A File is Not a File: Understanding the I/O Behavior
of Apple Desktop Applications

Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences
University of Wisconsin, Madison

{harter, dragga, vaughn, dusseau, remzi}@cs.wisc.edu

ABSTRACT user interacts. 1/0 behavior is especially important to understand
since it greatly impacts how users perceive overall system latency
and application performance [12].

While a study of how users typically exercise these applications
would be interesting, the first step is to perform a detailed study
of I/0 behavior under typical but controlled workload tasks. This

We analyze the I/O behavior @ench, a new collection of produc-

tivity and multimedia application workloads. Our analysis reveals
a number of differences between iBench and typical file-system
workload studies, including the complex organization of modern

files, the lack of pure sequential access, the influence of underlyin L i - .
b d ying style ofapplication study, common in the field of computer archi-

frameworks on 1/O patterns, the widespread use of file synchro- o .
nization and atomic operations, and the prevalence of threads. Ourt€cture [40], is different from theworkload study found in systems
research, and can yield deeper insight into how the applications are

results have strong ramifications for the design of next generation ' .
local and cloud-based storage systems. constructed and how file and storage systems need to be designed

in response.
Home-user applications are fundamentally large and complex,
1. INTRODUCTION containing millions of lines of code [20]. In contrast, traditional

The design and implementation of file and storage systems hasUNix-based applications are designed to be simple, to perform
long been at the forefront of computer systems research. Inno- one task well, and to be strung together to perform more complex
vations such as namespace-based locality [21], crash consistencyasks [32]. This modular approach ofN applications has not
via journaling [15, 29] and copy-on-write [7, 34], checksums and prevailed [17]: modern applications are standalone monoliths, pro-
redundancy for reliability [5, 7, 26, 30], scalable on-disk struc- viding a rich and continuously evolving set of features to demand-
tures [37], distributed file systems [16, 35], and scalable cluster- ing users. Thus, it is beneficial to study each application individu-
based storage systems [9, 14, 18] have greatly influenced how dataally to ascertain its behavior.
is managed and stored within modern computer systems. In this paper, we present the first in-depth analysis of the I/O

Much of this work in file systems over the past three decades behavior of modern home-user applications; we focus on produc-
has been shaped lygeasurement: the deep and detailed analysis tivity applications (for word processing, spreadsheet manipulation,
of workloads [4, 10, 11, 16, 19, 25, 33, 36, 39]. One excellent and presentation creation) and multimedia software (for digital mu-
example is found in work on the Andrew File System [16]; de- sic, movie editing, and photo management). Our analysis centers
tailed analysis of an early AFS prototype led to the next-generation on two Apple software suites: iWork, consisting of Pages, Num-
protocol, including the key innovation of callbacks. Measurement bers, and Keynote; and iLife, which contains iPhoto, iTunes, and
helps us understand the systems of today so we can build improvediMovie. As Apple’s market share grows [38], these applications
systems for tomorrow. form the core of an increasingly popular set of workloads; as de-

Whereas most studies of file systems focus on the corporate orvice convergence continues, similar forms of these applications are
academic intranet, most file-system users work in the more mun- likely to access user files from both stationary machines and mov-
dane environment of theome, accessing data via desktop PCs, ing cellular devices. We call our collection tiBench task suite.
laptops, and compact devices such as tablet computers and mo- To investigate the 1/0 behavior of the iBench suite, we build an
bile phones. Despite the large number of previous studies, little is instrumentation framework on top of the powerful DTrace tracing
known about home-user applications and their I/O patterns. system found inside Mac OS X [8]. DTrace allows us not only

Home-user applications are important today, and their impor- to monitor system calls made by each traced application, but also
tance will increase as more users store data not only on local de-to examine stack traces, in-kernel functions such as page-ins and
vices but also in the cloud. Users expect to run similar applications page-outs, and other details required to ensure accuracy and com-
across desktops, laptops, and phones; therefore, the behavior opleteness. We also develop an application harness based on Apple-
these applications will affect virtually every system with which a Script [3] to drive each application in the repeatable and automated

fashion that is key to any study of GUI-based applications [12].

Our careful study of the tasks in the iBench suite has enabled us
to make a number of interesting observations about how applica-
tions access and manipulate stored data. In addition to confirming

Permission to make digital or hard copi_es of all or part of thts_rkzvfor standard past findings.¢., most files are small; most bytes ac-
personal or classroom use is granted without fee providatidbpies are cessed are from large files [4]), we find the following new results.

not made or distributed for profit or commercial advantage aatl¢bpies Afile i t a file. Mod licati | datab
bear this notice and the full citation on the first page. Toyooiherwise, to lle1s not a file. viodern applicalions manage largeé databases

republish, to post on servers or to redistribute to listguiees prior specific of information organized into complex directory trees. Even simple
permission and/or a fee. word-processing documents, which appear to users as a “file”, are
Copyright 2011 ACM 978-1-59593-591-5/07/00185.00.

in actuality small file systems containing many sub-fileg).(a cessed€.g., counts and sizes), the access patteems, fead/write,
Microsoft .doc file is actually a FAT file system containing pieces sequentiality, and preallocation), transactional properégs @ura-

of the document). File systems should be cognizant of such hiddenbility and atomicity), and threading. Third, we describe how these
structure in order to lay out and access data in these complex filesqualitative changes in 1/0 behavior may impact the design of future
more effectively. systems. Finally, we present the 34 traces from the iBench task

Sequential access is not sequentiaBuilding on the trend no- suite; by making these traces publicly available and easy to use, we
ticed by Vogels for Windows NT [39], we observe that even for hope to improve the design, implementation, and evaluation of the
streaming media workloads, “pure” sequential access is increas-next generation of local and cloud storage systems:
ingly rare. Since file formats often include metadata in headers,
applications often read and re-read the first portion of a file before
streaming through its contents. Prefetching and other optimizations The remainder of this paper is organized as follows. We begin by
might benefit from a deeper knowledge of these file formats. presenting a detailed timeline of the I/O operations performed by

Auxiliary files dominate. Applications help users create, mod- one task in the iBench suite; this motivates the need for a systematic
ify, and organize content, but user files represent a small fraction study of home-user applications. We next describe our methodol-
of the files touched by modern applications. Most files are helper ogy for creating the iBench task suite. We then spend the majority
files that applications use to provide a rich graphical experience, of the paper quantitatively analyzing the I/O characteristics of the
support multiple languages, and record history and other metadata.full iBench suite. Finally, we summarize the implications of our
File-system placement strategies might reduce seeks by groupingfindings on file-system design.
the hundreds of helper files used by an individual application.

Writes are often forced. As the importance of home datain- 2. CASE STUDY
creasesdg., family photos), applications are less willing to simply
write data and hope it is eventually flushed to disk. We find that
most written data is explicitly forced to disk by the application; for
example, iPhoto callssync thousands of times in even the sim-
plest of tasks. For file systems and storage, the days of delayed
writes [22] may be over; new ideas are needed to support applica-
tions that desire durability.

Renaming is popular. Home-user applications commonly use
atomic operations, in particularenane, to present a consistent
view of files to users. For file systems, this may mean that trans-
actional capabilities [23] are needed. It may also necessitate a re-
thinking of traditional means of file locality; for example, placing
a file on disk based on its parent directory [21] does not work as
expected when the file is first created in a temporary location and
then renamed.

Multiple threads perform 1/0. Virtually all of the applications
we study issue 1/O requests from a number of threads; a few ap-
plications launch 1/0Os from hundreds of threads. Part of this us-
age stems from the GUI-based nature of these applications; it is
well known that threads are required to perform long-latency oper- context surrounding this file save, where we observe a flurry of ac-
ations in the background to keep the GUI responsive [24]. Thus, '
file and storage systems should be thread-aware so they can bettef o> to hundreds of helper files (top).

A file is not a file. Focusing on the magnified timeline of reads

aulc:)?::r?et\;\?gri\gli(ri}tftrﬂence /0. Modern apolications are often de- and writes to the productivity .doc file, we see that the file format
. pp comprises more than just a simple file. Microsoft .doc files are

veloped in sophisticated IDEs and leverage powerful libraries, such based on the FAT file system and allow bundling of multiple files in

?:cﬁofr%%s:(i (;?Jr?]ozéll\évtr:)e:zgzl;:;%viisepﬁllggatﬁgzgfr:?b:je:;ies the single .doc file. This .doc file contains a directory (Root), three
ut rxore code{)etween applications and the und‘erl ing file s Stem_streams for large data (WordDocument, Data, and 1Table), and a
P PP ying Y 'stream for small data (Ministream). Space is allocated in the file

for example, including cocoa. h" in a Mac application imports . e . -
. .) with three sections: a file allocation table (FAT), a double-indirect
112,047 lines of code from 689 different files [28]. Thus, the be- FAT (DIF) region, and a ministream allocation region (Mini).

havior of the framework, and not just the application, determines Sequential access is not sequentialThe complex FAT-based
::]?jupcaé;eglza\/\llfg'gﬂéhaég;?b?eza::;%izz\gfrgnsgrgfsﬁc;cganﬁﬁrlg_ﬁle format causes random access patterns in several ways: first, the
P y y y) sy header is updated at the beginning and end of the magnified access;

P;iigoxi;% iiké lnIii(:tjigr?nc‘alils‘leegfddtgrei:]igtrllslti)sg;etsbfgk:;\:gyfe- second, data from individual streams is fragmented throughout the
PP . - ._file; and third, the 1Table stream is updated before and after each
tween those tasks. Future storage design should take these libraries . ded to th d
and frameworks into account image is appende t(_)t e Wort Documen@ stream._
.) - I . . Auxiliary files dominate. Although saving the single .doc we
This paper contains four major contributions. First, we describe T .
a general tracing framework for creating benchmarks based on in- have been considering is the sole purpose of this task, we now
te?active tasks tﬁat home users ma e?foe (importing songs turn our attention to the top timeline and see that 385 different files
.) . . yp 9.{Imp 9 gs, are accessed. There are several reasons for this multitude of files.
exporting video clips, saving documents). Second, we deconstruct

. o . . First, Pages provides a rich graphical experience involving many
_the Vo behawor_of the tasks in |Ben(_:h, we quantify the /O _behav- images and other forms of multimedia; together with the 15 in-
ior of each task in numerous ways, including the types of files ac-

serted JPEGs, this requires 118 multimedia files. Second, users

http://ww. cs. w sc. edu/ adsl / Traces/ i bench

The 1/O characteristics of modern home-user applications are
distinct from those of Wix applications studied in the past. To
motivate the need for a new study, we investigate the complex I/O
behavior of a single representative task. Specifically, we report in
detail the I/0O performed over time by the Pages (4.0.3) application,
a word processor, running on Mac OS X Snow Leopard (10.6.2) as
it creates a blank document, inserts 15 JPEG images each of size
2.5MB, and saves the document as a Microsoft .doc file.

Figure 1 shows the /O this task performs (see the caption for a
description of the symbols used). The top portion of the figure il-
lustrates the accesses performed over the full lifetime of the task: at
a high level, it shows that more than 385 files spanning six different
categories are accessed by eleven different threads, with many in-
tervening calls td sync andr enane. The bottom portion of the
figure magnifies a short time interval, showing the reads and writes
performed by a single thread accessing the primary .doc productiv-
ity file. From this one experiment, we illustrate each finding de-
scribed in the introduction. We first focus on the single access that
saves the user’'s document (bottom), and then consider the broader

8 j=2] [=2] o D j=2] oD O D OO o O DO D O D
s = g 28 2822828828282
; o e} T T T T T T T T T T T T T 0>J =
(0] =] =] T T =] T T T T T T T T T T © =]
c @ @ T 8@ @ @ @ 8 @ @ 8@ @ ® ® & =3
M pee—— —mreagsd, 10
other " —Threa
T o —Thread 3
17 (38MB) L -, L - i ' il ' il ' ' ' i i ' ' ' B ' —Thread 1
Strings t 1 1 . 1 t v v ' 1 ' 1 t 1 . —Threads 2, 4, 6, 8
25 (0.3MB)| ' . S : . —Thread 1
i m a | m— s’ —— | —Threads 1, 10
multimedia] :
118 (1L06MB) Thread 1
) quite_{: S .,' N —Thread 4
» (9KB) St FRRCNE I Y Ry SR VI PR IO IR PR P S P —Threads 1-9
Q % —Thread 8
i x —Thread 7
x —Thread 6
x —Thread 5
1 % X x —Thread 4
x X X X % —Thread 3
% % —Thread 2
plist %X x x x X
218 (0.8MB) < D L, % ax %X
” % . % X X x % X
. x X X x
x x % Thread 1
. x. .o ”
. x” x X, 0% % % %
Ed
: P x xx X x X .
productivity = = . * x * ! -
5 (39MB) rTrrorr1rr1T L:'___'__'___'__!_.l TrrrrrrrrrrrrrT
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Seconds
magnify .doc file save
/ \
36386 loiF
36384 - FAT
Compressed (0.3MB) Mini
36102 - /RQQT
1 JJ/Ministream
36100 JRoot
36098 - t =1Table
] © - Eﬂ]ﬁ JData
36096 o 03 229 X
1 ¢ ¢ X < momrmdi t1Table
36094 1 o™ I)
36092 - cespesdes
= Compressed (23.5MB) RS %3
X 12044 - RSO S F'WordDocument
T 12042
5 12040
@)] I nlplylulalnls =1Table
2 12038 o i
Compressed (11.7MB) 1 JRIRXK
16 - < K F'WordDocument
1 X
12-_ m ol —1Table
10 A
8 rWordDocument
6 9 082 H Z1Table
2] 8 2R S Data
| ™™
24 WordDocument
0 T T T T T T T T T T T T T T T T T T L I_Header

T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70O 75 80 85 90 95 100
Sequential Runs

Figure 1: Pages Saving A Word Document.The top graph shows the 75-second timeline of the entire run, while the bgtiaph is a
magnified view of seconds 54 to 58. In the top graph, annotations on threateforize files by type and indicate file count and amount of
I/O; annotations on the right show threads. Black bars are file accéssels and writes), with thickness logarithmically proportional to
bytes of I/0./ is anf sync; \ is ar enane; Xis both. In the bottom graph, individual reads and writes to the .doc filslewern. Vertical

bar position and bar length represent the offset within the file and nuoflisrtes touched. Thick white bars are reads; thin gray bars are
writes. Repeated runs are marked with the number of repetitions. Annwtatiothe right indicate the name of each file section.

want to use Pages in their native language, so application text is not3.1 Representative
hard-coded into the executable but is instead stored in 25 different 1 capture the I/0 behavior of home users, iBench models the ac-

strings files. Third, to save user preferences and other metadatatjons of a “reasonable” user interacting with iPhoto, iTunes, iMovie,
Pages uses a SQLite database (2 files) and a number of key-valugages, Numbers, and Keynote. Since the research community does
stores (218 .plist files). o not yet have data on the exact distribution of tasks that home users

Writes are often forced; renaming is popular. Pages uses perform, iBench contains tasks that we believe are common and
both of these actions to enforce basic transactional guarantees. liyses files with sizes that can be justified for a reasonable user.
usesf sync to flush write data to disk, making it durable; it uses jBench contains 34 different tasks, each representing a home user
rename to atomically replace old files with new files so that afile performing one distinct operation. If desired, these tasks could be
never contains inconsistent data. The timeline shows these invo-compined to create more complex workflows and 1/0 workloads.
cations numerous times. First, Pages regularly disssnc and The six applications and corresponding tasks are as follows.

r ename when updating the key-value store of a .plist file. Second, jLife iPhoto 8.1.1 (419) digital photo album and photo manip-
f'sync is used on the SQLite database. Third, for each of the 15 y|ation software. iPhoto stores photos in a library that contains the
image insertions, Pages callsync on a file named “tempData” data for the photos (which can be in a variety of formats, including
(classified as “other) to update its automatic backup. ~ JPG, TIFF, and PNG), a directory of modified files, a directory of

Multiple threads perform I/O. Pages is a multi-threaded appli- scaled down images, and two files of thumbnail images. The library
cation and issues 1/0 requests from many different threads during stores metadata in a SQLite database. iBench contains six tasks ex-
the experiment. Using multiple threads for I/O allows Pages to ercising user actions typical for iPhoto: starting the application and
avoid blocking while I/O requests are outstanding. Examining the importing, duplicating, editing, viewing, and deleting photos in the
I/O behavior across threads, we see that Thread 1 performs the MOsfiprary. These tasks modify both the image files and the underlying
significant portion of I/O, but ten other threads are also involved. In gatabase. Each of the iPhoto tasks operates on 400 2.5 MB photos,
most cases, a singlfe thread exclusively accesses a file, but it is NOtepresenting a user who has imported 12 megapixel photos (2.5 MB
uncommon for multiple threads to share a file. o each) from a full 1 GB flash card on his or her camera.

Frameworks influence 1/0. Pages was developed in a rich pro- iLife iTunes 9.0.3 (15) a media player capable of both audio and
gramming environment where frameworks such as Cocoa or Car-yjdeo playback. iTunes organizes its files in a private library and
bon are used for I/O; these libraries impact I/O patterns in ways sypports most common music formatsg(, MP3, AIFF, WAVE,
the developer might not expect. For example, although the appli- AAC, and MPEG-4). iTunes does not employ a database, keeping
cation developers did not bother to uUseync or r ename when media metadata and playlists in both a binary and an XML file.
saving the user's work in the .doc file, the Cocoa library regularly iBench contains five tasks for iTunes: starting iTunes, importing
uses these calls to atomically and durably update relatively unim- gng playing an album of MP3 songs, and importing and playing an
portant metadata, such as “recently opened” lists stored in .plist \\pEG-4 movie. Importing requires copying files into the library
files. As another example, when Pages tries to read data in 512‘bytedirectory and, for music, analyzing each song file for gapless play-

chunks from the .doc, each read goes throughSTbl Olibrary, back. The music tasks operate over an album (or playlist) of ten
which only reads in 4 KB chunks. Thus, when Pages attempts t0 songs while the movie tasks use a single 3-minute movie.

read one chunk from the 1Table stream, seven unrequested chunks [ife iMovie 8.0.5 (820) video editing software. iMovie stores

from the WordDocument stream are also incidentally read (off- jts data in a library that contains directories for raw footage and
set 12039 KB). In other cases, regions of the .doc file are repeat-projects, and files containing video footage thumbnails. iMovie
edly accessed unnecessarily. For example, around the 3KB off-sypports both MPEG-4 and Quicktime files. iBench contains four
set, read/write pairs occur dozens of times. Pages uses a library toizsks for iMovie: starting iMovie, importing an MPEG-4 movie,
write 2-byte words; each time a word is written, the library reads, adding a clip from this movie into a project, and exporting a project
updates, and writes back an entire 512-byte chunk. Finally, we {o MPEG-4. The tasks all use a 3-minute movie because this is a
see evidence of redundancy between libraries: even though Pagegypical length found from home users on video-sharing websites.
has a backing SQLite database for some of its properties, it also ~ j\work Pages 4.0.3 (768)a word processor. Pages uses a ZIP-
uses .plist files, which function across Apple applications as generic hased file format and can export to DOC, PDF, RTF, and basic text.
property stores.)) ~iBench includes eight tasks for Pages: starting up, creating and
This one detailed experiment has shed light on a number of in- saying, opening, and exporting documents with and without images

teresting I/0 behaviors that indicate that home-user applications areand with different formats. The tasks use 15 page documents.
indeed different than traditional workloads. A new workload suite jwork Numbers 2.0.3 (332) a spreadsheet application. Num-

is needed that more accurately reflects these applications. bers organizes its files with a ZIP-based format and exports to XLS
and PDF. The four iBench tasks for Numbers include starting Num-
3. IBENCH TASK SUITE bers, generating a spreadsheet and saving it, opening the spread-

Our goal in constructing the iBench task suite is two-fold. First, Sheet, and exporting that spreadsheet to XLS. To model a possible
we would like iBench to bespresentative of the tasks performed by home u;erworklng on a budget, the tasks utilize a five page spread-
home users. For this reason, iBench contains popular applicationsSheet with one column graph per sheet. _ _
from the iLife and iWork suites for entertainment and productivity. 1Work Keynote 5.0.3 (791) a presentation and slideshow appli-
Second, we would like iBench to be relativedynple for others to ~ €ation. Keynote saves to a .key ZIP-based format and exports to
use for file and storage system analysis. For this reason, we auto-Microsoft's PPT format. The seven iBench tasks for Keynote in-
mate the interactions of a home user and collect the resulting tracestlUde starting Keynote, creating slides with and without images,
of 1/0 system calls. The traces are available online at this site: ©P€ning and playing presentations, and exporting to PPT. Each
http://ww. cs. wi sc. edu/ adsl / Traces/ i bench. We Keynote task uses a 20-slide presentation.
now describe in more detail how we met these two goals.

Accesses| 1/0 MB

Name | Description Files (MB) | Accesses (MB)| RD% | WR% | /CPU Sec| / CPU Sec

Start Open iPhoto with library of 400 photos 779 (336.7) 828 (25.4)| 78.8 21.2 151.1 4.6

ol Imp Import 400 photos into empty library 5900 (1966.9) 8709 (3940.3)| 74.4 25.6 26.7 121

é Dup Duplicate 400 photos from library 2928 (1963.9) 5736 (2076.2)| 52.4| 47.6 237.9 86.1

o | Edit Sequentially edit 400 photos from library | 12119 (4646.7) 18927 (12182.9), 69.8 30.2 19.6 12.6

Del Sequentially delete 400 photos; empty trash 15246 (23.0) 15247 (25.0)| 21.8 78.2 280.9 0.5

View Sequentially view 400 photos 2929 (1006.4) 3347 (1005.0)| 98.1 1.9 24.1 7.2

o Start Open iTunes with 10 song album 143 (184.4) 195 (9.3)| 54.7] 453 72.4 3.4
= @ | ImpS | Import 10 song album to library 68 (204.9) 139 (264.5)| 66.3 33.7 75.2 143.1
= 5| ImpM | Import 3 minute movie to library 41 (67.4) 57 (42.9)| 48.0| 52.0 152.4 114.6
= PlayS | Play album of 10 songs 61 (103.6) 80 (90.9)| 96.9 3.1 0.4 0.5
PlayM | Play 3 minute movie 56 (77.9) 69 (32.0)| 92.3 7.7 2.2 1.0

o | Start Open iMovie with 3 minute clip in project 433 (223.3) 786 (29.4)] 99.9 0.1 134.8 5.0

'g Imp Import 3 minute .m4v (20MB) to “Events” 184 (440.1) 383 (122.3)| 55.6 44.4 29.3 9.3

= | Add Paste 3 minute clip from “Events” to projec 210 (58.3) 547 (2.2)| 478 52.2 357.8 1.4

| Exp Export 3 minute video clip 70 (157.9) 546 (229.9)| 55.1| 44.9 2.3 1.0
Start | Open Pages 218 (183.7) 228 (2.3)| 99.9 0.1 97.7 1.0

New Create 15 text page document; save as .pagesl35 (1.6) 157 (1.0)| 733 26.7 50.8 0.3

o | NewP | Create 15 JPG document; save as .pages 408 (112.0) 997 (180.9)| 60.7 39.3 54.6 9.9

> Open | Open 15 text page document 103 (0.8) 109 (0.6)| 99.5 0.5 57.6 0.3

& | PDF Export 15 page document as .pdf 107 (1.5) 115 0.9)| 91.0 9.0 41.3 0.3
PDFP | Export 15 JPG document as .pdf 404 (77.4) 965 (110.9)| 67.4 32.6 49.7 5.7

DOC Export 15 page document as .doc 112 (1.0) 121 (1.0)| 87.9 12.1 44.4 0.4

DOCP | Export 15 JPG document as .doc 385 (111.3) 952 (183.8)| 61.1| 38.9 46.3 8.9

x 5| Start Open Numbers 283 (179.9) 360 (2.6)] 99.6 0.4 115.5 0.8
g -g New Save 5 sheets/column graphs as .number§ 269 (4.9) 313 (2.8)| 90.7 9.3 9.6 0.1
= 5| Open | Open 5 sheet spreadsheet 119 (1.3) 137 (1.3)| 99.8 0.2 48.7 0.5
Z| XLS Export 5 sheets/column graphs as .xls 236 (4.6) 272 (2.7)| 94.9 5.1 8.5 0.1
Start | Open Keynote 517 (183.0) 681 T.1)| 99.8 0.2 229.8 0.4

o | New Create 20 text slides; save as .key 637 (12.1) 863 (5.4)| 924 7.6 129.1 0.8

© | NewP | Create 20 JPG slides; save as .key 654 (92.9) 901 (103.3)| 66.8 33.2 70.8 8.1

% Play Open and play presentation of 20 text slidgs 318 (11.5) 385 (4.9)| 99.8 0.2 95.0 1.2

w~ | PlayP | Open and play presentation of 20 JPG slides 321 (45.4) 388 (55.7)| 69.6 30.4 72.4 10.4
PPT Export 20 text slides as .ppt 685 (12.8) 918 (10.1)| 78.8 21.2 115.2 1.3

PPTP | Export 20 JPG slides as .ppt 723 (110.6) 996 (124.6)| 57.6| 424 61.0 7.6

Table 1:34 Tasks of the iBench SuiteThe table summarizes the 34 tasks of iBench, specifying the applicatiboranrsme for the task,

and a longer description of the actions modeled. The I/O is characterizedding to the number of files read or written, the sum of the
maximum sizes of all accessed files, the number of file accessesddatravrite data, the number of bytes read or written, the percentage
of I/0O bytes that are part of a read (or write), and the rate of I/O per-G&tdnd in terms of both file accesses and bytes. Each core is
counted individually, so at most 2 CPU-seconds can be counted @arden our dual-core test machine. CPU utilization is measured with
the UNIXt op utility, which in rare cases produces anomalous CPU utilization snapshosg ¥alues are ignored.

Table 1 contains a brief description of each of the 34 iBench tasks instrument the entry and exit points of all system calls dealing with
as well as the basic I/0 characteristics of each task when runningthe file system; it also records the current state of the system and
on Mac OS X Snow Leopard 10.6.2. The table illustrates that the the parameters passed to and returned from each call.
iBench tasks perform a significant amount of /0. Most tasks access ~ While tracing with DTrace was generally straightforward, we ad-
hundreds of files, which in aggregate contain tens or hundreds of dressed four challenges in collecting the iBench traces. First, file
megabytes of data. The tasks typically access files hundreds ofsizes are not always available to DTrace; thus, we record every
times. The tasks perform widely differing amounts of 1/O, from file’s initial size and compute subsequent file size changes caused
less than a megabyte to more than a gigabyte. Most of the tasksby system calls such ag it e orftruncate. Second, iTunes
perform many more reads than writes. Finally, the tasks exhibit uses thet r ace system call to disable tracing; we circumvent this
high 1/0 throughput, often transferring tens of megabytes of data block by usinggdb to insert a breakpoint that automatically re-

for every second of computation. turns without callingpt r ace. Third, thevol f s pseudo-file sys-
tem in HFS+ (Hierarchical File System) allows files to be opened
3.2 Easy to Use via their inode number instead of a file name; to include path-

To enable other system evaluators to easily use these tasks, th&@mes in the trace, we instrument thei | d_pat h function to
iBench suite is packaged as a set of 34 system call traces. To ensur@Ptain the full path when the task is run. Fourth, tracing system
reproducible results, the 34 user tasks were first automated with Calls misses 1/O resulting from memory-mapped files; therefore,
AppleScript, a general-purpose GUI scripting language. Apple- Wé purged memory and instrumented kern(_al page-in functions to
Script provides generic commands to emulate mouse clicks throughMeasure the amount of memory-mapped file activity. We found
menus and application-specific commands to capture higher-leve|that the amount of memory-mapped I/O is negligible in most tasks;
operations. Application-specific commands bypass a small amountWe thus dp not |nclude.th|s I/O in the iBench traces or analysis. .
of 1/0 by skipping dialog boxes; however, we use them whenever To_ provide reprodumble results, the tr_aces must_ be runon a sin-
possible for expediency. gle file-system image. T_herefqre, the iBench suite also contains

The system call traces were gathered using DTrace [8], a kernel snapshots of the initial directories to be restored before each run;
and user level dynamic instrumentation tool. DTrace is used to initial state is critical in file-system benchmarking [1].

4. ANALYSIS OF IBENCH TASKS Figure 3 displays the percentage of I/O bytes accessed for each

The iBench task suite enables us to study the 1/0 behavior of file type. In bytes, multimedia I/O dominates most of the iLife
a large set of home-user actions. As shown from the timeline of tasks, while productivity I/O has a significant presence in the iWork
/0 behavior for one particular task in Section 2, these tasks are tasks; file descriptors on multimedia and productivity files tend to
likely to access files in complex ways. To characterize this complex réceive large amounts of I/0. SQLite, Plist, and Strings files have
behavior in a quantitative manner across the entire suite of 34 tasks,@ Smaller share of the total I/O in bytes relative to the number of
we focus on answering four categories of questions. opened files; this implies that tasks access only a small quantity of

data for each of these files openedy(, several key-value pairs in
e What different types of files are accessed and what are the @ -plist). In most tasks, files classified as “Other” receive a more
sizes of these files? significant portion of the 1/0 (the exception is iTunes).
e How are files accessed for reads and writes? Are files ac- Summary: Home applications access a wide variety of file types,
cessed sequentially? Is space preallocated? generally opening multimedia files the most frequently. iLife tasks
e What are the transactional properties? Are writes flushed tend to access bytes primarily from multimedia or files classified
with f sync or performed atomically? ' as “Other”; iWork tasks access bytes from a broader range of file

e How do multi-threaded applications distribute /O across dif- types, with some emphasis on produciivity files.

ferent threads? 4.1.2 FileSzes

Answering these questions has two benefits. First, the answers Large and small files present distinct challenges to the file sys-
can guide file and storage system developers to target their systemd€Mm. For large files, finding contiguous space can be difficult, while
better to home-user applications. Second, the characterization will for small files, minimizing initial seek time is more important. We
help users of iBench to select the most appropriate traces for eval-investigate two different questions regarding file size. First, what is
uation and to understand their resulting behavior. the distribution of file sizes accessed by each task? Second, what

All measurements were performed on a Mac Mini running Mac portion of accessed bytes resides in files of various sizes?

OS X Snow Leopard version 10.6.2 and the HES+ file system. 10 answer these questions, we record file sizes when each unique
The machine has 2 GB of memory and a 2.26 GHz Intel Core file descriptoris closed. We categorize sizes as very sriadi{B),

DUO processor. small (< 64KB), medium & 1MB), large & 10MB), or very large
] (> 10MB). We track how many accesses are to files in each cate-
4.1 Nature of Files gory and how many of the bytes belong to files in each category.

Our analysis begins by characterizing the high-level behavior of ~ Figure 4 shows the number of accesses to files of each size. Ac-
the iBench tasks. In particular, we study the different types of files C€SSes to very small files are extremely common, especially for

opened by each iBench task as well as the sizes of those files. iWork, accounting for over half of all the accesses in every iWork
task. Small file accesses have a significant presence in the iLife
4.1.1 FileTypes tasks. The large quantity of very small and small files is due to

The iLife and iWork applications store data across a variety of freql.Jent. use of .plist fileg that storej preferences, settings, and othe
files in a number of different formats; for example, iLife applica- @PPlication data; these files often fill just one or two 4 KB pages.
tions tend to store their data in libraries (or data directories) unique Figure 5 shows the proportion of the files in which the bytes of
to each user, while iWork applications organize their documents in @cceéssed files reside. Large and very large files dominate every
proprietary ZIP-based files. The extent to which tasks access dif- Startup workload and nearly every task that processes multimedia
ferent types of files greatly influences their 1/0 behavior. files. small flle.s.account for few bytes and very small files are

To understand accesses to different file types, we place each file€SSentially negligible.] _
into one of six categories, based on file name extensions and us-, Summary: Agreeing with many previous studies (e.g., [4]), we
age. Multimedia files contain imagese(g., JPEG), songse(., find that while applications tend to open many very small files
MP3, AIFF), and moviesgg., MPEG-4). Productivity files are (< 4 KB), most of the bytes accessed are in large fited (MB).
documentség., .pages, DOC, PDF), spreadsheetg.(.numbers,

XLS), and presentationg.¢., .key, PPT)SQLite files are database 4.2 Access Patterns

files. Plist files are property-list files in XML containing key-value We next examine how the nature of file accesses has changed,
pairs for user preferences and application propert&sngs files studying the read and write patterns of home applications. These
contain strings for localization of application text. Final@ther patterns include whether files are used for reading, writing, or both;
contains miscellaneous files such as plain text, logs, files without Whether files are accessed sequentially or randomly; and finally,
extensions, and binary files. whether or not blocks are preallocated via hints to the file system.

Figure 2 shows the frequencies with which tasks open and ac- .
cess files of each type; most tasks perform hundreds of these ac-4-2.1 File Accesses
cesses. Multimedia file opens are common in all workloads, though ~ One basic characteristic of our workloads is the division between
they seldom predominate, even in the multimedia-heavy iLife ap- reading and writing on open file descriptors. If an application uses
plications. Conversely, opens of productivity files are rare, even in an open file only for reading (or only for writing) or performs more
iWork applications that use them; this is likely because mostiWork activity on file descriptors of a certain type, then the file system
tasks create or view a single productivity file. Because .plist files may be able to make more intelligent memory and disk allocations.
act as generic helper files, they are relatively common. SQLite files To determine these characteristics, we classify each opened file
only have a noticeable presence in iPhoto, where they account fordescriptor based on the types of accesses—read, write, or both read
a substantial portion of the observed opens. Strings files occupy aand write—performed during its lifetime. We also ignore the ac-
significant minority of most workloads (except iPhoto and iTunes). tual flags used when opening the file since we found they do not
Finally, between 5% and 20% of files are of type “Other” (except accurately reflect behavior; in all workloads, almost all write-only
for iTunes, where they are more prevalent). file descriptors were opened with RDWR. We measure both the

N muttimedia [l productivity 7 plist W salite B strings other W multimedia productivity 47 plist W salite & strings other

v,

2elEs 0,828 Soee 22,2 o 2eefe oo 292
S55aNS S%ngs 2833 N8hgI8NE 853N 2888338 200975 38333 3928 23233983 3332 2232338
1009% b 100% =
Y § Wk
5 & 5 W Y KV
7 i Bee 7 WY WS
80% 7 2//’/ Z %%%g 7% s 80% %%%% %%%%
\ 58 7 M7 7555 7/REE WY NN
W ., 7 0 ki NWIRNNEEE | B !
s 10N\ % 747 7% %§?5g%éé N 7 %] WVN BN Y 7.\ : A
22 7777 NN, NN §77 NN ENNY Y 2 PN Z \
Ui AN N WA RIS Y HIN
N EY 2 AN RN N NANENNEY | INNIIZZR & B\ N
N X777 7777 NONN, NN eWGss” NN NEANMNERNR NN \
/ 7z /
20%10NNNZ N77 72777 ‘NN NN BENNS 777 407 WNY 738NN © Y WA Z2 N N
NN BN/ ANANARNNE YA NN NARNEING AN ANN
W7 NS 7777 NN, NN 8NN/ 777 AR NARNEING NAA AN N
W7 NN, 7777 NN NN ENN7777 AR NPANNEING WA N 2 N N
NN N NN NV AR NEANNEING NN R N
NN AR NN NV N NIARNERNRNEN NN N NN
AN NN N7 NMMNMMNRRNNNEINN A NEARYNENREN N N NS N N
20% 1 0NN A 77 NN 1IN ANVAA PR NN NIARRNENGREN NN NERKONNE T TNN
AN NIRRT RRTTIANT R N NIRRT N AN AR | L SN
NN NI ANV RTTA TR SRNY 7888Y D) ENNNNNNY NANY ZAENWN
A AT T I R AR N VAT MMM RN
RN AN NI NN o5 LANZY ZDNDY SMGY GORNRRNY DAY SMANNY
0':0.::.%7,3) £239 tg=zauaooa £g£=0 tSxa=saba O':D-g-%ﬁg EQSQs £28g tgsauaoa £o=0 :>&;a.»—n.
§E3E3% Bizgr SERS SREIRASd SRER BEMETH §E3E3E Bizgr BERS SREIRASh SRR BEMEEH
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keyno

Figure 2: Types of Files Accessed By Number of Opens.This Figure 3: Types of Files Opened By /O Size. This plot shows

plot shows the relative frequency with which file descriptors are the relative frequency with which each task performs 1/0 upon dif-
opened upon different file types. The number at the end of each barferent file types. The number at the end of each bar indicates the
indicates the total number of unique file descriptors opened on files. total bytes of /0 accessed.

W <s Y <64xB M <wvs <10MB >=10MB W <8 Y <64kB M <wve <10MB >=10MB
~N o oo oooom o mm 2] o 0o o o mmmmmmm
238983 wa o, g3ne msrswesy Sron gosodcg g3adee R3333 53°2 Fooswfod Jomo 3232E0F
% % W22 2 !!; 2%
% % 7
. ‘'t 11
80%1% i %9447 7575 WK 80% 1
% 7 %% A 0 7 %247
Z % 1 WA ¥ %
Y 2 a
60%-%%% é 2 60% - 0
724787 %
2947%% % %
22770% % %
W 7
w155k W2 a0 2
7 7 2 AN
7 7 %% % %
20%- ?é 2 20%- % g g /éé
% %% % % %% %
7% 72 %% %
%%
0%-&:0.%%33 tnsns t© %% tggn_L.Ln_on_ tggm >0 200 OOAJ-X:Q_%%B; NSNS cng% &:ggn_u_u_on_ 1:5;(/) t>0 200
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keynote

Figure 4: File Sizes, Weighted by Number of AccessesThis Figure 5: File Sizes, Weighted by the Bytes in Accessed Files.
graph shows the number of accessed files in each file size rangeThis graph shows the portion of bytes in accessed files of each size
upon access ends. The total number of file accesses appears at thenge upon access ends. The sum of the file sizes appears at the
end of the bars. Note that repeatedly-accessed files are countednd of the bars. This number differs from total file footprint since
multiple times, and entire file sizes are counted even upon partial files change size over time and repeatedly accessed file are counted
file accesses. multiple times.

proportional usage of each type of file descriptor and the relative ~ Summary: While many files are opened with tl@RDWR flag,
amount of 1/0 performed on each. most of them are subsequently accessed write-only; thus, file open
Figure 6 shows how many file descriptors are used for each type flags cannot be used to predict how a file will be accessed. How-
of access. The overwhelming majority of file descriptors are used ever, when an open file is both read and written by a task, the
exclusively for reading or writing; read-write file descriptors are amount of traffic to that file occupies a significant portion of the to-
quite uncommon. Overall, read-only file descriptors are the most tal /0. Finally, the rarity of read-write file descriptors may derive
common across a majority of workloads; write-only file descriptors in part from the tendency of applications to write to a temporary
are popular in some iLife tasks, but are rarely used in iWork. file which they then rename as the target file, instead of overwriting
We observe different patterns when analyzing the amount of I/O the target file; we explore this tendency mor&4n3.2.
performed on each type of file descriptor, as shown in Figure 7.
First, even though iWork tasks have very few write-only file de- 422 Sequentiality
scriptors, they often write significant amounts of /O to those de-
scriptors. Second, even though read-write file descriptors are rare,
when present, they account for relatively large portions of total 1/0
(particularly when exporting to .doc, .xls, and .ppt).

Historically, files have usually been read or written entirely se-
qguentially [4]. We next determine whether sequential accesses are
dominant in iBench. We measure this by examining all reads and
writes performed on each file descriptor and noting the percentage

. Read Only . Both Write Only . Read Only Z Both (Reads) § Both (Writes) Write Only

5% 2,0308 Jooo 02 2 o 20280 2,202
03R3IY wo ©MNO OANNLIAN ONMN LD M 00O SoapsS8 UFSSS SS05 VFVSSSNS V00D VASDZSH
ARNOOD OMNOD DXTT NOWDHOANL OO 0REOO D DOOANSE ZOMHON ON=M =0=2YTHON ==== ==20=00WN
WOW—HAM —A-HN0O© MO NAHDADAHD MAMN OMHMOIOIOOD NTNANA ONTOM N—HANN NODAADAAd MMM AW~

100% A 100% A R N 1
N > N
NH | I \
N P N
N N N
80% 80%1 3 N\ N 2
| \ \ A
\ N N
60% 60% N 3
\
40% A 40% A N
\
N
20% A 20% A 7
0% Cessss £0s0s 528% 553LAES% E5E% EATISHE 0% Cesszs rus0s tege gozeinn £5E9 Epazern
a-0US BEEFE a=<b 6523egRg B anglseg o OFTS @fEgf o-% wgezegag woeX aigegty
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keynote
Figure 6: Read/Write Distribution By File Descriptor. File de- Figure 7: Read/Write Distribution By Bytes. The graph shows

scriptors can be used only for reads, only for writes, or for both how 1/O bytes are distributed among the three access categories.
operations. This plot shows the percentage of file descriptors in The unshaded dark gray indicates bytes read as a part of read-only
each category. This is based on usageap&n flags. Any dupli- accesses. Similarly, unshaded light gray indicates bytes written in

cate file descriptors(g., created bylup) are treated as one and file write-only accesses. The shaded regions represent bytes touched
descriptors on which the program does not perform any subsequentin read-write accesses, and are divided between bytes read and

action are ignored. bytes written.
. Sequential Z Nearly Sequential Non-sequential . Sequential Z Nearly Sequential Non-sequential
o
o o o momOm _.mno s [2a] om o oo o
o s Somn oo S eesleaovs o o m S oo oo no S ComoyYo o OV oo o
208822 Sbaz> 2225 S0HSH23Y 2232 £522233 028922 22292 $=95 Q080> XU3n 99s3s2=
ANM—HONO D O NON NO A NSO MN0 MMM =IO MWW DHOT N <TONMN AN A MOANNOM N~ —MAN— NO—HATONLD
100%9 v . E 100% 1 / 7
7 7 7 27 7
7 7 7 77 7
7 7 7 27 7
X % 2
80% %07 % w4 80%- W77 7
M ! 7 7 /
AV / A P ?
.l 7 ¥ 7 ol B0 717 V
60% 170 7 W’ / 60% 1 Y AV 7
T i ’
7 7 AV ; 7
a0% {117 g 40%-2 é 2 7 2
2 WX
7 X
20% 7 20% 707
7 1
Z Z
7 7
0% - toorg2 LOSWS LoUQ to=20Lnn EC20) £>0 200 0% - toorg2 LCOSNS Lo0Q tCo2aLnQn EC20) L>0 200
5E3U8E Rz 450 G323Rpsg S fogiiny #E3USE EEgr 550 3523R5S8 FBER Aesiity
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keynote

Figure 8: Read Sequentiality. This plot shows the portion of file Figure 9:Write Sequentiality. This plot shows the portion of file
read accesses (weighted by bytes) that are sequentially accessed. write accesses (weighted by bytes) that are sequentially accessed.

of files accessed in strict sequential order (weighted by bytes). The slashed portions of the bars in Figures 8 and 9 show ob-

We display our measurements for read and write sequentiality served sequentiality with a 95% threshold. Tasks with heavy use of
in Figures 8 and 9, respectively. The portions of the bars in black multimedia files exhibit greater sequentiality with the 95% thresh-
indicate the percent of file accesses that exhibit pure sequentiality.old for both reading and writing. In several workloads (mainly
We observe high read sequentiality in iWork, but little in iLife (with iPhoto and iTunes), the I/O classified almost entirely as non-sequential
the exception of the Start tasks and iTunes Import). The inverse is with a 100% threshold is classified as nearly sequential. The dif-
true for writes: most iLife tasks exhibit high sequentiality; iWork ference for iWork applications is much less striking, indicating that
accesses are largely non-sequential. accesses are more random.

Investigating the access patterns to multimedia files more closely, Summary: A substantial number of tasks contain purely sequen-
we note that many iLife applications first touch a small header be- tial accesses. When the definition of a sequential access is loosened
fore accessing the entire file sequentially. To better reflect this be- such that only 95% of bytes must be consecutive, then even more
havior, we define an access to a file as “nearly sequential” when attasks contain primarily sequential accesses. These “nearly sequen-
least 95% of the bytes read or written to a file form a sequential run. tial” accesses result from metadata stored at the beginning of com-
We found that a large number of accesses fall into the “nearly se- plex multimedia files: tasks frequently touch bytes near the begin-
guential” category given a 95% threshold; the results do not change ning of multimedia files before sequentially reading or writing the
much with lower thresholds. bulk of the file.

. Useful

[os]
=
©
©
=)

z Unnecessary

100%

80%

60%

40%

20% A

0% -

Dell174KB
View|1KB
XLS|192B
PPT|384B
PPTP(384B

. Start|992B
New

DOCP|192B
Start
Open

Figure 10: Preallocation Hints. The sizes of the bars indicate
which portion of file extensions are preallocations; unnecessary
preallocations are diagonally striped. The number atop each bar
indicates the absolute amount preallocated.

4.2.3 Preallocation

One of the difficulties file systems face when allocating contigu-
ous space for files is not knowing how much data will be written
to those files. Applications can communicate this information by
providing hints [27] to the file system to preallocate an appropriate
amount of space. In this section, we quantify how often applica-
tions use preallocation hints and how often these hints are useful.

We instrument two calls usable for preallocatigpwr i t e and
ftruncate. pw it e writes a single byte at an offset beyond the
end of the file to indicate the future end of the fife;r uncat e
directly sets the file size. Sometimes a preallocation does not com-
municate anything useful to the file system because it is immedi-
ately followed by a single write call with all the data; we flag these
preallocations as unnecessary.

Figure 10 shows the portion of file growth that is the result of pre-
allocation. In all cases, preallocation was due to calisvioi t e;
we never observetit r uncat e preallocation. Overall, applica-
tions rarely preallocate space and preallocations are often useless.

The three tasks with significant preallocation are iPhoto Dup,
iPhoto Edit, and iMovie Exp. iPhoto Dup and Edit both call a
copyPat h function in the Cocoa library that preallocates a large
amount of space and then copies data by reading and writing it
in 1 MB chunks. iPhoto Dup sometimes usagy Pat h to copy

plications require writes to be durable; that is, how frequently they
invoke calls tdf sync and which APIs perform these calls. We also
investigate the atomicity requirements of the applications, whether
from renaming files or exchanging inodes.

4.3.1 Durability

Writes typically involve a trade-off between performance and
durability. Applications that require write operations to complete
quickly can write data to the file system’s main memory buffers,
which are lazily copied to the underlying storage system at a sub-
sequent convenient time. Buffering writes in main memory has a
wide range of performance advantages: writes to the same block
may be coalesced, writes to files that are later deleted need not be
performed, and random writes can be more efficiently scheduled.

On the other hand, applications that rely on durable writes can
flush written data to the underlying storage layer with tisg/nc
system call. The frequency d6ync calls and the number of bytes
they synchronize directly affect performance:fifync appears
often and flushes only several bytes, then performance will suffer.
Therefore, we investigate how modern applicationsfusgnc.

Figure 11 shows the percentage of written data each task syn-
chronizes withf sync. The graph further subdivides the source of
the f sync activity into six categories. QLite indicates that the
SQLite database engine is responsible for calfisync; Archiv-
ing indicates an archiving library frequently used when access-
ing ZIP formats;Pref Sync is thePr ef er encesSynchr oni ze
function call from the Cocoa libraryyriteToFile is the Cocoa call
wri t eToFi | e withtheat omi cal | y flag set; and finallyFlush-

Fork is the Carbor=SFI ushFor k routine.

At the highest level, the figure indicates that half the tasks syn-
chronize close to 100% of their written data while approximately
two-thirds synchronize more than 60%. iLife tasks tend to syn-
chronize many megabytes of data, while iWork tasks usually only
synchronize tens of kilobytes (excluding tasks that handle images).

To delve into the APIs responsible for theync calls, we ex-
amine how each bar is subdivided. In iLife, the sourcesfnc
calls are quite varied: every category of API except for Archiving
is represented in one of the tasks, and many of the tasks call mul-
tiple APIs which invokef sync. In iWork, the sources are more
consistent; the only sources are Pref Sync, SQLite, and Archiving
(for manipulating compressed data).

Given that these tasks require durability for a significant per-
centage of their write traffic, we next investigate the frequency of
f sync calls and how much data each individual call pushes to disk.
Figure 12 groupd sync calls based on the amount of /O per-
formed on each file descriptor whésync is called, and displays

scaled-down images of size 50-100 KB; since these smaller files arethe relative percentage each category comprises of the total I/0.

copied with a single write, the preallocation does not communicate
anything useful. iMovie Exp calls a Quicktime append function

These results show that iLife tasks caflync frequently (from
tens to thousands of times), while iWork tasks dalync infre-

that preallocates space before writing the actual data; however, thequently except when dealing with images. From these observa-
data is appended in small 128 KB increments. Thus, the append istions, we infer that calls tbsync are mostly associated with me-

not split into multiplewr i t e calls; the preallocation is useless.
Summary: Although preallocation has the potential to be use-
ful, few tasks use it to provide hints, and a significant number of the

hints that are provided are useless. The hints are provided inconsis-

tently: although iPhoto and iMovie both use preallocation for some
tasks, neither application uses preallocation during import.

4.3 Transactional Properties

In this section, we explore the degree to which the iBench tasks
require transactional properties from the underlying file and stor-
age system. In particular, we investigate the extent to which ap-

dia. The majority of calls td sync synchronize small amounts of
data; only a few iLife tasks synchronize more than a megabyte of
data in a singlé sync call.

Summary: Developers want to ensure that data enters stable
storage durably, and thus, these tasks synchronize a significant frac
tion of their data. Based on our analysis of the sourcéafnc
calls, some calls may be incidental and an unintentional side-effect
of the API .g., those from SQLite or Pref Sync), but most are
performed intentionally by the programmer. Furthermore, some of
the tasks synchronize small amounts of data frequently, presenting
a challenge for file systems.

W sotite [l Prefsync 144 Archiving FH writeToFile 77 FlushFork [l Other No fsync

A\
&

W <sks Y <64kB M <wvs <10MB >=10MB

s}
=
<

95
15

0

3
25
10
50

100% 100%

NN\ 63

NRONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 185

Exp N1 NN —

80% 80%

NNNNNNNNN\N! 8434
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNY 1634

i Start NI 53
1MPS AN EN—

60% 60%

NNNNNNNNNNNNNNNNNNNNNN 2856
NNNNNNNNNNNNNY

NN 11771
1E AN NN\ 19025

NANNNNNNNNNNNNNNNNNNNNNNNY 1259

40% 40% A

NNNNNNNNNNNNNNNNNNNNNNNNNNY 6

20% A 20% A

AT TN, g9mB
NN 22MB

S AN NN\ 117

EEEVVINNNNNNNNNNN el

NI/

PM RN 32

NN % Z

0% Eoazes sz 0% Egs=g: 5020% 5eEc E5gLALRS 5§34 5ELilhE
SEZZOZ 825 SERZQD S E 82D 00 S23d SE>p
n-0WTsS GHEE p—0ow=s §§ n=< (/)8‘2%)!1808 »8zX wagzgu&
iPhoto iTun iPhoto iTunes iMovie Pages Numbers Keynote

Figure 11: Percentage of Fsync Bytes. The percentage of Figure 12:Fsync Sizes.This plot shows a distribution dfsync
f sync’d bytes written to file descriptors is shown, broken down sizes. The total number dfsync calls appears at the end of
by cause. The value atop each bar shows total bytes synchronizedthe bars.

B Rename (same dir) % Rename (diffdir) [l Exchange Not atomic W Prefsync 7 wiiteTorFile [l movePath N FSRenameUnicode Other
l\ggiﬂg DI~ 00N~ LD£ - © O - r\ggﬁmg oL LD% b=l © © -
0/ - NEASTWDAA NNATd ONHO —AANONONNS M- NN WO 0/ NAT A N(\!HN\—G ON—H HHl\Oﬁwle\ M= —NN0WWWO
100% % ? 100% Z s Zz 27
Z % % /! N %7 7
7 AR Ml N 1\l
AW N Z 2
80%{ % 2 2 80% 1170 R A I
7 Al il R AN
P 707 N Z Z
% % % % WAl N 7 7
% % 2 % 21 N 7 %
60% - g g g g 60%171" é g g
7 V Z A Z %
%% 9 2 % X 7
% % % % %% 7 7
0% % g g g gg aon {7 % 7
7
% % % % %% 7 2
1 nun
20%7 % 2 g g gg 20% % % 7
% % % % 7 7
A é 7 z
0% - tooEg=2 ENSYS £Q0Q £Cc32QUL000 E£S=30) £>030k-0 0% - tooXg=2 EWSYS £Q20Q £Cc30UL000 ES30) £E>030k-0
555858 JEBEz #5%0 §5230588 &% Augisap L5382 JEBeE 85%0 32250883 88%% AdEiitg
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keynote

Figure 13: Atomic Writes. The portion of written bytes written Figure 14: Rename Causes. This plot shows the portion of
atomically is shown, divided into groups: (Lenane leaving a renane calls caused by each of the top four higher level func-
file in the same directory; (2) enane causing a file to change tions used for atomic writes. The numbenrafnane calls appears
directories; (3)exchangedat a which never causes a directory at the end of the bars.

change. The atomic file-write count appears atop each bar.

432 Atomic Writes Figure 13 shows how much write 1/0 is performed atomically

Applications often require file changes to be atomic. In this sec- With rename orexchangedat a; r enane calls are further sub-
tion, we quantify how frequently applications use different tech- divided into those which keep the file in the same directory and
niques to achieve atomicity. We also identify cases where perform- those which do not. The results show that atomic writes are quite
ing writes atomically can interfere with directory locality optimiza- ~ Popular and that, in many workloads, all the writes are atomic. The
tions by moving files from their original directories. Finally, we breakdown of each bar shows thatnane is frequent; a signifi-

identify the causes of atomic writes. cant minority of ther enane calls move files between directories.
Applications can atomically update a file by first writing the de- €Xchangedat a is rare and used only by iTunes for a small frac-

sired contents to a temporary file and then using either déreane tion of file updates. S

orexchangedat a call to atomically replace the old file with the We find that most of theenamne calls causing directory changes

new file. Withr ename, the new file is given the same name as the Occur when a filegg., a document or spreadsheet) is saved at the

old, deleting the original and replacing it. Wiéxchangedat a, user's request. We suspect different directories are used so that

the inode numbers assigned to the old file and the temporary file areusers are not confused by seeing temporary files in their personal
swapped, causing the old path to point to the new data; this allows directories. Interestingly, atomic writes are performed when files

the file path to remain associated with the original inode number, are saved to Apple formats, but not when exporting to Microsoft
which is necessary for some applications. formats. We suspect that the interface between applications and the

Microsoft libraries does not specify atomic operations well.

. AlO Reads / All Reads . Primary . Secondary Others

o
=

=1 NI
g g g';?rr';grx wgggm nowomwO vﬁv‘gﬁgﬁ: Mm—HOm NSTIONNOO
100% A @] 100% A “mE m==-— 1 M FBtel T SE=E ETSo=r=
Q gl N
oQ R | | §
80% o 2 80% % =
8 2 1 i
N ﬁ | |
60% 60%
40% A 40% A
20% - o 20%
g o] ol m
o % % Y
0% 4 B F 0%
0 =oorg2 tosws £o0Q tc=alnon Sc=S0 C>Q=aFo 0T oorg2 tusSsS £9Dg to:aL000 EE30) E>QIQF0
SERTAT S95z> SEQX S303:0L00 S8og SE¥>vzar SEITOZ 895> SEQF S8203:0uQ0 SLod SE=cza
E=Yayi] 9 p=p-¢n] Q. Q. [5) EAQuw) p=pgn| Q. Q. [
4] S t{)ggag u) ‘ ‘”022‘1208 mozx maazg&& N S wgga&s m . moZ%:LEDg woz>< (/)CLEZgD_&
iPhoto iTunes iMovie Pages Numbers Keynote iPhoto iTunes iMovie Pages Numbers Keynote

Figure 15: Asynchronous Reads. This plot shows the percent- Figure 16:1/O Distribution Among Threads. The stacked bars

age of read bytes read asynchronously aia_r ead. The total indicate the percentage of total I/O performed by each thread. The

amount of asynchronous I/O is provided at the end of the bars. 1/0O from the threads that do the most and second most I/O are dark
and medium gray respectively, and the other threads are light gray.
Black lines divide the I/0 across the latter group; black areas appear

Figure 14 identifies the APIs responsible for atomic writes via when numerous threads do small amounts of I/O. The total number
renane. Pref Sync, from the Cocoa library, allows applications of threads that perform I/O is indicated next to the bars.
to save user and system wide settings in .plist filégiteToFile

andmovePath are Cocoa routines arfeBRenameUnicode is a Car- M Readony [l Bon wite Only
bon routine. A solid majority of the atomic writes are caused by
Pref Sync; this is an example of I/O behavior caused by the API 100% - FEEEB. 0B8YT0 womo cacaNaT maom caTbmmoo

rather than explicit programmer intention. The second most com-
mon atomic writer is writeToFile; in this case, the programmer is
requesting atomicity but leaving the technique up to the library. 80% -
Finally, in a small minority of cases, programmers perform atomic
writes themselves by calling movePath or FSRenameUnicode, both ¢, |
of which are essentiallyenane wrappers.

Summary: Many of our tasks write data atomically, generally
doing so by callingr enarme. The bulk of atomic writes result 40% 1
from API calls; while some of these hide the underlying nature
of the write, others make it clear that they act atomically. Thus, 20
developers desire atomicity for many operations, and file systems
will need to either address the ensuing renames that accompany it
or provide an alternative mechanism for it. In addition, the absence
of atomic writes when writing to Microsoft formats highlights the
inconsistencies that can result from the use of high level libraries.

0%- E
& (-2

oo o
iPhoto iTunes iMovie Pages Numbers Keynote

=
EZ

layS
ayM
Start

Exp
Start

2
[}
Z

XLS
Start

[
o
a

Start

S salL
g% 20
oZ%CL

PPTP

c Q
g g
] z
[0}

.. Figure 17: Thread Type Distribution. The plot categorizes
4.4 Threads and Asynchronicity threads that do 1/O into three groups: threads that read, threads
Home-user applications are interactive and need to avoid block- that write, or threads that both read and write. The total number of
ing when I/O is performed. Asynchronous I/O and threads are of- threads that perform 1/O is indicated next to the bars.
ten used to hide the latency of slow operations from users. For our
final experiments, we investigate how often applications use asyn-

chronous I/O libraries or multiple threads to avoid blocking. number of threads are responsible for the majority of 1/0.
Figure 15 shows the portion of read operations performed asyn- Figure 17 shows the responsibilities of each thread that performs
chronously withai o_r ead; none of the tasks usa o.write. 1/0, where a thread can be responsible for reading, writing, or both.

We find that asynchronous I/O is used rarely and only by iLife The measurements show that significantly more threads are devoted
applications. However, in those cases where asynchronous I/O isto reading than to writing, with a fair number of threads responsi-
performed, it is used quite heavily. ble for both. These results indicate that threads are the preferred
Figure 16 investigates how threads are used by these tasks: specifechnique to avoiding blocking and that applications may be partic-
ically, the portion of I/O performed by each of the threads. The ularly concerned with avoiding blocking due to reads.
numbers at the tops of the bars report the number of threads per- Summary: Our results indicate that iBench tasks are concerned
forming 1/0O. iPhoto and iTunes leverage a significant number of with hiding long-latency operations from interactive users and that
threads for 1/0O, since many of their tasks are readily subdivided threads are the preferred method for doing so. Virtually all of the
(e.g., importing 400 different photos). Only a handful of tasks per- applications we study issue I/0 requests from multiple threads, and
form all their I/O from a single thread. For most tasks, a small some launch I/Os from hundreds of different threads.

5. RELATED WORK to expose new interfaces to enable applications to better express
Although our study is unique in its focus on the 1/O behavior their exact needs and desires for durability, consistency, and atom-

of individual applications, a body of similar work exists both in iCity. Another possibility is that new technologies, such as flash and
the field of file systems and in application studies. As mentioned Other solid-state devices, will be a key solution, allowing writes to
earlier, our work builds upon that of Baker [4], Ousterhout [25], Pe buffered quickly, perhaps before being staged to disk or even
Vogels [39], and others who have conducted similar studies, pro- the cloud.) _ _
viding an updated perspective on many of their findings. However, The iBench tasks also illustrate that file systems are now being
the majority of these focus on academic and engineering environ- treated as repositories of highly-structured “databases” managed by
ments, which are likely to have noticeably different application pro- the applications themselves. In some cases, data is stored in a lit-
files from the home environment. Some studies, like those by Ra- €ral databases@,, iPhoto uses SQLite), but in most cases, data is
makrishnan [31] and by Vogels, have included office workloads on Organized in complex directory hierarchies or within a single file
personal computers; these are likely to feature applications simi- (69., @ .doc file is basically a mini-FAT file system). One option
lar to those in iWork, but are still unlikely to contain analogues to S that the file system could become more application-aware, tuned
iLife products. None of these studies, however, look at the charac- to understand important structures and to better allocate and access
teristics of individual application behaviors; instead, they analyze these structures on disk. For example, a smarter file system could
trends seen in prolonged usage. Thus, our study complements thdMprove its allocation and prefetching of “files™ within a .doc file:
breadth of this research with a more focused examination, provid- S€emingly non-sequential patterns in a complex file are easily de-
ing specific information on the causes of the behaviors we observe, constructed into accesses to metadata followed by streaming se-
and is one of the first to address the interaction of multimedia ap- duential access to data.
plications with the file system. Our analysis also revealed the strong impact that frameworks and
In addition to these studies of dynamic workloads, a variety of libraries have on I/0 behavior. Traditionally, file systems have been
papers have examined the static characteristics of file systems, startdesigned at the level of the VFS interface, not breaking into the
ing with Satyanarayanan’s analysis of files at Carnegie-Mellon Uni- libraries themselves. However, it appears that file systems now
versity [36]. One of the most recent of these examined metadataNeed to take a more “vertical” approach and incorporate some of
characteristics on desktops at Microsoft over a five year time span, the functionality of modem libraries. This vertical approach hear-
providing insight into file-system usage characteristics in a setting kens back to the earliest days of file-system development when the
similar to the home [2]. This type of analysis provides insight into developers of FFS modlflgd standard libraries to buffer writes in
long term characteristics of files that ours cannot; a similar study block-sized chunks to avoid costly sub-block overheads [21]. Fu-
for home systems would, in conjunction with our paper, provide a fure storage systems should further integrate with higher-level in-
more complete image of how home applications interact with the terfaces to gain deeper understanding of application desires.
file system. Finally, modern applications are highly complex, containing mil-
While most file-system studies deal with aggregate workloads, I!onslof lines of gode, divided over hundreds of source files and
our examination of application-specific behaviors has precedent in libraries, and written by many different programmers. As a re-
a number of hardware studies. In particular, Flauteteal.’s [13] sult, their own behavior is increasingly inconsistent: along sim-
and Blakeet al.’s [6] studies of parallelism in desktop applications ilar, but distinct code paths, different libraries are invoked with
bear strong similarities to ours in the variety of applications they different transactional semantics. To simplify these applications,
examine. In general, they use a broader set of applications, a di-file Systems could add higher-level interfaces, easing construction
ference that derives from the subjects studied. In particular, we @nd unifying data representations. While the systems community
select applications likely to produce interesting 1/0 behavior; many has developed influential file-system concepts, little has been done
of the programs they use, like the video game Quake, are more o transition this class of improvements into the app_llcatlons them-_
likely to exercise threading than the file system. Finally it is worth Selves. Database technology does support a certain class of appli-
noting that Blakest al. analyze Windows software using event trac- ~ cations quite well but is generally too heavyweight. Future storage

ing, which may prove a useful tool to conduct a similar application Systems should consider how to bridge the gap between the needs of
file-system study to ours in Windows. current applications and the features low-level systems provide.

Our evaluation may raise more questions than it answers. To
build better systems for the future, we believe that the research

6. DISCUSSION AND CONCLUSIONS community must study applications that are important to real users.

We have presented a detailed study of the /O behavior of com- We believe the iBench task suite takes a first step in this direction

plex, modem applications. Through our measurements, we haveand hope others in the community will continue along this path.
discovered distinct differences between the tasks in the iBench suite
and traditional workload studies. To conclude, we consider the pos- ACknOWIedgmentS
sible effects of our findings on future file and storage systems. We thank the anonymous reviewers and Rebecca Isaacs (our shep-
We observed that many of the tasks in the iBench suite frequently herd) for their tremendous feedback, as well as members of our
force data to disk by invoking sync, which has strong impli- research group for their thoughts and comments on this work at
cations for file systems. Delayed writing has long been the basis various stages.
of increasing file-system performance [34], but it is of greatly de- This material is based upon work supported by the National Sci-
creased utility given small synchronous writes. Thus, more study ence Foundation under CSR-1017518 as well as by generous dona-
is required to understand why the developers of these applicationstions from Network Appliance and Google. Tyler Harter and Chris
and frameworks are calling these routines so frequently. For ex- Dragga are supported by the Guri Sohi Fellowship and the David
ample, is data being flushed to disk to ensure ordering betweenDeWitt Fellowship, respectively.
writes, safety in the face of power loss, or safety in the face of Any opinions, findings, and conclusions or recommendations ex-
application crashes? Finding appropriate solutions depends uponpressed in this material are those of the authors and do not neces-
the answers to these questions. One possibility is for file systemssarily reflect the views of NSF or other institutions.

7. REFERENCES

[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Generating Realistic Impressions for File-System
Benchmarking. IFFAST ' 09, San Jose, CA, February 2009.

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A

Five-Year Study of File-System Metadata.RFAST '07, San

Jose, CA, February 2007.

Apple Computer, Inc. AppleScript Language Guide, March

2011.

M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ouster-

hout. Measurements of a Distributed File SystemSDSP

'91, pages 198-212, Pacific Grove, CA, October 1991.

W. Bartlett and L. Spainhower. Commercial Fault Tolerance:

A Tale of Two SystemslEEE Transactions on Dependable

and Secure Computing, 1(1):87-96, January 2004.

G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evo-

lution of Thread-level Parallelism in Desktop Applications.

S GARCH Comput. Archit. News, 38:302—-313, June 2010.

J. Bonwick and B. Moore. ZFS: The Last Word

in File Systems. http://opensolaris.org/os/community/

zfs/docs/zfdast.pdf, 2007.

B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic In-

strumentation of Production Systems.WISENIX ' 04, pages

15-28, Boston, MA, June 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s Highly Available Key-

Value Store. IlTSOSP ' 07, Stevenson, WA, October 2007.

J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-

System Contents. IBGMETRICS’ 99, pages 59-69, Atlanta,

GA, May 1999.

[11] D. Ellard and M. I. Seltzer. New NFS Tracing Tools and Tech-
niques for System Analysis. IblSA 03, pages 73-85, San
Diego, CA, October 2003.

[12] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using La-
tency to Evaluate Interactive System PerformanceO8DI
'96, Seattle, WA, October 1994,

[13] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-
level Parallelism and Interactive Performance of Desktop Ap-
plications. S/ GPLAN Not., 35:129-138, November 2000.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. INSOSP ' 03, pages 29-43, Bolton Landing, NY, Oc-
tober 2003.

[15] R. Hagmann. Reimplementing the Cedar File System Us-
ing Logging and Group Commit. I80SP ’87, Austin, TX,
November 1987.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File SysterACM Transactions on
Computer Systems, 6(1), February 1988.

[17] B. Lampson. Computer Systems Research — Past and Presen
SOSP 17 Keynote Lecture, December 1999.

[18] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual
Disks. INASPLOSVII, Cambridge, MA, October 1996.

[19] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller.
Measurement and Analysis of Large-Scale Network File Sys-
tem Workloads. IVSENIX' 08, pages 213-226, Boston, MA,
June 2008.

[20] Macintosh Business Unit (Microsoft). It's all in the num-
bers... blogs.msdn.com/b/macmojo/archive/2006/11/03/it-s-
all-in-the-numbers.aspx, November 2006.

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

[21] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
Fast File System for UNIXACM Transactions on Computer
Systems, 2(3):181-197, August 1984.

[22] J.C. Mogul. A Better Update Policy. MSENIX Summer " 94,
Boston, MA, June 1994.

[23] J. Olson. Enhance Your Apps With File System Transactions.
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx,
July 2007.

[24] J. Ousterhout. Why Threads Are A Bad Idea (for most pur-
poses), September 1995.

[25] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of
the UNIX 4.2 BSD File System. I80SP ' 85, pages 15-24,
Orcas Island, WA, December 1985.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). IBIGMOD ’88, pages
109-116, Chicago, IL, June 1988.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and CachingSDSP ' 95,
pages 79-95, Copper Mountain, CO, December 1995.

[28] R. Pike. Another Go at Language Design.
http://www.stanford.edu/class/ee380/Abstracts/100428.html,
April 2010.

[29] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis and Evolution of Journaling File Systems.
In USENIX ' 05, pages 105-120, Anaheim, CA, April 2005.

[30] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. '80SP ' 05, pages 206-220, Brighton,
UK, October 2005.

[31] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis
of File I/O Traces in Commercial Computing Environments.
S GMETRICS Perform. Eval. Rev., 20:78-90, June 1992.

[32] D. M. Ritchie and K. Thompson. Thenix Time-Sharing
System. InNSOSP ' 73, Yorktown Heights, NY, October 1973.

[33] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison
of File System Workloads. IWSENIX 00, pages 41-54, San
Diego, CA, June 2000.

[34] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File Syste®CM Transactions on
Computer Systems, 10(1):26-52, February 1992.

[35] R. Sandberg. The Design and Implementation of the Sun Net-
work File System. IrProceedings of the 1985 USENIX Sum-
mer Technical Conference, pages 119-130, Berkeley, CA,
June 1985.

[36] M. Satyanarayanan. A Study of File Sizes and Functional
Lifetimes. In SOSP ’'81, pages 96-108, Pacific Grove, CA,
December 1981.

[37] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS File System. In
USENIX 1996, San Diego, CA, January 1996.

t[38] M. Tilmann. Apple’s Market Share In The PC World Contin-

ues To Surge. maclife.com, April 2010.

[39] W. Vogels. File system usage in Windows NT 4.0.90SP
99, pages 93-109, Kiawah Island Resort, SC, December
1999.

[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. IhSCA '95, pages 24-36, Santa
Margherita Ligure, Italy, June 1995.

