput requirements [Baker et al. 1991]: \The netresult is an increase in computing power per user by a factor of 200 to 500, but the throughput requirementsonly increased by about a factor of 20 to 30. ... Users seem to have used their additional computing resourcesto decrease the response time to access data more than they have used it to increase the overall amountof data that they use." These uncertainties make it impossible to extrapolate with accuracy, but we cannevertheless examine a range of simple acceleration models that bound the likely possibilities.Disks have been doubling in capacity every three years, and DRAMs have been quadrupling in ca-pacity every three years, while per-process (physical) memory usage doubles about every one to two years12

[Patterson and Hennessy 1990]. It seems reasonable to expect the rate of address-space consumption to growexponentially as well, though perhaps at a di�erent rate. Suppose a is the acceleration factor per year; forexample, a = 1 models linear growth, and a = 2 models an exponential growth exceeding even the growthrate of disk capacity (a = 1:26) or DRAM capacity (a = 1:59). If r is the current rate of address-spaceconsumption (in bytes per year per machine), and n is the number of machines, then the number of bytesconsumed in year y (year 0 being the �rst year) isu(y) = nray (1)and the total address-space usage after year y (i.e., after y + 1 years) isT (y) = yXi=0 u(i) (2)= nr yXi=0 ai (3)= � nr ay+1�1a�1 if a 6= 1nry if a = 1 (4)We extend this model by assuming that the number of machines, n, is not constant but rather a functionof y. Here, a linear function seems reasonable. For simplicity we choose n(y) = my, i.e., there are m machinesadded each year. We can further extend this model by adding in a k-byte allocation for each machine's kerneland initial �le set. This extension adds km to u(y).u(y) = km+myray (5)T (y) = yXi=0 u(i) (6)= kmy +mr yXi=0 iai (7)= (kmy +mr yay+2�(y+1)ay+1+a(a�1)2 a 6= 1kmy +mr y(y+1)2 a = 1 (8)In the next section we compare equation 8, for a variety of parameters, to the available address space.It is reasonable to assume that the size of the address space will also increase with time. Siewiorek et al13

8

16

32

64

128

1965 1970 1975 1980 1985 1990 1995 2000

A
dd

re
ss

 b
its

Year of introduction

Virtual-address bits of leading microprocessors

Industry leaders
[Siewiorek]: one bit per year

Linear fit, 2.676 bits per yearFigure 3: The number of address bits supported by various CPUs, and two curves �t to the data. The points represent theIntel 4004 (12 bits), Intel 8008 (14 bits), Intel 8080 (16 bits), Intel 8086 (20 bits), Motorola 68000 (32 bits), Intel 80386 (48bits), and MIPS R-4000 and HP 9000/700 (64 bits). The data come from [Siewiorek et al. 1982, page 5], [Tanenbaum 1990],and [Glass 1991].noticed that available virtual address space has grown by about one bit per year [Siewiorek et al. 1982], buttheir conclusions are based on old data. In Figure 3, we plot the virtual-address-bit count of microprocessorchips against the �rst year of introduction, for those chips that set a new maximum virtual address spaceamong commercial, general-purpose microprocessors. We also plot two possible growth curves: the originalfrom [Siewiorek et al. 1982] (one bit per year), and a new a linear regression �t (2.676 bits per year, withcorrelation coe�cient 0.9824):address bits(year) = 2:676� (year � 1967)� 2:048Address bits generally become available in increments, every few years, rather than continuously. So, forincrements of b bits, available address bits(year) = b� baddress bits(year)b cThis is the formula we use in Section 4.2.2 below.4.2 Results4.2.1 Allocation policiesFigure 4 shows the cumulative address space consumed by hypothetical single-address-space operating sys-tems operating under each of the policies described above (except the \�xed" policies, which used orders of14

0

5

10

15

20

25

30

T W T F S S M T W T F S S M T W T F S S M T W

G
ig

ab
yt

es

Day of Week

Cluster 1 Average Use by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use

Chunked Files > Exact Files

0

50

100

150

200

250

300

350

400

450

500

T F S S M T W T F S S M T W T F S S M T W T F S

G
ig

ab
yt

es

Day of Week

Server 1 Total Used by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use
Chunked Files > Exact Files

0

5

10

15

20

25

30

35

T W T F S S M T W T F S S M T W T F S S M T W T F S S M T

G
ig

ab
yt

es

Day of Week

Cluster 2 Average Use by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use

Chunked Files > Exact Files

0

5

10

15

20

25

30

35

40

M T W T F S S M T W T F S S M T W T F S S M T W T

G
ig

ab
yt

es

Day of Week

Server 2 Total Used by Policy

Chunked Files

Exact Files

Without Re-use
(exact)

With Re-use
Chunked Files > Exact FilesFigure 4: Cumulative address space consumed under di�erent management policies, for each tracing group, over the intervaltraced. Curves for Cluster 1 and Cluster 2 are scaled down by the number of machines in each cluster, for easier comparison.x-axis tic-marks represent midnight before the given day of the week. The \�xed" �le and process policies were so much worsethat they are not shown (see Table 4).magnitude more space, and hence are not shown), for each tracing group. Clearly, those that re-use datasegments consume address space much more slowly. Also, the \chunked" �le policy is remarkably close tothe (unattainable) \exact" �le policy.To understand the burstiness of address-space usage, we computed each policy's usage for each �ve-minute interval on each machine. Figure 5 shows the distribution of this \instantaneous" usage across all5-minute intervals on all workstations in each trace group, for each policy, on a logarithmic scale. Severalinteresting results appear. First, the \re-use" policies reduce the consumption by an order of magnitude ormore. Second, the \chunked" �le policy is not much worse than the (unattainable) \exact" policy. Third,15

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Cluster 1 Total Memory Consumed

With Re-use

Exact Files
Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Server 1 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Cluster 2 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)

0.1

0.3

0.5

0.7

0.9

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

C
D

F

Bytes used per 5-minute interval

Server 2 Total Memory Consumed

With Re-use

Exact Files

Chunked Files

Without Re-use
(exact)Figure 5: The cumulative distribution function (CDF) for the distribution of \instantaneous" address-usage rates across all5-minute intervals on all workstations in each trace group, for each policy, for each trace group. Note the logarithmic scale. Themean rates are indicated by the box markers. Mean values signi�cantly larger than median values indicate many intervals wherelittle or no address space was consumed. Though both the \chunked" and \exact" �le policies were plotted for the \exact, nore-use" process policy, there is no signi�cant di�erence. The \�xed" �le and process policies were so much worse that they arenot shown (see Table 4).in the clusters, the machines were frequently idle, as implied by the 69{84% of intervals where the reusepolicies consumed at most one page.Based on these results, we estimate the yearly rate of address-space consumption for each policy, giventhe current workload. Table 4 shows two rates for each tracing group, and for each policy: the �rst is themean consumption rate (representing the situation where some machines are idle some of the time, as theywere in our trace) computed by a linear extrapolation of the observed rates, and the second is the 95thpercentile consumption rate (representing the situation where all machines are heavily used) taken from the16

Process File bytes/year/machinePolicy Policy Mean 95th %ileexact chunked S1 8.2�1012 1.7�1013no re-use S2 5.9�1011 1.8�1012C1 4.5�1011 1.0�1012C2 4.4�1011 8.3�1011exact exact S1 8.1�1012 1.6�1013no re-use S2 5.8�1011 1.7�1012C1 4.6�1011 1.0�1012C2 4.3�1011 7.6�1011reuse chunked S1 3.8�1011 1.1�1012S2 3.7�1010 1.1�1011C1 1.8�1010 5.3�1010C2 1.2�1010 3.7�1010reuse exact S1 2.4�1011 6.7�1011S2 2.4�1010 6.1�1010C1 1.1�1010 3.6�1010C2 6.1�1009 2.3�1010reuse �xed S1 7.7�1016 1.8�1017S2 6.7�1015 1.9�1016C1 1.5�1015 5.9�1015C2 8.9�1014 4.1�1015�xed exact S1 1.7�1015 3.3�1015no re-use S2 1.1�1014 3.1�1014C1 7.5�1013 1.5�1014C2 1.2�1014 1.1�1014Table 4: Address-space consumption rate of various policies, given the current workload, in bytes per year per machine. Weinclude both the mean rate, across all times on all machines in each group, and the 95th percentile rate, across all 5-minuteintervals on all machines in each group. The other \�xed"-policy combinations, not shown, had worse usage than anythingshown, and were not considered further.distributions in Figure 5. The table makes it clear that both the \�xed" process policy and the \�xed" �lepolicy were, as expected, consuming space extremely fast. The table recon�rms that re-using private-dataand stack segments cut about one to one and a half orders of magnitude o� the consumption rate, and thatthere was little di�erence between the \exact" and \chunked" �le policies. Also, the 95th percentile rate wasabout one-half order of magnitude larger than the mean rate, and Server 1 was about an order of magnitudelarger than the other machines, due to its heavy multi-user load.4.2.2 Extrapolating to the futureWe can compare the growth of available address space with the consumption of a single-address-space systemthat began in 1994. It is di�cult to choose an appropriate value for parameters a and m, but by examining a17

32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, a=1, various r

Available address bits

r=1e10
r=1e11
r=1e12
r=1e13
r=1e14
r=1e16Figure 6: Comparison of available address bits with the consumption of address space for a variety of current rates, r, assumingno acceleration (a = 1) andm = 100. The solid consumption curve indicates the r value used in the other graphs. The availableaddress bits grow in increments of 1, 32, or 64 bits.wide range of values we can bound the likely behavior of future systems. For the acceleration a, we chose 1,1.1, 1.2, 1.6, 2, and 3, i.e., ranging from linear growth (a = 1) to tripling the rate every year (a = 3). (To putthese rates in perspective, recall that DRAM capacity grows at a = 1:59.) We chose m = 100 as the growthrate for the machine population, although we show below that there was little di�erence when varying mfrom 1 to 10000. From Table 4, we selected a range of representative rates r (in bytes/year/machine), asfollows: r Clusters roughly representing1016 all \�xed" �le policy1014 all \�xed" process policy1013 Server 1 \exact, no re-use" process policy1012 others \exact, no re-use" process policy1011 Server 1 \re-use" process policy1010 others \re-use" process policyNote that these rates are dependent on the nature of our workload| workstations in a computer sciencedepartment. We speculate that the rate of a di�erent workload, such as scienti�c computing, object-orienteddatabases, or world-wide-web servers, may di�er by perhaps 2{3 orders of magnitude, and have a similargrowth rate. If so, our conclusions would be qualitatively similar for these other workloads.Figures 6{9 display the models, using a logarithmic scale to compare address bits rather than address-space size. Note that we plot the available address space as growing in increments of 1, 32, or 64 bits (seeSection 4.1.2). 18

32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, a=1.6, various r

Available address bits

r=1e10
r=1e11
r=1e12
r=1e13
r=1e14
r=1e16Figure 7: Comparison of available address bits with the consumption of address space for a variety of current rates, r, butwith an acceleration factor of a = 1:6. m = 100. The solid consumption curve indicates the r value used in the other graphs.

32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; m=100, r=1e11, various a

Available address bits

a=1
a=1.1
a=1.2

a=1.6

a=2

a=3Figure 8: Comparison of available address bits with the consumption of address space for a variety of acceleration factors, a.The solid consumption curve indicates the a value used in the other graphs. Other parameters were r = 1011 and m = 100.Figure 6 examines the simple case of a = 1, where the yearly consumption remains constant at currentlevels. We see that a 64-bit address space is su�cient (that is, the \address bits needed" curve remainsbelow the \address bits available" curve) only if the \�xed" �le policy was avoided, or if a 96-bit addressspace were available soon. If the current consumption rate, r, accelerated (Figures 7{8) or if the number ofmachines grew especially fast (Figure 9), it would be even more important to avoid \�xed" policies or tomigrate to a 96-bit address space soon.Although the acceleration factor a of course has the most profound e�ect on address consumption, inthe long term address-space growth should outpace even a = 2, and in the short term reasonable allocation19

32

64

128

256

2000 2005 2010 2015

A
dd

re
ss

 b
its

 n
ee

de
d/

av
ai

la
bl

e

Year (y = Year - 1994)

Growth rates; a=1.6, r=1e11, various m

Available address bits

m=1
m=10
m=100
m=1000
m=10000Figure 9: Comparison of available address bits with the consumption of address space for a variety of m, where the numberof machines n(y) = my. The solid consumption curve indicates the m value used in the other graphs. Other parameters werer = 1011 and a = 1:6.

1995

2000

2005

2010

2015

2020

1e+171e+151e+131e+11 1e+161e+141e+121e+10

Y
ea

r

Consumption rate, r

64-bit address space lifetime; m=100, various a

a=1a=1.1a=1.2a=1.6

a=2

a=3Figure 10: Comparison of various acceleration factors (a), showing the year in which a 64-bit address space will be completelyconsumed based on the initial rate (r). The solid curve indicates the a value used in the other graphs. We assume a 1994 start,and add m = 100 machines per year.policies can keep the consumption rate low enough to last until the available address-space doubles againto 128 bits. Nevertheless, an intermediate jump to 96 bits would accommodate the most aggressive growthtrends.In short, Figures 6{9 tell us that it is possible to build a long-lived single-address-space system withoutcomplex space-allocation policies. Figure 10 presents the lifetime of a 64-bit address space for various a andr. It seems necessary only to re-use data and stack segments, and to use \chunked" �le allocation, for asystem to last more than 10 years. To accommodate maximum growth, however, the system should be able20

to adapt to larger addresses as they became available.5 SummaryWe traced several campus workstation clusters to gain an understanding of the current rate of address-space consumption, and the behavior of several likely policies under the current workload. Most of thecurrent usage is from private-data and stack segments, with �les using more than an order of magnitude lessspace, and shared data an essentially negligible amount. Fortunately, we found realizable allocation policies(\chunked" �le allocation and \�xed, re-use" process allocation) that allowed re-use of the private-data andstack segments, leading to yearly consumption rates of 10 to 100 gigabytes per machine per year. Becauseof their simplicity, and low overhead, we recommend these policies.We used an extrapolation model that assumed an exponential acceleration of the usage rate, lineargrowth in the number of machines involved, and linear growth in the number of virtual-address bits, topredict the future of a single-address-space system. Our model predicts that a single-address-space systemwould not run out of virtual-address space, as long as it used reasonable allocation policies (such as theones we suggest) and adapted gracefully to larger addresses (e.g., 96 or 128 bits) as they become available.Indeed, Figure 10 shows that a system with a single 64-bit address space could add 100 machines each year,triple its usage rate each year (a = 3), and still last for 10 years, by re-using data and stack segments andusing our \chunked" �le allocation policy.Although our results necessarily depend on speculation about trends in technology and user behavior,and may or may not apply to workloads di�erent from the typical o�ce-workstation environment, we believethat our fundamental predictions are fairly robust. For example, we measured only one workload during onebrief period, yet Figures 6{7 provide fundamentally the same conclusion for a wide range in the value of r.Similarly, Figure 9 shows that our ultimate conclusions hold for a wide range of the parameter m. Potentialdevelopers of a single-address-space system who have a better understanding of their system's workload canuse our model to determine whether simple policies su�ce. Only systems with unpredictable or extremelyaggressive workloads should consider developing more sophisticated allocation policies.Although there are many other issues involved in building a single-address-space operating system thatare beyond the scope of this paper, it appears that address-space consumption will not be an impossiblehurdle. 21

AcknowledgementsMany thanks to DEC for providing the Ultrix 4.3 source code and for providing a workstation and disk spacefor the data collection and analysis, and to our campus computer users for allowing us to run an experimentalkernel and to trace their activity. Thanks also to Wayne Cripps and Steve Campbell for their help with thetracing. Finally, many thanks to the anonymous reviewers for their helpful feedback.References[Baker et al. 1991] M. Baker, J. Hartman, M. Kupfer, K. Shirri�, and J. Ousterhout. Measurements of adistributed �le system. In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles,pages 198{212, 1991.[Bartoli et al. 1993] A. Bartoli, S. Mullender, and M. van der Valk. Wide-address spaces | exploring thedesign space. ACM Operating Systems Review, 27:11{17, January 1993.[Broessler et al. 1987] P. Broessler, F. Henskens, J. Keedy, and J. Rosenberg. Addressing objects in a verylarge distributed virtual memory. In Distributed Processing. Proceedings of the IFIP WWG 10.3 WorkingConference, pages 105{116, 1987.[Chase et al. 1992] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska. How to use a 64-bit virtualaddress space. Technical Report 92-03-02, University of Washington, March 1992.[Chase et al. 1994] J. Chase, H. Levy, M. Feeley, and E. Lazowska. Sharing and protection in a single addressspace operating system. ACM Transactions on Computer Systems, 12, May 1994.[Garrett et al. 1992] W. Garrett, R. Bianchini, L. Kontothanassis, R. McCallum, J. Thomas, R. Wisniewski,and M. Scott. Dynamic sharing and backward compatibility on 64-bit machines. Technical Report 418,Univ. of Rochester Computer Science Department, April 1992.[Glass 1991] B. Glass. The Mips R4000. Byte Magazine, 16:271{282, December 1991.[Jain 1991] R. Jain. The Art of Computer Systems Performance Analysis, page 210. Wiley, 1991.[Koch and Rosenberg 1990] D. Koch and J. Rosenberg. A secure RISC-based architecture supporting datapersistence. In Proceedings of the International Workshop on Computer Architectures to Support Securityand Persistence of Information, pages 188{201, 1990.22

[Kotz and Crow 1993] D. Kotz and P. Crow. The expected lifetime of \single-address-space" operatingsystems. Technical Report PCS-TR93-198, Dept. of Math and Computer Science, Dartmouth College,October 1993. Revised in 1994 to appear in SIGMETRICS '94, and revised again on March 15, 1996.[Lee 1989] R. Lee. Precision architecture. IEEE Computer, 22:78{91, January 1989.[Mullender 1993] S. Mullender, editor. Distributed Systems, pages 391{392. Addison-Wesley, second edition,1993.[Patterson and Hennessy 1990] D. Patterson and J. Hennessy. Computer Architecture A Quantitative Ap-proach, pages 16{17. Morgan Kaufmann, 1990.[Rosenberg et al. 1992] J. Rosenberg, J. Reedy, and D. Abramson. Addressing mechanisms for large virtualmemories. The Computer Journal, 35:24{374, November 1992.[Rosenberg 1992] J. Rosenberg. Architectural and operating system support for orthogonal persistence.Computing Systems, 5:305{335, Summer 1992.[Satyanarayanan 1989] M. Satyanarayanan. Andrew �le system benchmark. Carnegie-Mellon University,1989.[Siewiorek et al. 1982] D. Siewiorek, C. Bell, and A. Newell, editors. Computer Structures: principles andexamples. McGraw-Hill, second edition, 1982.[Sites 1993] R. Sites. Alpha AXP architecture. Communications of the ACM, 36:33{44, February 1993.[Tanenbaum 1990] A. Tanenbaum. Structured Computer Organization, page 27. Prentice Hall, third edition,1990.[Wakerly 1989] J. Wakerly. Microcomputer Architecture and Programming: The 68000 Family, page 150.John Wiley and Sons, 1989.
23

