
Opal: A Single Address Space Systemfor 64-bit ArchitecturesJe� Chase, Hank Levy, Miche Baker-Harvey, Ed LazowskaDepartment of Computer Science and EngineeringUniversity of WashingtonSeattle, WA 98195AbstractThe recent appearance of architectures with 
at 64-bit virtual addressing opens an opportunity toreconsider the way our operating systems use virtual address spaces. We are building an operating systemcalled Opal for these wide-address architectures. The key feature of Opal is a single global virtual addressspace that extends to data on long-term storage and across the network. In this paper we outline thecase for the use of a single virtual address space, present the model of addressing and protection used inOpal, and discuss some of the problems and opportunities raised by our approach.1 IntroductionThe Opal project is an investigation into the e�ect of wide-address architectures on the structure of operatingsystems and applications. Our premise is that the next generation of workstations and servers will useprocessors with 64-bit data paths, and sparse, 
at, 64-bit virtual addressing. The MIPS R4000 [MIP 91] andDigital's Alpha family [Dobberpuhl et al. 92] are recent examples of the trend to wider addresses. Our goalis to determine how software can best exploit the large virtual address spaces of these emerging architectures.We view the move to 64-bit addressing as a qualitative shift that is far more signi�cant than the move to32-bit architectures in the 1970s. 64-bit architectures remove basic addressing limitations that have drivenoperating system design for three decades: consider that a full 64-bit address space consumed at the rateof 100 megabytes per second will last for 5000 years. On 32-bit architectures virtual addresses are a scarceresource that must be multiply allocated in order to supply executing programs with su�cient name space.Small address spaces are the reason for the traditional model of virtual storage that dominates today'soperating systems, in which each program executes in a private virtual address space.We are building a 64-bit operating system called Opal with a single virtual address space that maps allprimary and secondary storage across a network [Chase et al. 92a, Chase et al. 92b]. This simply meansthat virtual address usage is coordinated so that any piece of shared data is named with a unique address byall programs that access it. Protection is independent of this global name space: an executing program canaddress any piece of data in the system, but programs execute within protection domains that restrict theiraccess to memory. An Opal protection domain is in many ways the analog of a Unix process. For example,there is typically one domain per executing application, containing some private data, threads, and RPCconnections to other domains. The di�erence is that an Opal domain is a private set of access privilegesfor globally addressable pages rather than a private virtual naming environment. Opal domains can grow,shrink, or overlap arbitrarily, by sharing or transferring page permissions.No special hardware support for Opal is assumed or required. We believe that Opal could run e�ciently onDEC Alpha and MIPS R4000 processors. However, single address space operating systems can bene�t fromhardware that is optimized for the way they use virtual memory [Koldinger et al. 92].This work was supported in part by the National Science Foundation under Grants No. CCR-8619663, CCR-8907666, andMIP-9058-439; by the Washington Technology Center; and by Digital Equipment Corporation through the Systems ResearchCenter, DECwest Engineering, the External Research Program, and the Graduate Engineering Education Program.



2 Why a Global Address Space?A common virtual address space can eliminate obstacles to sharing and cooperation that are inherent in thetraditional (e.g., Unix) model of processes excecuting in private virtual address spaces and communicatingthrough messages or byte-stream �les. The basic problem with these systems is that a stored virtual address(pointer) has no meaning beyond the boundaries of the process that stored it; information containing pointersis not easily shared because pointers may be interpreted di�erently by each process that uses the data.A single address space system separates naming and protection so that virtual addresses have a globallyunique interpretation. This simpli�es sharing in two ways. First, addresses can be passed between domainsin messages or shared data; any byte of data can be named with the same virtual address by any protectiondomain that has permission to access it. Second, a domain can import data containing embedded virtualaddresses without risk of a name con
ict with other data already in use by that domain. Uniform virtualaddressing in single address space systems has some e�ects that are obvious and some that are more subtle.Here are the fundamental claimed bene�ts:� Shared memory is easier to use. Linked data structures are meaningful in shared regions. Creativeuse of shared memory can reduce the need for explicit communication between programs executingin separate protection domains. This is important because the communication mechanisms populartoday (e.g., RPC) are based on data copying and protection domain switches, which have increased incost relative to integer performance on recent processors [Ousterhout 90, Anderson et al. 91].� Hardware-based memory protection is cheaper and more 
exible. Protection domains can be createdmore e�ciently if the system is freed from setting up a new address space for each domain. Also,protection can be used when it is needed without introducing nonuniform naming of shared code ordata; this allows complex programs to be decomposed into multiple domains that share some of theirdata structures. In Opal, it is possible to create a domain to execute any procedure call, passing itarbitrary data structures as its input and receiving arbitrary structures as its output.� Persistent storage can be integrated into the global virtual address space. A single-level store allowsprograms to store data structures on disk without the expense and complexity of converting pointersto a separate format. Many systems today support mapped �les, but pointers are preserved only ifaddresses assigned to the �le are unused in every domain that references the �le. Only a single addressspace system can guarantee this property in a fully general way.The argument for shared memory may not sound convincing at �rst. Conventional wisdom says that \sharedmemory compromises isolation", but we claim that some uses of shared memory are inherently no lesssafe than more expensive mechanisms for cooperation. Untrusting domains can limit their interactions byrestricting the scope of the shared region and the way that it is used. Memory can be shared sequentially bytransferring access permissions, so that untrusting programs can verify data before using it. Also, asymmetrictrust relationships are common and can be exploited. For example, a server domain never trusts its clients,but each client must trust the server to some degree; servers may pass data in memory that is read-onlyto clients, or even write directly into a client's private memory. Similarly, a child domain always trusts itsparent, though the parent never fully trusts the child.We believe that improved support for sharing and storage of data structures is useful for integrated softwareenvironments, which are di�cult to build on private address space systems. For example, CAD systems aresometimes structured as groups of tools operating on a common data structure in various ways, e.g., editors,design veri�ers, simulators, and so on.



3 The Opal SystemIn this section we present the Opal model of virtual storage and describe some of its bene�ts. We focus onOpal's use of protection and the handling of shared code and data, avoiding other aspects of the system, suchas execution structures, storage management, and cross-domain control transfers (RPC). The basic modelis threads executing within protection domains and making synchronous RPC calls to other domains. Allthreads executing within a domain have the same protection identity. Any thread can create a new protectiondomain, attach code and data to it, and start threads in it. Threads and synchronization primitives areimplemented in a standard runtime library; the user-level approach is well-suited to handling synchronizationin shared and persistent data structures.Opal is designed for a distributed environment composed of one or more nodes connected by a network. Eachnode contains physical memory, one or more processors attached to that memory, and possibly some long-term storage (\disk"). We assume the processors are homogeneous. The global address space is extendedacross the network by placing servers on each node that maintain a partitioning of the address space, both toensure global uniqueness and to allow data to be located from its virtual address. The problems are similarto those faced by other systems for distributed name management.3.1 Virtual Segments and AddressingTo simplify access control and virtual address assignment, the global address space is partitioned into virtualsegments, each composed of a variable number of contiguous virtual pages that contain related data. Eachsegment occupies a �xed range of virtual addresses, assigned when the segment is created, and disjoint fromthe address ranges occupied by all other segments.Before a protection domain can complete a memory reference to a segment it must establish access to thesegment with an explicit attach operation. Domains attached to a given segment always share a physicalcopy of its data if they are on the same node. All memory references use a fully quali�ed 
at virtual address,so any domain with su�cient privilege can operate on linked data structures in any segment, without namecon
icts or pointer translation. Pointer structures can also span segments, so di�erent access controls canbe placed on di�erent parts of a connected data structure.A domain must have special permission to attach a segment. Segments are named by capabilities (basedon capabilities in the Amoeba system [Mullender & Tanenbaum 86]) that can be passed between protectiondomains through shared or persistent memory. A segment capability confers permission to its holder to attachthe segment and address its contents directly with load and/or store instructions. A memory reference toan unattached segment is re
ected back to the domain as a segment fault to be handled by a standardruntime package. Some segments can be attached dynamically in response to segment faults; this is usefulif the application is navigating a pointer graph spanning multiple segments. Segments are attached eagerlywhen the application can anticipate what storage resources it needs. In this case segment faults are used totrap and report stray memory references.3.2 Persistent MemoryA persistent segment continues to exist even when it is not attached to any domain. A recoverable segment isa persistent segment that is backed on nonvolatile storage and can survive system restarts. All Opal segmentsare potentially persistent and recoverable. Persistent virtual memory can be viewed as a replacement for atraditional �lesystem; recoverable segments share many of the characteristics of mapped �les. The policiesfor managing persistence and recovery vary according to segment type, and are beyond the scope of thispaper (our prototype mechanisms are quite primitive).



Since persistent segments are assigned virtual address ranges in the same way as other segments, Opalsupports a true single-level store with uniform addressing of data in long-term storage. Access to persistentdata is transparent, though explicit operations may be used to commit or 
ush modi�ed data in segmentswith strong failure recovery semantics. A domain can name a segment by the address of any piece of datathat lies within it, even if the segment is not yet attached. In essence, this allows pointers between �les; a�le can be mapped without specifying a symbolic name, simply by dereferencing a pointer. A symbolic namespace for data exists above the shared virtual address space, in the form of a name server that associatessymbolic names with segment capabilities or arbitrary pointers.3.3 Code ModulesExecutable code resides in persistent segments called modules that contain a group of related procedures.A module is pure if it makes no static assumptions about the load address of any data that it operates on.Linking utilities make modules pure by expressing all private static data references as o�sets from a baseregister. Pure modules are statically linked into the global address space at their assigned address. Thereare two distinct bene�ts from global linking of code modules.First, domains can dynamically load (attach) modules without risk of name con
icts in the code references,and without the overhead of linking at runtime. There is no need to know at domain creation time what codewill run in the domain; any domain can call any procedure it has access to simply by knowing its address,even if the code was compiled after the domain was activated. For example, a domain can call throughprocedure pointers passed to it in shared data. Dynamic loading also allows a parent to choose whether ornot to create a new protection domain for a child; it is no longer necessary to create new protection domainsfor trusted programs simply because they are statically linked to assume a private name space.The second bene�t of global linking is that pure modules can be freely shared between domains. Compa-rable support for shared libraries in private address space systems requires dynamic linking and/or indirectaddressing through linkage tables.3.4 ReclamationWith an addressing model that permits and encourages sharing, the system must cope with the di�cultyof managing that sharing. For example, it is not always clear when data can be deleted in a single addressspace system.We believe that existing approaches to reclamation are applicable. Opal does not track references, it merelyprovides hooks to allow servers and runtime packages that manage shared segments to plug in their ownreclamation policies. Our prototype places active and passive reference counts on each segment and providesa means for clients to manipulate those reference counts in a protected way. It is the client's responsibility(the runtime package and/or the language implementation) to use reference counts appropriately. If theclients do nothing then the resulting policy is exactly that of most process-based systems: a segment isdeleted i� it is unattached and there are no symbolic names for it in the name server. Of course, clients maymisuse the counts to prevent storage from ever being reclaimed. This is an accounting problem.This approach re
ects our view that reclamation should continue to be based on language-level knowledgeof pointer structures, application-level knowledge of usage patterns, and deletion of data by explicit usercommand. The system only promises that domains cannot harm each other with reclamation errors unlessthey are mutually trusting. This does not mean that we are punting the issue of reclamation: we cling tothe belief that support for simple but useful sharing patterns can be built relatively easily.



4 Why a Single Mapping?One alternative to a global virtual address space is to reserve some regions of private address spaces formapping shared data. For example, virtual addresses can be saved directly in a mapped �le if the processesthat use the �le agree to always map it at the same address. Dynamic sharing patterns can be supported ifthe system (rather than the applications) coordinates address bindings.This solution buys some of the bene�ts of a single address space without sacri�cing private address spaces.In fact, our original proposal for global addressing on 64-bit architectures suggested such a hybrid ap-proach [Chase & Levy 91]. We have now abandoned the hybrid approach for two reasons: (1) the mixof shared and private regions introduces dangerous ambiguity, and (2) the virtual memory hardware andsoftware must continue to support multiple sets of address translations.The pure single address space approach forces us to confront the the e�ects of eliminating private addressspaces altogether. Here are some of the interesting issues: (1) handling full global allocation of address space,(2) linking in a shared address space, e.g., how to handle private static data references in shared code, (3)implications of discarding the Unix fork primitive, which assumes private address spaces, and (4) e�ect onexisting programs of losing the contiguous address space abstraction.5 Related WorkCedar [Swinehart et al. 86] and its predecessor Pilot [Redell et al. 80] used a single virtual address spaceon hardware that supported only one protection domain. These systems had no hardware-based memoryprotection; both relied solely on defensive protection from the name scoping and type rules of a programminglanguage. Our proposal generalizes this model to multiple protection domains.The term \uniform addressing" was introduced in Psyche [Scott et al. 90], which also has a single virtualaddress space shared by multiple protection domains. Psyche uses cooperating protection domains primarilyas a means of separating di�erent components of a single parallel application with di�erent models of par-allelism and di�erent scheduling needs. We are interested in more general sharing relationships, leading tosome di�erences in our system abstractions. More importantly, we extend uniform addressing to encompassdata on long-term storage and across multiple autonomous nodes in a network. However, most of the bene�tsclaimed for context-independent addressing in Opal apply equally to non-persistent storage in Psyche.Segmented systems (e.g., Multics [Daley & Dennis 68]) support uniform sharing to some degree. The �rstphase of address translation on segmented architectures concatenates a global segment identi�er with asegment o�set, yielding a long-form address from a global virtual address space. The segment identi�er isretrieved from one of a vector of segment registers associated with the current domain. Domains de�ne alocal view of portions of the global address space by overlaying global segments into their private segmentregisters. Uniform addressing in these systems is subject to some or all of the following restrictions: (1) cross-segment pointers are not supported, (2) multiple pointer forms must be treated di�erently by applications,and (3) software must coordinate segment register usage to create an illusion of a single address space. TheHewlett-Packard Precision [Lee 89] di�ers from other segmented architectures in that it allows applicationsto specify long-form virtual addresses directly. However, long-form pointer dereference is expensive, so mostsoftware uses segmented addressing.Most capability-based architectures [Organick 83, Levy 84] support uniform sharing of data structures. How-ever, it is now possible to achieve these bene�ts using conventional page-based hardware, without the prob-lems common to capability-based systems: (1) restrictive object-oriented data model, (2) noncompetitiveperformance, and (3) lack of support for distribution.



6 StatusWe are currently prototyping Opal above an unmodi�ed Mach 3.0 kernel on 32-bit MIPS R3000 machines.Our prototype consists of (1) standard runtime libraries (e.g., for threads, segment fault handler, etc.), (2) aMach server that implements the Opal \kernel" abstractions, and (3) a ragged crew of linking and bootstraputilities. Opal protection domains and segments are mapped by the server onto the Mach task and memoryobject abstractions. We will use the prototype environment to explore ways that the shared address spacecan improve the structure and performance of applications and the operating system. Our long term goal isto implement a single address space kernel to explore the e�ect of a single address space on operating systemkernel mechanisms.References[Anderson et al. 91] Anderson, T. E., Levy, H. M., Bershad, B. N., and Lazowska, E. D. The interaction of architectureand operating system design. In Proceedings of the Fourth Conference on Architectural Support for ProgrammingLanguages and Operating Systems, pages 108{121, April 1991.[Chase & Levy 91] Chase, J. S. and Levy, H. M. Supporting cooperation on wide-address computers. Department of ComputerScience and Engineering Technical Report 91-03-10, University of Washington, March 1991.[Chase et al. 92a] Chase, J. S., Levy, H. M., Baker-Harvey, M., and Lazowska, E. D. How to use a 64-bit virtual address space.Technical Report 92-03-02, University of Washington, Department of Computer Science and Engineering, February1992.[Chase et al. 92b] Chase, J. S., Levy, H. M., Baker-Harvey, M., and Lazowska, E. D. Lightweight shared objects in a 64-bitoperating system. Technical Report 92-03-09, University of Washington, Department of Computer Science andEngineering, March 1992.[Daley & Dennis 68] Daley, R. C. and Dennis, J. B. Virtual memory, processes, and sharing in MULTICS. Communicationsof the ACM, 11(5):306{312, May 1968.[Dobberpuhl et al. 92] Dobberpuhl, D., Witek, R., Allmon, R., Anglin, R., Bertucci, D., Britton, S., Chao, L., Conrad, R.,Dever, D., Gieseke, B., Hassoun, S., Hoeppner, G., Kowaleski, J., Kuchler, K., Ladd, M., Leary, M., Madden, L.,McLellan, E., Meyer, D., Montanaro, J., Priore, D., Rajagopalan, V., Samudrala, S., and Santhanam, S. A 200mhz64 bit dual issue CMOS microprocessor. In International Solid-State Circuits Conference 1992, February 1992.[Koldinger et al. 92] Koldinger, E. J., Chase, J. S., and Eggers, S. J. Architectural support for single address space operatingsystems. Technical Report 92-03-10, University of Washington, Department of Computer Science and Engineering,March 1992.[Lee 89] Lee, R. B. Precision architecture. IEEE Computer, pages 78{91, January 1989.[Levy 84] Levy, H. M. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts, 1984.[MIP 91] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R4000 Microprocessor User's Manual, �rst edition, 1991.[Mullender & Tanenbaum 86] Mullender, S. and Tanenbaum, A. The design of a capability-based operating system. TheComputer Journal, 29(4):289{299, 1986.[Organick 83] Organick, E. I. A Programmer's View of the Intel 432 System. McGraw-Hill, 1983.[Ousterhout 90] Ousterhout, J. K. Why aren't operating systems getting faster as fast as hardware? In Proceedings of theSummer 1990 USENIX Conference, pages 247{256, June 1990.[Redell et al. 80] Redell, D., Dalal, Y., Horsley, T., Lauer, H., Lynch, W., McJones, P., Murray, H., and Purcell, S. Pilot: Anoperating system for a personal computer. Communications of the ACM, 23(2):81{92, February 1980.[Scott et al. 90] Scott, M. L., LeBlanc, T. J., and Marsh, B. D. Multi-model parallel programming in Psyche. In Proceedings ofthe Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 70{78, March1990.[Swinehart et al. 86] Swinehart, D., Zellweger, P., Beach, R., and Hagmann, R. A structural view of the Cedar programmingenvironment. ACM Transactions on Programming Languages and Systems, 4(8), October 1986.


