Opal: A Single Address Space System
for 64-bit Architectures

Jeff Chase, Hank Levy, Miche Baker-Harvey, Ed Lazowska

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

Abstract

The recent appearance of architectures with flat 64-bit virtual addressing opens an opportunity to
reconsider the way our operating systems use virtual address spaces. We are building an operating system
called Opal for these wide-address architectures. The key feature of Opal is a single global virtual address
space that extends to data on long-term storage and across the network. In this paper we outline the
case for the use of a single virtual address space, present the model of addressing and protection used in
Opal, and discuss some of the problems and opportunities raised by our approach.

1 Introduction

The Opal project is an investigation into the effect of wide-address architectures on the structure of operating
systems and applications. Our premise is that the next generation of workstations and servers will use
processors with 64-bit data paths, and sparse, flat, 64-bit virtual addressing. The MIPS R4000 [MIP 91] and
Digital’s Alpha family [Dobberpuhl et al. 92] are recent examples of the trend to wider addresses. Our goal
1s to determine how software can best exploit the large virtual address spaces of these emerging architectures.

We view the move to 64-bit addressing as a qualitative shift that is far more significant than the move to
32-bit architectures in the 1970s. 64-bit architectures remove basic addressing limitations that have driven
operating system design for three decades: consider that a full 64-bit address space consumed at the rate
of 100 megabytes per second will last for 5000 years. On 32-bit architectures virtual addresses are a scarce
resource that must be multiply allocated in order to supply executing programs with sufficient name space.
Small address spaces are the reason for the traditional model of virtual storage that dominates today’s
operating systems, in which each program executes in a private virtual address space.

We are building a 64-bit operating system called Opal with a single virtual address space that maps all
primary and secondary storage across a network [Chase et al. 92a, Chase et al. 92b]. This simply means
that virtual address usage is coordinated so that any piece of shared data is named with a unique address by
all programs that access it. Protection is independent of this global name space: an executing program can
address any piece of data in the system, but programs execute within protection domains that restrict their
access to memory. An Opal protection domain is in many ways the analog of a Unix process. For example,
there is typically one domain per executing application, containing some private data, threads, and RPC
connections to other domains. The difference is that an Opal domain is a private set of access privileges
for globally addressable pages rather than a private virtual naming environment. Opal domains can grow,
shrink, or overlap arbitrarily, by sharing or transferring page permissions.

No special hardware support for Opal is assumed or required. We believe that Opal could run efficiently on
DEC Alpha and MIPS R4000 processors. However, single address space operating systems can benefit from
hardware that is optimized for the way they use virtual memory [Koldinger et al. 92].

This work was supported in part by the National Science Foundation under Grants No. CCR-8619663, CCR-8907666, and
MIP-9058-439; by the Washington Technology Center; and by Digital Equipment Corporation through the Systems Research
Center, DECwest Engineering, the External Research Program, and the Graduate Engineering Education Program.



2 Why a Global Address Space?

A common virtual address space can eliminate obstacles to sharing and cooperation that are inherent in the
traditional (e.g., Unix) model of processes excecuting in private virtual address spaces and communicating
through messages or byte-stream files. The basic problem with these systems is that a stored virtual address
(pointer) has no meaning beyond the boundaries of the process that stored it; information containing pointers
is not easily shared because pointers may be interpreted differently by each process that uses the data.

A single address space system separates naming and protection so that virtual addresses have a globally
unique interpretation. This simplifies sharing in two ways. First, addresses can be passed between domains
in messages or shared data; any byte of data can be named with the same virtual address by any protection
domain that has permission to access it. Second, a domain can import data containing embedded virtual
addresses without risk of a name conflict with other data already in use by that domain. Uniform virtual
addressing in single address space systems has some effects that are obvious and some that are more subtle.
Here are the fundamental claimed benefits:

o Shared memory is easier to use. Linked data structures are meaningful in shared regions. Creative
use of shared memory can reduce the need for explicit communication between programs executing
in separate protection domains. This is important because the communication mechanisms popular
today (e.g., RPC) are based on data copying and protection domain switches, which have increased in
cost relative to integer performance on recent processors [Ousterhout 90, Anderson et al. 91].

e Hardware-based memory protection is cheaper and more flexible. Protection domains can be created
more efficiently if the system 1s freed from setting up a new address space for each domain. Also,
protection can be used when it is needed without introducing nonuniform naming of shared code or
data; this allows complex programs to be decomposed into multiple domains that share some of their
data structures. In Opal, it is possible to create a domain to execute any procedure call, passing it
arbitrary data structures as its input and receiving arbitrary structures as its output.

e Persistent storage can be integrated into the global virtual address space. A single-level store allows
programs to store data structures on disk without the expense and complexity of converting pointers
to a separate format. Many systems today support mapped files, but pointers are preserved only if
addresses assigned to the file are unused in every domain that references the file. Only a single address
space system can guarantee this property in a fully general way.

The argument for shared memory may not sound convincing at first. Conventional wisdom says that “shared
memory compromises isolation”, but we claim that some uses of shared memory are inherently no less
safe than more expensive mechanisms for cooperation. Untrusting domains can limit their interactions by
restricting the scope of the shared region and the way that it is used. Memory can be shared sequentially by
transferring access permissions, so that untrusting programs can verify data before using it. Also, asymmetric
trust relationships are common and can be exploited. For example, a server domain never trusts its clients,
but each client must trust the server to some degree; servers may pass data in memory that is read-only
to clients, or even write directly into a client’s private memory. Similarly, a child domain always trusts its
parent, though the parent never fully trusts the child.

We believe that improved support for sharing and storage of data structures is useful for integrated software
environments, which are difficult to build on private address space systems. For example, CAD systems are
sometimes structured as groups of tools operating on a common data structure in various ways, e.g., editors,
design verifiers, simulators, and so on.



3 The Opal System

In this section we present the Opal model of virtual storage and describe some of its benefits. We focus on
Opal’s use of protection and the handling of shared code and data, avoiding other aspects of the system, such
as execution structures, storage management, and cross-domain control transfers (RPC). The basic model
is threads executing within protection domains and making synchronous RPC calls to other domains. All
threads executing within a domain have the same protection identity. Any thread can create a new protection
domain, attach code and data to it, and start threads in it. Threads and synchronization primitives are
implemented in a standard runtime library; the user-level approach is well-suited to handling synchronization
in shared and persistent data structures.

Opal 1s designed for a distributed environment composed of one or more nodes connected by a network. Each
node contains physical memory, one or more processors attached to that memory, and possibly some long-
term storage (“disk”). We assume the processors are homogeneous. The global address space is extended
across the network by placing servers on each node that maintain a partitioning of the address space, both to
ensure global uniqueness and to allow data to be located from its virtual address. The problems are similar
to those faced by other systems for distributed name management.

3.1 Virtual Segments and Addressing

To simplify access control and virtual address assignment, the global address space is partitioned into virtual
segments, each composed of a variable number of contiguous virtual pages that contain related data. Each
segment occupies a fixed range of virtual addresses, assigned when the segment is created, and disjoint from
the address ranges occupied by all other segments.

Before a protection domain can complete a memory reference to a segment it must establish access to the
segment with an explicit attach operation. Domains attached to a given segment always share a physical
copy of its data if they are on the same node. All memory references use a fully qualified flat virtual address,
so any domain with sufficient privilege can operate on linked data structures in any segment, without name
conflicts or pointer translation. Pointer structures can also span segments, so different access controls can
be placed on different parts of a connected data structure.

A domain must have special permission to attach a segment. Segments are named by capabilities (based
on capabilities in the Amoeba system [Mullender & Tanenbaum 86]) that can be passed between protection
domains through shared or persistent memory. A segment capability confers permission to its holder to attach
the segment and address its contents directly with load and/or store instructions. A memory reference to
an unattached segment 1s reflected back to the domain as a segment fault to be handled by a standard
runtime package. Some segments can be attached dynamically in response to segment faults; this is useful
if the application is navigating a pointer graph spanning multiple segments. Segments are attached eagerly
when the application can anticipate what storage resources it needs. In this case segment faults are used to
trap and report stray memory references.

3.2 Persistent Memory

A persistent segment continues to exist even when it is not attached to any domain. A recoverable segment is
a persistent segment that is backed on nonvolatile storage and can survive system restarts. All Opal segments
are potentially persistent and recoverable. Persistent virtual memory can be viewed as a replacement for a
traditional filesystem; recoverable segments share many of the characteristics of mapped files. The policies
for managing persistence and recovery vary according to segment type, and are beyond the scope of this
paper (our prototype mechanisms are quite primitive).



Since persistent segments are assigned virtual address ranges in the same way as other segments, Opal
supports a true single-level store with uniform addressing of data in long-term storage. Access to persistent
data is transparent, though explicit operations may be used to commit or flush modified data in segments
with strong failure recovery semantics. A domain can name a segment by the address of any piece of data
that lies within it, even if the segment is not yet attached. In essence, this allows pointers between files; a
file can be mapped without specifying a symbolic name, simply by dereferencing a pointer. A symbolic name
space for data exists above the shared virtual address space, in the form of a name server that associates
symbolic names with segment capabilities or arbitrary pointers.

3.3 Code Modules

Executable code resides in persistent segments called modules that contain a group of related procedures.
A module is pure if 1t makes no static assumptions about the load address of any data that it operates on.
Linking utilities make modules pure by expressing all private static data references as offsets from a base
register. Pure modules are statically linked into the global address space at their assigned address. There
are two distinct benefits from global linking of code modules.

First, domains can dynamically load (attach) modules without risk of name conflicts in the code references,
and without the overhead of linking at runtime. There i1s no need to know at domain creation time what code
will run in the domain; any domain can call any procedure it has access to simply by knowing its address,
even if the code was compiled after the domain was activated. For example, a domain can call through
procedure pointers passed to it in shared data. Dynamic loading also allows a parent to choose whether or
not to create a new protection domain for a child; it is no longer necessary to create new protection domains
for trusted programs simply because they are statically linked to assume a private name space.

The second benefit of global linking is that pure modules can be freely shared between domains. Compa-
rable support for shared libraries in private address space systems requires dynamic linking and/or indirect
addressing through linkage tables.

3.4 Reclamation

With an addressing model that permits and encourages sharing, the system must cope with the difficulty
of managing that sharing. For example, it is not always clear when data can be deleted in a single address
space system.

We believe that existing approaches to reclamation are applicable. Opal does not track references, it merely
provides hooks to allow servers and runtime packages that manage shared segments to plug in their own
reclamation policies. Our prototype places active and passive reference counts on each segment and provides
a means for clients to manipulate those reference counts in a protected way. It is the client’s responsibility
(the runtime package and/or the language implementation) to use reference counts appropriately. If the
clients do nothing then the resulting policy is exactly that of most process-based systems: a segment is
deleted iff it is unattached and there are no symbolic names for it in the name server. Of course, clients may
misuse the counts to prevent storage from ever being reclaimed. This is an accounting problem.

This approach reflects our view that reclamation should continue to be based on language-level knowledge
of pointer structures, application-level knowledge of usage patterns, and deletion of data by explicit user
command. The system only promises that domains cannot harm each other with reclamation errors unless
they are mutually trusting. This does not mean that we are punting the issue of reclamation: we cling to
the belief that support for simple but useful sharing patterns can be built relatively easily.



4 Why a Single Mapping?

One alternative to a global virtual address space is to reserve some regions of private address spaces for
mapping shared data. For example, virtual addresses can be saved directly in a mapped file if the processes
that use the file agree to always map it at the same address. Dynamic sharing patterns can be supported if
the system (rather than the applications) coordinates address bindings.

This solution buys some of the benefits of a single address space without sacrificing private address spaces.
In fact, our original proposal for global addressing on 64-bit architectures suggested such a hybrid ap-
proach [Chase & Levy 91]. We have now abandoned the hybrid approach for two reasons: (1) the mix
of shared and private regions introduces dangerous ambiguity, and (2) the virtual memory hardware and
software must continue to support multiple sets of address translations.

The pure single address space approach forces us to confront the the effects of eliminating private address
spaces altogether. Here are some of the interesting issues: (1) handling full global allocation of address space,
(2) linking in a shared address space, e.g., how to handle private static data references in shared code, (3)
implications of discarding the Unix fork primitive, which assumes private address spaces, and (4) effect on
existing programs of losing the contiguous address space abstraction.

5 Related Work

Cedar [Swinehart et al. 86] and its predecessor Pilot [Redell et al. 80] used a single virtual address space
on hardware that supported only one protection domain. These systems had no hardware-based memory
protection; both relied solely on defensive protection from the name scoping and type rules of a programming
language. Our proposal generalizes this model to multiple protection domains.

The term “uniform addressing” was introduced in Psyche [Scott et al. 90], which also has a single virtual
address space shared by multiple protection domains. Psyche uses cooperating protection domains primarily
as a means of separating different components of a single parallel application with different models of par-
allelism and different scheduling needs. We are interested in more general sharing relationships, leading to
some differences in our system abstractions. More importantly, we extend uniform addressing to encompass
data on long-term storage and across multiple autonomous nodes in a network. However, most of the benefits
claimed for context-independent addressing in Opal apply equally to non-persistent storage in Psyche.

Segmented systems (e.g., Multics [Daley & Dennis 68]) support uniform sharing to some degree. The first
phase of address translation on segmented architectures concatenates a global segment identifier with a
segment offset, yielding a long-form address from a global virtual address space. The segment identifier is
retrieved from one of a vector of segment registers associated with the current domain. Domains define a
local view of portions of the global address space by overlaying global segments into their private segment
registers. Uniform addressing in these systems is subject to some or all of the following restrictions: (1) cross-
segment pointers are not supported, (2) multiple pointer forms must be treated differently by applications,
and (3) software must coordinate segment register usage to create an illusion of a single address space. The
Hewlett-Packard Precision [Lee 89] differs from other segmented architectures in that it allows applications
to specify long-form virtual addresses directly. However, long-form pointer dereference is expensive, so most
software uses segmented addressing.

Most capability-based architectures [Organick 83, Levy 84] support uniform sharing of data structures. How-
ever, it is now possible to achieve these benefits using conventional page-based hardware; without the prob-
lems common to capability-based systems: (1) restrictive object-oriented data model, (2) noncompetitive
performance, and (3) lack of support for distribution.



6 Status

We are currently prototyping Opal above an unmodified Mach 3.0 kernel on 32-bit MIPS R3000 machines.
Our prototype consists of (1) standard runtime libraries (e.g., for threads, segment fault handler, etc.), (2) a
Mach server that implements the Opal “kernel” abstractions, and (3) a ragged crew of linking and bootstrap
utilities. Opal protection domains and segments are mapped by the server onto the Mach task and memory
object abstractions. We will use the prototype environment to explore ways that the shared address space
can improve the structure and performance of applications and the operating system. Our long term goal is
to implement a single address space kernel to explore the effect of a single address space on operating system
kernel mechanisms.

References

[Anderson et al. 91] Anderson, T. E., Levy, H. M., Bershad, B. N., and Lazowska, E. D. The interaction of architecture
and operating system design. In Proceedings of the Fourth Conference on Architectural Support for Programmaing
Languages and Operating Systems, pages 108-121, April 1991.

[Chase & Levy 91] Chase, J. S. and Levy, H. M. Supporting cooperation on wide-address computers. Department of Computer
Science and Engineering Technical Report 91-03-10, University of Washington, March 1991.

[Chase et al. 92a] Chase, J. S., Levy, H. M., Baker-Harvey, M., and Lazowska, E. D. How to use a 64-bit virtual address space.
Technical Report 92-03-02, University of Washington, Department of Computer Science and Engineering, February
1992.

[Chase et al. 92b] Chase, J. S., Levy, H. M., Baker-Harvey, M., and Lazowska, E. D. Lightweight shared objects in a 64-bit
operating system. Technical Report 92-03-09, University of Washington, Department of Computer Science and
Engineering, March 1992.

[Daley & Dennis 68] Daley, R. C. and Dennis, J. B. Virtual memory, processes, and sharing in MULTICS. Communications
of the ACM, 11(5):306-312, May 1968.

[Dobberpuhl et al. 92] Dobberpuhl, D., Witek, R., Allmon, R., Anglin, R., Bertucci, D., Britton, S., Chao, L., Conrad, R.,
Dever, D., Gieseke, B., Hassoun, S., Hoeppner, G., Kowaleski, J., Kuchler, K., Ladd, M., Leary, M., Madden, L.,
McLellan, E., Meyer, D., Montanaro, J., Priore, D., Rajagopalan, V., Samudrala, S., and Santhanam, S. A 200mhz
64 bit dual issue CMOS microprocessor. In International Solid-State Circuits Conference 1992, February 1992.

[Koldinger et al. 92] Koldinger, E. J., Chase, J. S., and Eggers, S. J. Architectural support for single address space operating
systems. Technical Report 92-03-10, University of Washington, Department of Computer Science and Engineering,
March 1992.

Lee 89] Lee, R. B. Precision architecture. IEEFE Computer, pages 7891, January 1989.

Levy 84] Levy, H. M. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts, 1984.

MIP 91] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R4000 Microprocessor User’s Manual, first edition, 1991.

[

[

[

[Mullender & Tanenbaum 86] Mullender, S. and Tanenbaum, A. The design of a capability-based operating system. The
Computer Journal, 29(4):289-299, 1986.

[Organick 83] Organick, E. I. A Programmer’s View of the Intel 432 System. McGraw-Hill, 1983.

[Ousterhout 90] Ousterhout, J. K. Why aren’t operating systems getting faster as fast as hardware? In Proceedings of the
Summer 1990 USENIX Conference, pages 247-256, June 1990.

[Redell et al. 80] Redell, D., Dalal, Y., Horsley, T., Lauer, H., Lynch, W., McJones, P., Murray, H., and Purcell, S. Pilot: An
operating system for a personal computer. Communications of the ACM, 23(2):81-92, February 1980.

[Scott et al. 90] Scott, M. L., LeBlanc, T. J., and Marsh, B. D. Multi-model parallel programming in Psyche. In Proceedings of

the Second ACM SIGPLAN Sympostum on Principles and Practice of Parallel Programming, pages 70-78, March
1990.

[Swinehart et al. 86] Swinehart, D., Zellweger, P., Beach, R., and Hagmann, R. A structural view of the Cedar programming
environment. ACM Transactions on Programming Languages and Systems, 4(8), October 1986.



