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NOVA overview

• NOVA extends LFS to leverage non-volatile memories

• NOVA proposes per-inode logging

• High performance + Strong atomicity

– 3.1x to 13.5x to file systems that have equally strong consistency 
guarantees in write-intensive workloads

• POSIX compliant

https://github.com/NVSL/NOVA



3

Hybrid DRAM/NVMM system

• Non-volatile main memory (NVMM)

– PCM, STT-RAM, ReRAM, 3D XPoint technology

• File system for NVMM
Host

CPU

DRAM NVMM

NVMM FS
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Disk-based file systems are inadequate for NVMM 

• Ext4, xfs, Btrfs, F2FS, NILFS2

• Built for hard disks and SSDs

– Software overhead is high

– CPU may reorder writes to NVMM

– NVMM has different atomicity guarantees

• Cannot exploit NVMM performance

• Performance optimization compromises 
consistency on system failure [1]

[1] Pillai et al, All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent 
Applications, OSDI '14.

Atomicity
Ext4 
wb

Ext4 
order

Ext4 
dataj

Btrfs xfs

1-Sector 
overwrite

✓ ✓ ✓ ✓ ✓

1-Sector 
append

✗ ✓ ✓ ✓ ✓

1-Block 
overwrite

✗ ✗ ✓ ✓ ✗

1-Block 
append

✗ ✓ ✓ ✓ ✓

N-Block 
write/append

✗ ✗ ✗ ✗ ✗

N-Block 
prefix/append

✗ ✓ ✓ ✓ ✓
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NVMM file systems are not strongly consistent 

• BPFS, PMFS, Ext4-DAX, SCMFS, Aerie 

• None of them provide strong metadata and data consistency

File system
Metadata 
atomicity

Data 
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No No

Ext4-DAX Yes No No

SCMFS No No No

Aerie Yes No No

[1] Each msync() commits updates atomically.
[2] In BPFS, write times are not updated atomically with respect to the write itself.

File system
Metadata 
atomicity

Data 
atomicity

Mmap
Atomicity [1]

BPFS Yes Yes [2] No

PMFS Yes No No

Ext4-DAX Yes No No

SCMFS No No No

Aerie Yes No No

NOVA Yes Yes Yes
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Why LFS?

• Log-structuring provides cheaper atomicity than journaling and 
shadow paging

• NVMM supports fast, highly concurrent random accesses

– Using multiple logs does not negatively impact performance

– Log does not need to be contiguous 

• Rethink and redesign log-structuring entirely



7

NOVA design goals

• Atomicity
– Combine log-structuring, journaling and copy-on-

write

• High performance
– Split data structure between DRAM and NVMM
– Highly scalable

• Efficient garbage collection
– Fine-grained log cleaning with log as a linked list
– Log only contains metadata

• Fast recovery
– Lazy rebuild
– Parallel scan

Head TailInode

Inode log

Committed entry

Uncommitted entry

Per-inode logging
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• Log-structuring for single log update
– Write, msync, chmod, etc
– Strictly commit log entry to NVMM 

before updating log tail

• Lightweight journaling for update 
across logs
– Unlink, rename, etc
– Journal log tails instead of metadata 

or data

• Copy-on-write for file data
– Log only contains metadata
– Log is short

File log

Directory log

Tail Tail

TailTail

Tail

Atomicity

Dir tail

File tail
Journal
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• Log-structuring for single log update
– Write, msync, chmod, etc
– Strictly commit log entry to NVMM 

before updating log tail

• Lightweight journaling for update 
across logs
– Unlink, rename, etc
– Journal log tails instead of metadata 

or data

• Copy-on-write for file data
– Log only contains metadata
– Log is short

File log

Directory log

Tail

Tail

Atomicity

Data 1 Data 2

Tail

Data 0 Data 1
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• Per-inode logging allows for 
high concurrency

• Split data structure between 
DRAM and NVMM

– Persistent log is simple and 
efficient 

– Volatile tree structure has no 
consistency overhead

File log

Directory log

Tail

Performance

Data 1 Data 2

Tail

Data 0
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• Per-inode logging allows for 
high concurrency

• Split data structure between 
DRAM and NVMM

– Persistent log is simple and 
efficient 

– Volatile tree structure has no 
consistency overhead

File log

Performance

Data 1 Data 2

Tail

Data 0

DRAM

NVMM

Radix tree

0 1 2 3
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NOVA layout

DRAM

NVMM
Journal

Inode table

Free list

CPU 0

Journal

Inode table

Free list

CPU 1

Head TailInode

Inode log

Super
block

Recovery
inode

• Put allocator in DRAM

• High scalability

– Per-CPU NVMM free list, 
journal and inode table

– Concurrent transactions 
and allocation/deallocation
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Fast garbage collection

• Log is a linked list

• Log only contains 
metadata

• Fast GC deletes dead log 
pages from the linked list

• No copying

Head

Tail

Vaild log entry Invalid log entry
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Thorough garbage collection

• Starts if valid log entries < 50% log length

• Format a new log and atomically replace the old one

• Only copy metadata

Head

Tail

Vaild log entry Invalid log entry



15

Recovery

• Rebuild DRAM structure
– Allocator
– Lazy rebuild: postpones inode radix tree rebuild

• Accelerates recovery
• Reduces DRAM consumption

• Normal shutdown recovery:
– Store allocator in recovery inode
– No log scanning

• Failure recovery:
– Log is short
– Parallel scan
– Failure recovery bandwidth: > 400 GB/s

DRAM

NVMM
Journal

Inode table

Free list

CPU 0

Journal

Inode table

Free list

CPU 1

Super
block

Recovery
inode

Recovery
inode Recovery    

thread
Recovery    

thread
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Evaluation: Latency

• Intel PM Emulation Platform
– Emulates different NVM 

characteristics

– Emulates clwb/PCOMMIT 
latency

• NOVA provides low latency 
atomicity
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Filebench throughput

• NOVA achieves high 
performance with strong 
data consistency
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Garbage collection efficiency

• NOVA’s performance stays 
stable with increasing 
running time

• Fast GC reclaims the 
majority of stale pages in the 
long-term running
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Conclusion

• Existing file systems do not meet the requirements of 
applications on NVMM file systems

• NOVA’s multi-log design achieves high concurrency, efficient 
garbage collection and fast recovery

• NOVA outperforms existing file systems while providing 
stronger consistency and atomicity guarantees
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Thank you!

https://github.com/NVSL/NOVA
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Backup slides
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Atomicity and enforce write ordering

// Strictly commit log entry to NVMM before updating tail

new_tail = append_to_log(inode->tail, entry);

clwb(inode->tail, entry->length); // writes back the cachelines

sfence();

PCOMMIT(); // Commits to NVMM

sfence();

inode->tail = new_tail;
Inode log

Tail Tail
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Directory operations

• mv   Alice/book    Bob/

• (name, inode number)

book log

“book”, 10Alice log

“book”, 10Bob log

“book”, 0

inode update

Tail

Tail

Tail

Alice tail

Bob tail

book tail

Journal

Tail

Tail

Tail
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Atomic file operations

• Copy-on-write for file data

• <pgoff, num pages>

• Write(8192, 8192)

<0, 1> <1, 2>

Data 0 Data 1 Data 2

<2, 2>

Data 2 Data 3

Tail Tail

File radix treeroot

0 1 2 3

Head

File log

DRAM

NVMM
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Atomic mmap

• Allocate replica pages and 
mmap to user space

• msync() commits updates 
atomically 

Data 0 Data 1

Tail TailHead

File log

User space

Kernel

Replica 1

mmap(fd, 4096, 4096);

Replica 1

Replica 1Replica 1

msync(addr, 4096);

Data 1 Replica 1
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Evaluation

• Intel PM Emulation Platform

• 32GB of DRAM, 64GB of NVMM

• Compare to Btrfs, NILFS2, F2FS, Ext4, Ext4-data, Ext4-DAX, 
PMFS

• Linux kernel 4.0 x86-64

NVMM
Read 

latency
Write 

bandwidth
clwb

latency
PCOMMIT 

latency

STT-RAM 100 ns Full DRAM 40 ns 200 ns

PCM 300 ns 1/8 DRAM 40 ns 500 ns
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Garbage collection efficiency
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• Fast GC reclaims 94% pages 
in one-hour test


