Making Paths Explicit in the Scout Operating System

David Mosberger and Larry L. Peterson

TR 96-05

Abstract

This paper makes a case for paths as an explicit abstraction in operating system design. Paths provide a
unifying infrastructure for severa OS mechanisms that have been introduced in the last several years, in-
cluding fbufs, integrated layer processing, packet classifiers, code specialization, and migrating threads.
This paper articulates the potential advantages of a path-based OS structure, describes the specific path
architecture implemented in the Scout OS, and demonstrates the advantages in a particular application
domai n—receiving, decoding, and displaying MPEG-compressed video.

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

1 Introduction

Layering is a fundamenta structuring technique with a long history in system design. From early work on layered
operating systems and network architectures [HFC76, Zim80], to more recent advances in stackable systems [Rit84,
HP91, HP94, RBF*95], layering has played a central role in managing complexity, isolating failure, and enhancing
configurability. This paper describes a complementary, but equally fundamental structuring technique, which we call
paths. Whereas layering istypically used to manage complexity, paths are applied to layered systems to improve their
performance and to solve problemsthat require global context.

Although paths are easy to understand on the surface—a path isa vertical dice through amulti-layered system—a
concrete realization of the idea is surprisingly elusive. We therefore develop a working definition of pathsin an in-
cremental fashion. First, consider that the term “path” is well entrenched in our vocabulary. For example, we often
refer to the “fast path” or the “critical path” through a system, implying that the most commonly executed sequence
of instructions have been optimized. As another example, we sometimes talk about optimizing the “end-to-end path”,
meaning we are focused on the global performance of the system (e.g., from1/0O sourceto sink), rather than on thelocal
performance of a single component. As afinal example, we sometimes distinguish between a system’s “ control path”
and its “data path”, with the former being more relevant to latency and the latter more concerned with throughput.

Paths can also be loosely understood by considering specific OS mechanisms that have been proposed over the last
few years. Consider the following examples.

o Fbufs[DP93] are a path-oriented buffer management mechanism designed to efficiently move data across a se-
quence of protection domains.! Fbufs depend on being able to identify the path through the system over which
the datawill flow.

¢ Integrated layer processing (ILP) [CT90, AP93] is atechnique for fusing the data manipulation loops of multi-
ple protocol layers. It depends on knowing exactly what sequence of protocol modules a network packet will
traverse.

o Packet classifiers [YBMM93, MJ93, BGPt94] distinguish among incoming network packets based on certain
fieldsfoundintheir headers. Inasense, apacket classifier pre-computesthe path that a given message will follow.

o Specializationissometimesused to opti mizecommon path code sequences[PAB + 95, MPB096]. Specialization,
inturn, dependson the existence of invariantsthat constrain the path through the code that islikely to be executed.

o Spring defines a shuttle [HK93], which is an environment that allows a thread to migrate across a sequence of
protection domains; others have defined similar mechanisms [FL94]. Like the previous examples, such mecha
nisms recogni ze that programs often follow the same path through the system more than once, and so establish
some state that subsequent invocations can exploit.

Notethat whileall of these mechani sms either support paths or depend on the existence of paths, noneof them explicitly
define what a path is. In other words, whilethe idea of a path running through a layered system iswidely recognized,
to date, paths have only been implicitly defined.

The main contribution of this paper isto show how paths are explicitly implemented in the Scout operating system
[MMOT94], and to demonstrate some of the advantages of thisimplementation by means of an example application.
Scout is an experimenta framework that providesthe means to easily produce small, highly efficient, stand-alone ker-
nels that are targeted at a particular I/O-intensive application domain. Scout is designed for both non-realtime and
soft-realtime applications. A description of Scout, with afocus onitsarchitecture for paths, is givenin Section 3. The
demonstration application, which involves receiving MPEG-compressed video over a network and then decoding and
displayingit, is described in Section 4.

1 Although layering does not imply multiple protection domains, systems often impose hardware-enforced protection at layer boundaries.

2 A Casefor Paths

Theclaimisthat pathsare afundamental abstractionin system design, onethat providesaunifyingframework for many
of the mechanisms identified in the introduction. Before describing how paths are implemented in Scout, however, this
section first introduces an abstract mode for paths, and argues why paths are a good ideain principle. A later section
(4) illustrates some of these advantages in the context of a concrete example.

Consider alayered system that consists of a collection of modulesthat depend on each other in awell-defined way.
We call these modules routers for reasons that will become clear in a moment, but for now, think of each router as
implementing a certain functionality (e.g., the IP protocol or MPEG decompression) and having a well-defined inter-
face. These routersare then connected into agraph to provide exactly the functionality required for agiven application
domain.

Paths are dynamic entities. They are created and destroyed at runtime as a result of various events such as the
arrival of a connection request packet on anetwork adapter, a user hitting the return key, or atimeout expiring. A path
traverses a sequence of routers that are connected in the router graph. Figure 1 illustrates an example router graph
with two distinct paths running through it; think of each path as corresponding to a separate network connection, for
example.

U
NN

Figure 1: Two Paths Through a Router Graph

A pathiscreated incrementally. It startsat asourcerouter and isspecified with aset of invariantsthat will betruefor
all datathat flowsover the path. Therouter usestheseinvariantsto make arouting decision (hence the name router)—if
the invariants are strong enough, it will be able to determine the next router that must be traversed by any path data.
The next router then makes its own routing decision. Aslong as the invariants are strong enough, the path will keep
growing. Eventualy, either the path will reach aleaf router (e.g, adevice driver), or theinvariantswill be so weak that
no unique routing decision can be made at some router. Thus, a path can be interpreted as a sequence of fixed routing
decisions. Because paths embody invariants, have an explicit representation, and are known at path-creationtime, they
can be the subject of optimization.

Aswe argue below, it isadvantageous for paths to be as long as possible. However, just how long can a path be?
In the best case, apath extends all the way from a source device (e.g., network adapter) to the destination device (e.g.,
framebuffer). Intheworst case, each path spansonly asinglerouter, that is, theinvariantsare so weak that each router is
unabl e to determine a unique subsequent router at path creation time. Notethat a conventional layered system without
paths isequivaent to this degenerate case in the sense that each layer makes a separate routing decision each time it
isinvoked.

Even in a system that explicitly supports paths, the best-case scenario is not always possible. If a path is created

with theinvariant that the source device isalways thefirst Ethernet adapter, then itisnormally possibleto create a path
that extends al the way to that Ethernet adapter. But if a path wants to receive packets from any other IP host in the
world, then it isgenerally necessary to assume that any network adapter in the system could receive arelevant packet.
Thus, the path could reach at most downto IP.

Figure2 illustratesthe worst- and best-case scenariosfor atrivia router graph. The worst-case scenario pictured on
theleft correspondsto aconventional layered system where arouting decision hasto be made at each layer (at only one
layer in this example); it contains three paths, each of which span exactly one router. The best-case scenario pictured
on the right corresponds to the invariants being sufficient to establish an end-to-end path;? it contains two paths, each
of which span two routers. In both cases, we view apath as being represented by a code sequence that must be executed
to move data (e.g., network packets) from a sourceto asink. In thefigure, we represent the ultimate sources and sinks
as queues, which would be the actual implementation if they corresponded to devices.

s s s s

| |
|]
= H F

Figure 2: Router Decision at Each Layer versus End-to-End Paths

Making paths as |ong as possible—preferably end-to-end—meansthat more non-local context isavailable. To bet-
ter appreciate the value of non-local context, consider an Ethernet packet, which by itself, implies nothing about its
rel ative importance compared to other packets. However, if it isknown that the packet is part of avideo stream, then
it is easy to determine theits processing deadline, how many CPU cycles need to be allocated to process it, where the
its data should be placed in memory, and so on.

In general, having access to non-local context leads to two kinds of advantages: (1) improved resource allocation
and scheduling decisions, and (2) improved code quality. In the former case, work is segregated early, meaning that
distinct paths are fed by separate work queues rather than having to share a singlework queue. For example:

e Thesystem can place datain amemory buffer that is already accessible to dl the routers along the path. Thisis
essentialy what fbufsdo. In contrast, data often has to be copied (either logically or physically) from one buffer
to another at each router where paths split.

e The system can know that a particular path needs to be scheduled for execution in order to meet adeadline; eg.,
display a video frame. Thisis critical to being able to offer different Qualities of Service (QoS). In contrast,
having a shared input queue means that low-priority work may need to be done to discover high-priority work
that needs attention.

o If scheduling deadlines for a particular path are such that it is impossible to make use of a particular piece of
work (e.g., network packet or video frame), then the system can discard unnecessary work early, that is, before
executing the path. A conventional system hasto at least process the work up to the router before knowing that
continuingis of no value.

2 Throughout this paper we use the term “ end-to-end path” to refer to a path between a source device and a sink device within a single system,
rather than across a network. In future work, we hope to seamlessly integrate intra-machine paths and inter-machine paths.

In the latter case—improved code quality—the system has more information available to it, making more aggressive
code optimizations possible. Examples of such optimizationsinclude the following:

e Themore invariantsthe system knows about code to be executed, the more opportunitiesthe system has to spe-
ciaizethe code path. For example, the system can do constant folding and propagation, dead-code elimination,
and interprocedurd register alocation.

e Themorelayers across which the system isable to optimize, the more opportunitiesthere are to eliminate redun-
dant work. For example, the more protocol |ayers avail able, themore loadsand storesintegrated layer processing
can remove. Similarly, it is sometimes possible to merge per-layer operations. For example, instead of having
each layer check for the appropriate header length, it is possibleto check for the sum of al header lengths at the
beginning of packet processing.

This paper focuses on thefirst set of advantages, that is, those that have to do withimprovementsinresource aloca-
tion and scheduling. A companion paper demonstratesthe code-rel ated improvements attributabl eto paths [M PBO96] .
That earlier paper shows that paths permit code optimizationsthat improve node-to-node network processing latency
by 21-186%. While the companion paper postul ates the existence of paths, it does not explicitly define the requisite
path architecture. Defining that architecture is one of the contributions of this paper.

3 The Scout Architecture

This section describes Scout’s basi ¢ architecture, with an emphasis on its support for paths. In the discussion that fol-
lows, keep in mind that compatibility with existing standards such as POSIX isnot a primary goal. The initia focus
of Scout is on application domains such as network appliances—e.g., set-top boxes, file- and web-servers, or cluster
computers. While taking the liberty of radically changing the inside of a network appliance, Scout does recognize the
importance of interoperability; it does not assume that existing external communication protocol s can be abandoned at
will.

3.1 Routersand Services

Therouter isthe unit of program devel opment in Scout. A router implements some functionality such asthe IP proto-
col, the MPEG decompression agorithm, or adriver for a particular SCSI adapter. A router implements one or more
services that can be used by other higher-level routers. Asistypical in alayered system, most routers themselves use
other lower-level routersto implement their services. Scout does not, however, enforce strict layering. Cyclic depen-
dencies are admissible as long as thereisa partia (non-cyclic) order in which the routers can be initialized.

Each service in arouter has a name and atype. The names are unique, but otherwise arbitrary and chosen by the
programmer. The type of a service is used by the Scout configuration editor to ensure that only mutually compatible
Services are connected.

Figure 3 illustrates routers, services, and how they interact in arouter graph. In this partial router graph, IP has
three services: up, down, and res. Thefirst two are of type net and the latter is of type nsClient (for “naming-service
client”). The net service providesa functionto deliver amessage (data). Since |P and ETH are both connected through
alink connecting apair of net services, thisimpliesthat 1P can send messages to ETH and vice versa. In contrast, the
nsClient and nsProvider services are asymmetric: |P invokes ARP to trandate IP addresses into Ethernet addresses,
but thereis no need for ARP to ever call back into IP. That is, nsProvider provides functionsto resolve |P addresses
whereas nsClient is essentially an empty service.

3.2 Paths

We can now describe the path object. It logically consists of three nested parts. We start at the middle level, which
defines the stage. Stages provide a locusfor storing state that is both path- and router-specific. There is one stage for
each router that a path crosses, or said another way, a path contains a sequence of stages. At theinnermost level isthe

up:net
IP

down:net | res:nsClient

resolver:nsProvider
ARP
net:net
up:net
ETH

Figure 3: Routers and Services.

interface. Each interface is an instantiation of a corresponding router service. For example, if a path enters the ETH
router viathe up service, then the corresponding interface is of type net. Interfaces therefore provide the means for
one layer (stage) to communicate with the next layer in a controlled manner. Interfaces are linked together to providea
chain corresponding to a flow of data. Since a path isbi-directional, thereisone interface chain for each direction. As
it issometimes necessary to turn data around in a path, each interface a so contains a back pointer to the next interface
intheother direction of dataflow. Finaly, at the outermost level, isthe actual path object—it containspath-global state

such asthe path id, pointersto the stages at the extreme ends of the path, and alist of attributesfor the path. (Moreon
attributes below.)

/\\ UDP
"""""" <\\//
Era
,,,,,,,,,,,,,,,, Kj/
f\ INET
,,,,,,,,,,,,,,,, /
U ETH

Figure4: Path structure.

Figure 4 depicts apath that consists of four stages. The stageswere created by the UDPR, IB, INET, and ETH routers.
Each interior stage contains two interfaces (semi-circles), whereas the stages at the extreme ends of the path contain
only oneinterface each. These final interfaces are used to terminate the path.

A path is created by invoking pathCreate on a router. The kind of path to be created is described by a set of
attributes—name/value pairs that specify the invariants for the path. The router uses these attributesto create a stage
and to determine the next router that will be crossed by this path, if any. If there is a next router, the pathCreate op-
eration is propagated to that router. This process continues until a path reaches its full length, which happens either
when it reaches aleaf router or when the attributes are too unspecific to make another uniquerouting decision. At this

point, a sequence of stages has been created. These stages are then linked together into a path structure. Once the path
is created, each stage is given a chance to execute initialization code.

Attributesare used in several places, not just as arguments to the pathCreate operation. Asmentioned above, every
path object contains an attribute list which alows storing arbitrary path-specific information. For example, a pointer
to the input queue of a path can be stored in the PATH_SOURCE attribute. If set, a flow control protocol may use the
value of thisattributeto learn about the current length of the input queue. In other words, attributesallow efficient and
anonymous exchange of information through a common object.

Asdescribed so far, path creation consistsof three phases: (1) determineroute of path and create stages, (2) combine
stages into path object, and (3) establish (initialize) stages. During a fourth and fina phase, transformation rules are
applied tothe path. Semantically, transformation rules have no effect but they typically result in better performance and
better resource allocation or usage. For example, if a path invocation crosses a sequence of routersfor which optimized
codeisavailable, the path is modified to use that code. A transformation rule should be thought of as a pair consisting
of a pattern and atransformation that takes a path as an argument and returns a transformed path. A companion paper
describes a set of code transformations that can be applied to a path [MPBQO96]. In Section 4 we will discuss some
transformations that improve resource management.

Asimplemented in Scout, pathsare light-weight. For example, apath to transmit and receive UDP packets consists
of six stages. Cresating such a path on a300MHz Alphatakes on the order of 200us. The path object itself isabout 300
byteslong and each stage is on the order of 150 bytesin size (including all the interfaces).

Early

|- router implementation

I- path transformations

I- router graph & transformation rules

A

I~ kernel build

buidtme)
' runtime

i

I~ path creation

I~ path activations

Y

Late

Figure5: Scout Development Timeline.

To summarize, Figure 5 presents a timeline that illustrates when the various components of a Scout system are
created or specified. Atthe earliest time, individual routers and path transformationsare implemented. Then, asystem
is configured by specifying a router graph and appropriate transformation rules. The kernel is then built and booted.
During runtime, paths are created, used, and destroyed in response to events.

3.3 Threads And Scheduling

Threads are the active entities in Scout. While threads usually execute in the context of a path, they are independent
objects that exist in their own right. That is, threads execute paths, but paths do not normally own the threads. This
impliesthat athread can very efficiently crossfrom one path into arouter and then back into another path—an important
aspect given that degenerate paths can be short. However, thisisnot just a matter of efficiency (pathsthat are short are
usually not performance critical anyway) but also of simplicity. Forcing acontext switch at the end of every pathwould
be cumbersome, as it would introduce additional synchronization pointsthat serve no real purpose.

A thread is scheduled non-preemptively according to its scheduling policy and priority. Scout supportsan arbitrary
number of scheduling policies, and allocates a percentage of CPU time to each. The minimum share that each policy
getsis determined by a system-tunable parameter. Two scheduling policies have been implemented to date: (1) fixed-
priority round-robin, and (2) earliest-deadlinefirst (EDF) [LL73]. The reason for implementing the EDF policy is that

for many soft realtime applicationsit is most natural to express a path’s “priority” in terms of a deadline. We present
an example of thisin the next section.

Scout uses a non-preemptive scheduler because it meets our needs and is easy to use. Programming preemptively
scheduled threads that share memory is error-prone [Ous96]. More importantly, there are only two good reasons for
using preemptive scheduling: (1) to exploit true concurrency, and (2) to guarantee fairness or timelinessin an envi-
ronment where uncooperative threads share the CPU. Scout is designed to be a uniprocessor OS, so true concurrency
isnot an issue. Also, at present, Scout focuses on application domains where all threads are cooperative, so (2) is not
a concern either. In the future, Scout will allow for uncooperative “threads,” but since it is not a good idea to share
any resource with uncooperative threads in an uncontrolled manner, those threads will not share memory either. That
is, uncooperative threads will be isolated from each other in some manner (e.g., through separate address spaces, fault
isolation, or asafelanguage). If uncooperativethreadsdo not share memory, using apreemptive scheduler among them
istrivial. Thus, schedulingissplit intodomains—withinadomain, thereistrust and hence anon-preemptive schedul er
can be used. Across domains, thereis no trust and a preemptive scheduler is necessary. In a sense, thisis not unlike
what many traditional UNIX kernels do—thekernd “threads’ are scheduled non-preemptively whereas the user-level
processes are scheduled preemptively.

Once athread executes on behalf of apath, it can trivialy adjust its own priority as necessary. However, therealso
needs to be a mechanism that allowsinheriting a path’s scheduling requirementsto a newly awakened thread. For this
purpose, a path can register acallback that isinvoked whenever athread is awakened to execute on behalf of that path.
During the callback, the path can adjust the thread’s scheduling policy and priority according to its own needs.

34 Networking and Paths

Networking poses aspecial challengeto using paths since when a packet arrives at a network adapter, it isnot immedi-
ately known which path that packet belongsto. Ideally, each network message would carry a path id of known length
and at aknown position. The path could then be determined by mapping this uniqueid into a pointer to the path struc-
ture. Since Scout is designed to interoperate with existing networking protocol architectures, it isusually not possible
to achievethisideal case. Instead a packet classifier maps arbitrary packets into the pathsto which they belong. Scout
places the foll owing requirements on such a classifier:

o Efficient enough to handle peak-loads. The maximum arrival rateis dictated by the number of network adapters
inthe system and by the particular network technology inuse. We expect aclassification latency of approximately
5usto be sufficient for network technol ogy on the immediate horizon.

o Providerelaxed (best-effort) classification accuracy. Traditionally, packet classifiershavetodeal withfragmented
messages, sinceif apacket cannot be classified al theway to the end user, it will be dropped compl etely. In con-
trast, Scout can tol erate best-effort classification. For example, if an |Pdatagram isfragmented, the fragmentsare
simply delivered to a path that leads up to the | P protocol . | P reassembl es those fragments and then runsitsown
classifier on the complete datagram. Not only isthissimpler, but it isthe only way to guarantee that arbitrarily
fragmented messages can be classified eventually.

o Classification specifications must be modular. In Scout, each networking protocol isimplemented as a separate
router. Since the router graph is configured relatively late in the process of building a Scout kernel, it would
be awkward if the classification specifications would have to be programmed for a particul ar router graph. It is
much more sensibleto provide a partia specification when programming a networking protocol. If these partia
specifications are modular, it is easy to combine them into a global specification, either at configuration time or
at runtime.

¢ Classification must be side-effect free. In the desirable case where a path id can be transmitted as part of some
protocol stack, it is not necessary to continue running the classifier once that path id has been discovered. A
side-effect free classification process guarantees that once the path id isfound, the remaining classification can
be safely short-circuited.

e The language for classification specifications must be expressive and convenient to use. Variable length and
extension headersin particular need to be accommodated since they will become increasingly common with the
adoption of 1Pv6 [PD96].

Many packet classifiers have been proposed (e.g., [YBMM93, MJ93, BGP+94]), but none of them address al of
Scout’s requirements satisfactorily. The solution was surprisingly simple—rather than inventing a new language and
implementing a good compiler for it, Scout mandates that each router that implements a networking protocol provide
acallback function that is used to classify a packet. Such callbacks are executed at interrupt priority and must be side-
effect free. Given a packet, it returnsthe path to which the packet belongs, or aNULL pointer if no such path exists. If
arouter cannot uniquely identify what path a packet belongsto, it will ask the next higher-level router to further narrow
downtheset of possiblepaths. That is, the classification processismodular. Furthermore, sincethepartial classification
specificationsarewrittenin C, performance can be expected to begood. Indeed, thefirst unoptimizedimplementati on of
thisschemeisalready ableto demultiplex aUDP packet inlessthan 5uson a300MHz Alphaworkstation. Sinceregular
Cisused to express classification specifications, arbitrarily complex header schemes can be accommodated. But what
iseven moreimportant is that since the same language is used for programming the classifier and the router, the same
declarationsfor network headers can be used. Thisgresatly reduces therisk of introducing errors dueto inconsi stencies.

3.5 Other Issues

There are many other aspects of Scout that space does not permit us to describe; most of them are orthogonal to paths.
For exampl e, software-based fault isolation [WLAG93] can be imposed on top of paths by defining each router to be
in aseparate fault domain. Similarly, hardware-enforced protection can be imposed between paths. Note that the hori-
zontal partitioning (SFI) is possible because Scout routers have well-defined interfaces, while the vertical partitioning
(hardware protection) is enabled by explicit paths.

Also, the Scout router graphisconfigured at buildtime, and ascurrently defined, it isnot possibleto extend thegraph
at runtime. However, itispossibleto configurean interpreter into therouter graph, thereby supporting extensibility. For
example, we are currently implementing the Java API (and interpreter) in Scout [GY T96]. Thiswill make it possible
to download Java applicationsinto Scout at runtime.

4 Demonstration Application

This section demonstrates the use and benefits of pathswith asimple, but realistic application implemented in Scout.
The application consists of receiving, decoding, and displaying MPEG encoded video streams. MPEG encodingisable
toreducethe size of avideo by afactor of 10 to 100, but thiscompression ratio comes with acomputationally expensive
decompression a gorithm. Workstationshave only recently become fast enough to perform thistask in realtime. Since
MPEG decoding involves substantial computation, it is an application that demonstrates some of the advantages of
paths rel ated to resource management.

41 MPEG Router Graph

The Scout router graph for thedemonstration applicationis shownin Figure 6. Thetopmost router, DISPLAY, manages
theframebuffer. The bottom of thegraph isformed by threeroutersimplementing standard networking protocols: UDP,
IR, and ETH (a protocol providing access an Ethernet device). In the middle are the three interesting routers: MPEG,
MFLOW, and SHELL.

The MPEG router accepts messages from MFLOW, appliesthe MPEG decompression a gorithmto them, and sends
the decoded images to the DISPLAY router. There, the images are queued for display at the appropriate time. The
MPEG router uses application-level framing (ALF) [CT90] to avoid interna buffering. That is, the MPEG source sends
Ethernet MTU-sized packetsthat contain an integral number of work-units(MPEG macroblocks). Thisensuresthat the
MPEG decoder does not have to maintain complex state across packet boundariesand obviatesthe need for undesirable
gueueing between MPEG and MFLOW.

Figure 6: Router graph for MPEG example.

The MFLOW router implements asimple flow-control protocol. MFLOW adverti sesthe maximum sequence num-
ber that it is willing to receive based on the sequence humber of the last processed packet and the input queue size.
MFLOW uses sequence numbers to ensure ordered, but not reliable, delivery of packets to MPEG.

The SHELL router is used to create paths. It waits for commands to arrive on itsinput service. Since SHELL is
configured above UDP in this particular router graph, this means that such commands originate from the network, as
opposed to a keyboard. In response to an npeg_decode command, the SHELL router invokes pathCreate on the
DISPLAY router with the following set of attributes:

PA_PATHNAME: The pathname attributeis used to force routing decisions. For example, DISPLAY may have other
routers connected toit. By appropriately setting thisattribute, the SHEL L router tells DISPLAY to forward path
cregtion to the MPEG router.

PA_NET_PARTICIPANTS: The SHELL router sets this attribute to the network address of the peer that requested
the path creation. This attribute is used by networking protocols. For example, IP uses it to select the proper
network interface.

PA_PROTID: Thisattributeisused between routersto communicate their unique numbers. These numbers are used
in demultiplexing protocolssuch as UDP, I P, or ETH. Thisillustratesthat the attribute set is not necessarily static
during path creation: routers may add, modify, or delete attributesto the set as they see fit.

In other words, these are the attributes (invariants) that create MPEG video paths.

Figure 6 shows two video paths (from ETH to DISPLAY) and a control path for receiving commands (from ETH
to SHELL). Notice that the video paths take their input from, and deposit their output into, a queue. These queues are
serviced by interrupt handlers. In ETH, the queueisfilledin responseto areceiveinterrupt, and in DISPLAY, the queue
isdrained inresponseto the vertical synchronizationimpul seof thevideo display. Output to thedisplay is synchronized
to thisimpul se because thereis no point in updating the display at a higher frequency.

There are three pointsworth emphasi zing about thisexample. First, there are no queues other than theonesin ETH
and DISPLAY. As mentioned above, thisis dueto the MPEG router’suse of ALF. Second, ALF—aong with explicit
paths—enable integrated layer processing. 1n our example, the (optional) UDP checksum is easily integrated with the
reading of the bit-stream. Thisissimplified by the fact that the MPEG bit-streamisread in 32-bit units. Third, without
gueuing in the middle of the path, scheduling is simplified—if the output queue is full aready, thereislittle pointin
scheduling athread to process apacket in theinput queue. Thisimplicationwould not holdin the presence of additional
queues.

Table 1 gives measurements that indicate the performance a Scout MPEG kernel can achieve. The table liststhe
maximum decoding rate in frames per seconds for a selection of four video clips. To put these numbersin perspective,
the table a so gives the corresponding numbers for Linux. The numbers are comparable in the sense that both systems

run on the same machine (a300M Hz 21064 Alpha), use essentially the same MPEG code, and receive the compressed
video over the network.

#of | normal | maximum rate
Video frames | rate | Scout | Linux description
Flower 150 | 29.97 | 44.7 | 37.1 | Drivedong flower garden.
Neptune 1345 | 30.00 | 505 | 41.8 | Turtledivingin sea
RedsNightmare 1210 | 25.00 | 67.1 | 55.5 | Computer animation.
Canyon 1758 | 30.00 | 245.9 | 183.3 | Hight through canyon.

Table 1: Coarse-Grain Comparison of Scout and Linux

Whilethe playing field was as level as we could make it, it must be understood that thisis an apples and oranges
comparison, since the two systems have a very different scope, level of functionality, and maturity. Still, the compar-
ison isuseful for two reasons. Firgt, it establishes that Scout achieves realistic performance that is consistent with the
machine on which it runs. Second, it illustratesthat if the god is to build a network appliance that displays MPEG
encoded video, and nothing else, then a configurable system like Scout is the better choice. A simple application like
this one resultsin a Scout kernel that is both small (roughly 7 times smaller than the Linux kernel) and fast (20-30%
faster than Linux for the benchmark videos). The difference in performanceisall the more impressive considering that
MPEG isacompute-intensive application. What remainsto be seen iswhether Scout can be pushed up the complexity
curve al the way to afull-featured system that provides functionality equivalent to aPOSIX system.

4.2 Queues

As Figure 6 shows, two queues exist at the ends of the MPEG path. These queues are in the ETH router (the input
gueue) and in DISPLAY (the output queue).

The input queue is required for two reasons: (1) for high-latency networksit may be necessary to have multiple
network packets in transit, and (2) because of network jitter, these multiple packets may all arrive clustered together.
Sincethe peak arrival rate at the Ethernet is much higher than the MPEG processing rate, the queue is needed to absorb
such peaks.

Whereas theinput queue absorbs burststhat arelimitedin size, thejob of the output queueisto absorbjitter at amore
global level—decompression itself introduces significant jitter. Depending on the spatia and tempora complexity of a
video scene, the encoded size of any particul ar video frame may be orders of magnitudes different from the size of the
average framein that stream. The network may also suffer from large-scalejitter, e.g., dueto temporary congestion of
anetwork link. Finaly, the sender of the MPEG stream itself islikely to add jitter since the video may, for example,
beread from aadisk drive. Just how big should these queues be? Obvioudy, they should be “just big enough,” but is
it possible to put some quantitativelimitson their sizes?

First, consider the input queue. Clearly, if processing a single packet takes more time than the time it takes to re-
guest a new packet from the source, then an input queue that can hold two packets is sufficient. One queue slot will
be occupied when the last received packet is being processed; the second, free, slot can be advertised to the source.
By the time processing of the last packet has finished, the new packet will have arrived aready. In other words, if the
amount of processing time needed for a packet after sending awindow updateis bigger than the round-trip time of the
network, then a queue of size two is sufficient. The same logic appliesif the round-triptimeis large. However, since
in that case the work per packet istoo small to cover one network round-trip, “super-packets’ consisting of n physical
packets need to be used. The vaue of n is chosen such that n times the average processing time per packet is greater
than the average round-trip latency of the network. The input queue then needs to be able hold two super-packets, or
2n physical packets. That is, given the average round-trip latency of the network and the average rate at which packets
are consumed, it is easy to calculate an upper bound for the useful size of thisqueue.

MFLOW could measure the round-trip latency by putting atimestamp in its header. The important point from the
perspective of this paper, however, is that accurate measurement of the peak processing rate is enabled by paths—it

10

is a simple matter of specifying the appropriate transformation rule to ensure that the average time spent processing
each packet is measured. For MPEG, this means that theinitial function in the ETH-stage of the router is modified to
measure processing time and to update the path attribute that keeps track of the average processing time.

Inthe case of the output queue, the factorsinfluencing queue size are more varied and complex. A completeanaysis
is beyond the scope of this paper. In general, bounding the size of this queue requires cooperation with admission
control and would typically employ anetwork reservation system, such asRSVP[BCS94]. The current implementation
leaves this parameter under user control to facilitate experimentation.

4.3 Scheduling

Since each video path has its own input queue and since the packet classifier is run at interrupt time, newly arriving
packets are immediately placed in the correct queue. This means that there is no danger of priority inversion due to
low-priority packets appearing ahead of high-priority packets. Thisis one of the most significant advantages of path,
but as the following discussion illustrates, paths play an even more intimate role in scheduling.

Asexplainedin Section 3, apath can register awakeup callback that can be used to adjust athread’ s scheduling pol -
icy and priority according to itsown needs. The MPEG path uses thisfacility to ensure that any thread that isready for
execution in the path will be schedul ed with the proper realtime constraints. |n combination, separate input queues and
proper scheduling guarantee that the MPEG Scout kernel has no difficulty in delivering and processing realtime MPEG
packets even under severe background loads. For example, an arbitrary number of low-priority MPEG streams (or some
other non-realtime background work) can be displayed without affecting real time streams running in the foreground. It
iseven possibleto run realtimevideo streams whil eflooding the network adapter with minimum sized Ethernet packets.

The default Scout scheduler is afixed-priority, round-robin scheduler. Since video is periodic, it seems reasonable
to use rate-monotonic (RM) scheduling for MPEG paths. With RM scheduling, a (periodic) realtime thread receives a
priority level that is proportiona to the rate at which it executes. That is, the frame-rate at which avideo is displayed
would control the priority of the corresponding path. However, there are several reasons that make earliest-deadline-
first (EDF) scheduling more attractive than RM scheduling. These include:

e The frame-rate must be under user control to support features such as slow-motion play or fast forward. This
impliesthat alarge number of priority-levelswould be necessary. Otherwise, two MPEG pathsthat have similar,
but not identical, frame-rates could not be di stinguished scheduling-wise. 1f the number of priority levelsislarge,
EDF schedulingisjust as efficient as RM scheduling.

¢ MPEG decoding is periodic, but not perfectly so. Consider playingamovie at 31Hz on amachine with adisplay
update frequency of 30Hz. Given that only 30 images can be displayed every second, it will be necessary to drop
one image during each one second interval. When the drop occurs, thereis no need to schedule that path, so a
fixed priority would be suboptimal.

¢ Whilenot aquantitativeargument, probably the strongest case for EDF schedulingisthat it isthe natural choice
for a soft reatime thread that moves data from an input queue to an output queue. For example, if the output
gueuedrainsat 30 frames/second and the queueishalf full, it istrivia to compute the deadline by which the next
frame has to be produced.

For these reasons, the Scout MPEG decoder uses EDF scheduling for realtime MPEG paths. EDF scheduling
achieves significant benefits. For example, it alows Scout to display 8 Canyon movies at arate of 10 frames per sec-
ond, together with a Neptunemovie playing at 30 frames per second, all without missing asingledeadline. In contrast,
the same load with single-priority round-robin scheduling leads to a massive number of missed deadlinesif the output
gueuesfor the Canyon movies are large. For example, with aqueue size of 128 frames, on the order of 850 out of 1345
deadlines are missed by the path displaying the Neptune movie.

One question that remainsis how the deadlineis computed. Here again, paths play acentral role. If path execution
isthe bottleneck, then the output queue should be kept asfull as possible. Inthiscase, itisbest to set the deadlineto the
display time of the next frame to be put in the output queue. In contrast, if network latency is the bottleneck, then the
deadline should be based on the state of the input queue. Since at any given time n packets should be in the network

1

pipe, the deadlineisthetime at which theinput queue will have filled up so that less then n dotsremain free. Thiscan
be estimated based on the current length of the queue and the average packet arrival rate.

Since the path object provides direct access to either queue, the effective deadline can simply be computed as the
minimum of the deadlines associated with each queue. Alternatively, the path can use the path execution time and
network round-trip time to decide which queue is the bottleneck queue, and then schedule according to the bottleneck
gueue only. The latter approach isadightly more efficient but requires a clear separation between path execution time
and network round-trip time. The implemented MPEG decoder is currently optimized for the case where the output
gueue isthe bottleneck, so scheduling is always driven off of that queue.

4.4 Admission Control and Resource Accounting

Finally, paths enable admission control. As al memory allocation requests are performed on behaf of a given path,
it isa simple matter of accounting to decide whether a newly created path is admissible or not. Before starting path
creation, the admission policy decides how much memory can be granted to a new path. Aslong as each router in the
path lives within that constraint, the path creation process isallowed to continue. (Note that admission control has not
yet been implemented in Scout.)

Pathsare a so useful in deciding admissibility withrespect to CPU load. Again, itisthefact that it iseasy tocompute
the execution time spent per path that is hel pful—our experiments show that there is a good correlation between the
average size of aframe (in bits) and the average amount of CPU time it takes to decode aframe. Naturally, the model
that trandates average frame size into CPU processing time is parameterized by the speed of the CPU, the memory
system, and the graphics card. Rather than determining these parameters manually, it is much easier to measure path
execution timein the running system and use those measurements to derive the required parameters. That is, the path
execution timings are used to derive the model parameters, which in turn, are used for admission control.

Finally, if admission control determinesthat avideo cannot be displayed at thefull rate, auser may choose to view
the video with reduced quality. For example, the user may request that only every third image be displayed. Thanks
to ALF and paths, it is possible to drop packets of skipped frames as soon as they arrive at the network adapter. This
avoids wasting CPU cycles at atime when they are at a premium.

5 Concluding Remarks

This paper makestwo contributions. First, it givesaconcrete example of how paths can be made an explicit OS abstrac-
tion. Specifically, we described how pathsareimplemented in Scout, aconfigurable OS kernel that can be specialized to
support particular 1/O-intensive applications. Second, it makes a case for why paths should be made explicit. This case
includes: (1) pointersto related work that presume the existence of paths, (2) theintuitivearguments madein Section 2,
and most importantly, (3) specific examples of how paths proved beneficia in one particular application—receiving,
decoding, and displaying MPEG-compressed video. On thisthird point, we showed how paths are used to:

o segregate work early, so asto avoid priority inversion;

schedule the entire processing along a path according to the bottleneck queue, and to automatically determine
the bottleneck queue in the system;

e provide accountability to decide the admissibility of a memory allocation request; and

o discard unnecessary work early to minimize the waste of resources.

What remains to be doneis to demonstrate Scout—and the utility of paths—on awider set of domains. For example,
work on a Scout-based Java-box and scal able storage server are under way.

Acknowledgments

Wewouldliketo thank the other members of the Scout group, particularly, John Hartman, Brady Montz, David Larson,
and Rob Piltz.

12

References

[AP93]

[BCS94]

[BGP*+94]

[CT90]

[DPY3]

[FLO4]

[GYT96]

[HFC76]

[HK93]

[HPY1]

[HP94]

[LL73]

[MJ93]

[MMO*94]

[MPBO96]

[Ous96]

[PAB+95]

Mark B. Abbott and Larry L. Peterson. Increasing network throughput by integrating protocol layers.
|EEE/ACM Transactions on Networking, 1(5), October 1993.

Robert Braden, David Clark, and Scott Shenker. RFC-1633: Internet architecture: An overview. Avail-
able viaftp from ftp.nisc.sri.com, July 1994.

Mary L. Bailey, BurraGopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit Sarkar. PathFinder: A
pattern-based packet classifier. In Proceedings of the First Symposiumon Operating Systems Design and
I mplementation, pages 115-123, 1994.

David Clark and David Tennenhouse. Architectural considerationsfor a new generation of protocols. In
Proceedings of SGCOMM ’ 90 Symposium, September 1990.

Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility. In Pro-
ceedings of the Fourteenth ACM Symposium on Operating System Principles, December 1993.

Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to amigrating thread model. In Proc. of the Winter 1994
USENIX Conference, pages 97114, January 1994.

James Godling, Frank Yellin, and The Java Team. The Java Application Programming I nterface. Addison-
Wesley, Reading, MA, 1996.

A.N. Habermann, Lawrence Flon, and Lee Cooprider. Modul arization and hierarchy in afamily of oper-
ating systems. Communications of the ACM, 19(5):266-272, May 1976.

Graham Hamilton and Panos Kougiouris. The Spring nucleus: a microkernel for objects. In Proc. of the
Summer 1993 USENIX Conference, pages 147-159, Cincinnati, OH, June 1993.

Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architecture for implementing network
protocols. | EEE Transactions on Software Engineering, 17(1):64—76, January 1991.

John S. Heidemann and Gerald J. Popek. File-system development with stackable layers. ACM Transac-
tions on Computer Systems, 12(1):58-89, February 1994.

Liuand Layland. Scheduling al gorithmsfor multi programmingin a hard-real -time environment. Journal
of the ACM, 1973.

Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture for user-level packet
capture. 1n 1993 Winter USENIX Conference, San Diego, CA, January 1993. USENIX.

A.B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A. Proebsting, and J. H. Hartman. Scout:
A communications-oriented operating system. Technical Report 94/20, University of Arizona, Tucson,
AZ 85721, June 1994.

David Mosberger, Larry Peterson, Patrick Bridges, and Sean O’ Malley. Analysisof techniquestoimprove
protocol latency. In Proceedings of SGCOMM ’96 Symposium, September 1996.

John K. Ousterhout. Why threadsare abad idea (for most purposes). 1n 1996 Winder USENI X Conference,
1996. Invited talk.

C. Py, T. Autrey, A. Black, C. Consd, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and K. Zhang. Op-
timistic incremental speciaization: Streamlining acommercia operating system. In Proceedings of the
Fifteenth ACM Symposium on Operating System Principles, pages 314—-324. Association for Computing
Machinery SIGOPS, December 1995.

13

[PDY6]

[RBF+95]

[Rit84]

[WLAGO3]

[YBMM93]

[Zim80]

Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1996.

Robbert Van Renesse, Ken Birman, Roy Friedman, Mark Hayden, and David Karr. A framework for
protocol composition in horus. In Proc. of the Fourteenth ACM Symp. on Principles of Distributed Com-
puting, pages 80-89, August 1995.

D. M. Ritchie. A stream input-output system. AT& T Bell Laboratories Technical Journal, 63(8):311-324,
October 1984.

Robert Wahbe, Steven Lucco, Tom Anderson, and Susan Graham. Efficient software-based fault isola-
tion. In Proceedings of the Fourteenth ACM Symposi um on Oper ating System Principles, pages 203-216.
Association for Computing Machinery SIGOPS, December 1993.

Masanobu Yuhara, Brian N. Bershad, ChrisMaeda, and J. Eliot B. Moss. Efficient packet demultiplexing
for multiple endpoints and large messages. July 1993.

Hubert Zimmermann. OSl reference model—the 1SO model of architecture for open systems intercon-
nection. |EEE Transactions on Communications, COM-28(4):425-432, April 1980.

14

