
A File is Not a File: Understanding the I/O Behavior
of Apple Desktop Applications

Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences
University of Wisconsin, Madison

{harter, dragga, vaughn, dusseau, remzi}@cs.wisc.edu

ABSTRACT
We analyze the I/O behavior ofiBench, a new collection of produc-
tivity and multimedia application workloads. Our analysis reveals
a number of differences between iBench and typical file-system
workload studies, including the complex organization of modern
files, the lack of pure sequential access, the influence of underlying
frameworks on I/O patterns, the widespread use of file synchro-
nization and atomic operations, and the prevalence of threads. Our
results have strong ramifications for the design of next generation
local and cloud-based storage systems.

1. INTRODUCTION
The design and implementation of file and storage systems has

long been at the forefront of computer systems research. Inno-
vations such as namespace-based locality [21], crash consistency
via journaling [15, 29] and copy-on-write [7, 34], checksums and
redundancy for reliability [5, 7, 26, 30], scalable on-disk struc-
tures [37], distributed file systems [16, 35], and scalable cluster-
based storage systems [9, 14, 18] have greatly influenced how data
is managed and stored within modern computer systems.

Much of this work in file systems over the past three decades
has been shaped bymeasurement: the deep and detailed analysis
of workloads [4, 10, 11, 16, 19, 25, 33, 36, 39]. One excellent
example is found in work on the Andrew File System [16]; de-
tailed analysis of an early AFS prototype led to the next-generation
protocol, including the key innovation of callbacks. Measurement
helps us understand the systems of today so we can build improved
systems for tomorrow.

Whereas most studies of file systems focus on the corporate or
academic intranet, most file-system users work in the more mun-
dane environment of thehome, accessing data via desktop PCs,
laptops, and compact devices such as tablet computers and mo-
bile phones. Despite the large number of previous studies, little is
known about home-user applications and their I/O patterns.

Home-user applications are important today, and their impor-
tance will increase as more users store data not only on local de-
vices but also in the cloud. Users expect to run similar applications
across desktops, laptops, and phones; therefore, the behavior of
these applications will affect virtually every system with which a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-59593-591-5/07/0010 ...$5.00.

user interacts. I/O behavior is especially important to understand
since it greatly impacts how users perceive overall system latency
and application performance [12].

While a study of how users typically exercise these applications
would be interesting, the first step is to perform a detailed study
of I/O behavior under typical but controlled workload tasks. This
style ofapplication study, common in the field of computer archi-
tecture [40], is different from theworkload study found in systems
research, and can yield deeper insight into how the applications are
constructed and how file and storage systems need to be designed
in response.

Home-user applications are fundamentally large and complex,
containing millions of lines of code [20]. In contrast, traditional
UNIX -based applications are designed to be simple, to perform
one task well, and to be strung together to perform more complex
tasks [32]. This modular approach of UNIX applications has not
prevailed [17]: modern applications are standalone monoliths, pro-
viding a rich and continuously evolving set of features to demand-
ing users. Thus, it is beneficial to study each application individu-
ally to ascertain its behavior.

In this paper, we present the first in-depth analysis of the I/O
behavior of modern home-user applications; we focus on produc-
tivity applications (for word processing, spreadsheet manipulation,
and presentation creation) and multimedia software (for digital mu-
sic, movie editing, and photo management). Our analysis centers
on two Apple software suites: iWork, consisting of Pages, Num-
bers, and Keynote; and iLife, which contains iPhoto, iTunes, and
iMovie. As Apple’s market share grows [38], these applications
form the core of an increasingly popular set of workloads; as de-
vice convergence continues, similar forms of these applications are
likely to access user files from both stationary machines and mov-
ing cellular devices. We call our collection theiBench task suite.

To investigate the I/O behavior of the iBench suite, we build an
instrumentation framework on top of the powerful DTrace tracing
system found inside Mac OS X [8]. DTrace allows us not only
to monitor system calls made by each traced application, but also
to examine stack traces, in-kernel functions such as page-ins and
page-outs, and other details required to ensure accuracy and com-
pleteness. We also develop an application harness based on Apple-
Script [3] to drive each application in the repeatable and automated
fashion that is key to any study of GUI-based applications [12].

Our careful study of the tasks in the iBench suite has enabled us
to make a number of interesting observations about how applica-
tions access and manipulate stored data. In addition to confirming
standard past findings (e.g., most files are small; most bytes ac-
cessed are from large files [4]), we find the following new results.

A file is not a file. Modern applications manage large databases
of information organized into complex directory trees. Even simple
word-processing documents, which appear to users as a “file”, are



in actuality small file systems containing many sub-files (e.g., a
Microsoft .doc file is actually a FAT file system containing pieces
of the document). File systems should be cognizant of such hidden
structure in order to lay out and access data in these complex files
more effectively.

Sequential access is not sequential.Building on the trend no-
ticed by Vogels for Windows NT [39], we observe that even for
streaming media workloads, “pure” sequential access is increas-
ingly rare. Since file formats often include metadata in headers,
applications often read and re-read the first portion of a file before
streaming through its contents. Prefetching and other optimizations
might benefit from a deeper knowledge of these file formats.

Auxiliary files dominate. Applications help users create, mod-
ify, and organize content, but user files represent a small fraction
of the files touched by modern applications. Most files are helper
files that applications use to provide a rich graphical experience,
support multiple languages, and record history and other metadata.
File-system placement strategies might reduce seeks by grouping
the hundreds of helper files used by an individual application.

Writes are often forced. As the importance of home data in-
creases (e.g., family photos), applications are less willing to simply
write data and hope it is eventually flushed to disk. We find that
most written data is explicitly forced to disk by the application; for
example, iPhoto callsfsync thousands of times in even the sim-
plest of tasks. For file systems and storage, the days of delayed
writes [22] may be over; new ideas are needed to support applica-
tions that desire durability.

Renaming is popular. Home-user applications commonly use
atomic operations, in particularrename, to present a consistent
view of files to users. For file systems, this may mean that trans-
actional capabilities [23] are needed. It may also necessitate a re-
thinking of traditional means of file locality; for example, placing
a file on disk based on its parent directory [21] does not work as
expected when the file is first created in a temporary location and
then renamed.

Multiple threads perform I/O. Virtually all of the applications
we study issue I/O requests from a number of threads; a few ap-
plications launch I/Os from hundreds of threads. Part of this us-
age stems from the GUI-based nature of these applications; it is
well known that threads are required to perform long-latency oper-
ations in the background to keep the GUI responsive [24]. Thus,
file and storage systems should be thread-aware so they can better
allocate bandwidth.

Frameworks influence I/O. Modern applications are often de-
veloped in sophisticated IDEs and leverage powerful libraries, such
as Cocoa and Carbon. WhereasUNIX -style applications often di-
rectly invoke system calls to read and write files, modern libraries
put more code between applications and the underlying file system;
for example, including"cocoa.h" in a Mac application imports
112,047 lines of code from 689 different files [28]. Thus, the be-
havior of the framework, and not just the application, determines
I/O patterns. We find that the default behavior of some Cocoa APIs
induces extra I/O and possibly unnecessary (and costly) synchro-
nizations to disk. In addition, use of different libraries for similar
tasks within an application can lead to inconsistent behavior be-
tween those tasks. Future storage design should take these libraries
and frameworks into account.

This paper contains four major contributions. First, we describe
a general tracing framework for creating benchmarks based on in-
teractive tasks that home users may perform (e.g., importing songs,
exporting video clips, saving documents). Second, we deconstruct
the I/O behavior of the tasks in iBench; we quantify the I/O behav-
ior of each task in numerous ways, including the types of files ac-

cessed (e.g., counts and sizes), the access patterns (e.g., read/write,
sequentiality, and preallocation), transactional properties (e.g., dura-
bility and atomicity), and threading. Third, we describe how these
qualitative changes in I/O behavior may impact the design of future
systems. Finally, we present the 34 traces from the iBench task
suite; by making these traces publicly available and easy to use, we
hope to improve the design, implementation, and evaluation of the
next generation of local and cloud storage systems:

http://www.cs.wisc.edu/adsl/Traces/ibench

The remainder of this paper is organized as follows. We begin by
presenting a detailed timeline of the I/O operations performed by
one task in the iBench suite; this motivates the need for a systematic
study of home-user applications. We next describe our methodol-
ogy for creating the iBench task suite. We then spend the majority
of the paper quantitatively analyzing the I/O characteristics of the
full iBench suite. Finally, we summarize the implications of our
findings on file-system design.

2. CASE STUDY
The I/O characteristics of modern home-user applications are

distinct from those of UNIX applications studied in the past. To
motivate the need for a new study, we investigate the complex I/O
behavior of a single representative task. Specifically, we report in
detail the I/O performed over time by the Pages (4.0.3) application,
a word processor, running on Mac OS X Snow Leopard (10.6.2) as
it creates a blank document, inserts 15 JPEG images each of size
2.5MB, and saves the document as a Microsoft .doc file.

Figure 1 shows the I/O this task performs (see the caption for a
description of the symbols used). The top portion of the figure il-
lustrates the accesses performed over the full lifetime of the task: at
a high level, it shows that more than 385 files spanning six different
categories are accessed by eleven different threads, with many in-
tervening calls tofsync andrename. The bottom portion of the
figure magnifies a short time interval, showing the reads and writes
performed by a single thread accessing the primary .doc productiv-
ity file. From this one experiment, we illustrate each finding de-
scribed in the introduction. We first focus on the single access that
saves the user’s document (bottom), and then consider the broader
context surrounding this file save, where we observe a flurry of ac-
cesses to hundreds of helper files (top).

A file is not a file. Focusing on the magnified timeline of reads
and writes to the productivity .doc file, we see that the file format
comprises more than just a simple file. Microsoft .doc files are
based on the FAT file system and allow bundling of multiple files in
the single .doc file. This .doc file contains a directory (Root), three
streams for large data (WordDocument, Data, and 1Table), and a
stream for small data (Ministream). Space is allocated in the file
with three sections: a file allocation table (FAT), a double-indirect
FAT (DIF) region, and a ministream allocation region (Mini).

Sequential access is not sequential.The complex FAT-based
file format causes random access patterns in several ways: first, the
header is updated at the beginning and end of the magnified access;
second, data from individual streams is fragmented throughout the
file; and third, the 1Table stream is updated before and after each
image is appended to the WordDocument stream.

Auxiliary files dominate. Although saving the single .doc we
have been considering is the sole purpose of this task, we now
turn our attention to the top timeline and see that 385 different files
are accessed. There are several reasons for this multitude of files.
First, Pages provides a rich graphical experience involving many
images and other forms of multimedia; together with the 15 in-
serted JPEGs, this requires 118 multimedia files. Second, users



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

x3
6 x7 x2 x3
6 x9 x2
8 x5 x2 x3
6 x9

x2

Compressed (11.7MB)

12038

12040

12042

12044 x2

Compressed (23.5MB)

36092

36094

36096

36098

36100

36102
x4

6 x6 x3
9 x6 x3
9 x6 x3
6

x3 x3

Compressed (0.3MB)

36384

36386

Header
WordDocument

Data
1Table

WordDocument

1Table

WordDocument

1Table

WordDocument

1Table

Data
1Table
Root
Ministream
Root
Mini

FAT

DIF

Thread 1

Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Threads 1-9
Thread 4

Thread 1

Threads 1, 10

Thread 1

Threads 2, 4, 6, 8
Thread 1
Thread 3
Thread 11
Threads 1, 10

productivity
5 (39MB)

plist
218 (0.8MB)

sqlite
2 (9KB)

multimedia
118 (106MB)

strings
25 (0.3MB)

other
17 (38MB)

ne
w

 d
oc

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

ad
d 

.jp
g

sa
ve

qu
it

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

magnify .doc file save
Seconds

F
ile

s

Sequential Runs

F
ile

 O
ffs

et
 (

K
B

)

Figure 1: Pages Saving A Word Document.The top graph shows the 75-second timeline of the entire run, while the bottomgraph is a
magnified view of seconds 54 to 58. In the top graph, annotations on the left categorize files by type and indicate file count and amount of
I/O; annotations on the right show threads. Black bars are file accesses(reads and writes), with thickness logarithmically proportional to
bytes of I/O./ is anfsync; \ is arename; X is both. In the bottom graph, individual reads and writes to the .doc file areshown. Vertical
bar position and bar length represent the offset within the file and numberof bytes touched. Thick white bars are reads; thin gray bars are
writes. Repeated runs are marked with the number of repetitions. Annotations on the right indicate the name of each file section.



want to use Pages in their native language, so application text is not
hard-coded into the executable but is instead stored in 25 different
.strings files. Third, to save user preferences and other metadata,
Pages uses a SQLite database (2 files) and a number of key-value
stores (218 .plist files).

Writes are often forced; renaming is popular. Pages uses
both of these actions to enforce basic transactional guarantees. It
usesfsync to flush write data to disk, making it durable; it uses
rename to atomically replace old files with new files so that a file
never contains inconsistent data. The timeline shows these invo-
cations numerous times. First, Pages regularly usesfsync and
rename when updating the key-value store of a .plist file. Second,
fsync is used on the SQLite database. Third, for each of the 15
image insertions, Pages callsfsync on a file named “tempData”
(classified as “other”) to update its automatic backup.

Multiple threads perform I/O. Pages is a multi-threaded appli-
cation and issues I/O requests from many different threads during
the experiment. Using multiple threads for I/O allows Pages to
avoid blocking while I/O requests are outstanding. Examining the
I/O behavior across threads, we see that Thread 1 performs the most
significant portion of I/O, but ten other threads are also involved. In
most cases, a single thread exclusively accesses a file, but it is not
uncommon for multiple threads to share a file.

Frameworks influence I/O.Pages was developed in a rich pro-
gramming environment where frameworks such as Cocoa or Car-
bon are used for I/O; these libraries impact I/O patterns in ways
the developer might not expect. For example, although the appli-
cation developers did not bother to usefsync or rename when
saving the user’s work in the .doc file, the Cocoa library regularly
uses these calls to atomically and durably update relatively unim-
portant metadata, such as “recently opened” lists stored in .plist
files. As another example, when Pages tries to read data in 512-byte
chunks from the .doc, each read goes through theSTDIO library,
which only reads in 4 KB chunks. Thus, when Pages attempts to
read one chunk from the 1Table stream, seven unrequested chunks
from the WordDocument stream are also incidentally read (off-
set 12039 KB). In other cases, regions of the .doc file are repeat-
edly accessed unnecessarily. For example, around the 3KB off-
set, read/write pairs occur dozens of times. Pages uses a library to
write 2-byte words; each time a word is written, the library reads,
updates, and writes back an entire 512-byte chunk. Finally, we
see evidence of redundancy between libraries: even though Pages
has a backing SQLite database for some of its properties, it also
uses .plist files, which function across Apple applications as generic
property stores.

This one detailed experiment has shed light on a number of in-
teresting I/O behaviors that indicate that home-user applications are
indeed different than traditional workloads. A new workload suite
is needed that more accurately reflects these applications.

3. IBENCH TASK SUITE
Our goal in constructing the iBench task suite is two-fold. First,

we would like iBench to berepresentative of the tasks performed by
home users. For this reason, iBench contains popular applications
from the iLife and iWork suites for entertainment and productivity.
Second, we would like iBench to be relativelysimple for others to
use for file and storage system analysis. For this reason, we auto-
mate the interactions of a home user and collect the resulting traces
of I/O system calls. The traces are available online at this site:
http://www.cs.wisc.edu/adsl/Traces/ibench. We
now describe in more detail how we met these two goals.

3.1 Representative
To capture the I/O behavior of home users, iBench models the ac-

tions of a “reasonable” user interacting with iPhoto, iTunes, iMovie,
Pages, Numbers, and Keynote. Since the research community does
not yet have data on the exact distribution of tasks that home users
perform, iBench contains tasks that we believe are common and
uses files with sizes that can be justified for a reasonable user.
iBench contains 34 different tasks, each representing a home user
performing one distinct operation. If desired, these tasks could be
combined to create more complex workflows and I/O workloads.
The six applications and corresponding tasks are as follows.

iLife iPhoto 8.1.1 (419): digital photo album and photo manip-
ulation software. iPhoto stores photos in a library that contains the
data for the photos (which can be in a variety of formats, including
JPG, TIFF, and PNG), a directory of modified files, a directory of
scaled down images, and two files of thumbnail images. The library
stores metadata in a SQLite database. iBench contains six tasks ex-
ercising user actions typical for iPhoto: starting the application and
importing, duplicating, editing, viewing, and deleting photos in the
library. These tasks modify both the image files and the underlying
database. Each of the iPhoto tasks operates on 400 2.5 MB photos,
representing a user who has imported 12 megapixel photos (2.5 MB
each) from a full 1 GB flash card on his or her camera.

iLife iTunes 9.0.3 (15): a media player capable of both audio and
video playback. iTunes organizes its files in a private library and
supports most common music formats (e.g., MP3, AIFF, WAVE,
AAC, and MPEG-4). iTunes does not employ a database, keeping
media metadata and playlists in both a binary and an XML file.
iBench contains five tasks for iTunes: starting iTunes, importing
and playing an album of MP3 songs, and importing and playing an
MPEG-4 movie. Importing requires copying files into the library
directory and, for music, analyzing each song file for gapless play-
back. The music tasks operate over an album (or playlist) of ten
songs while the movie tasks use a single 3-minute movie.

iLife iMovie 8.0.5 (820): video editing software. iMovie stores
its data in a library that contains directories for raw footage and
projects, and files containing video footage thumbnails. iMovie
supports both MPEG-4 and Quicktime files. iBench contains four
tasks for iMovie: starting iMovie, importing an MPEG-4 movie,
adding a clip from this movie into a project, and exporting a project
to MPEG-4. The tasks all use a 3-minute movie because this is a
typical length found from home users on video-sharing websites.

iWork Pages 4.0.3 (766): a word processor. Pages uses a ZIP-
based file format and can export to DOC, PDF, RTF, and basic text.
iBench includes eight tasks for Pages: starting up, creating and
saving, opening, and exporting documents with and without images
and with different formats. The tasks use 15 page documents.

iWork Numbers 2.0.3 (332): a spreadsheet application. Num-
bers organizes its files with a ZIP-based format and exports to XLS
and PDF. The four iBench tasks for Numbers include starting Num-
bers, generating a spreadsheet and saving it, opening the spread-
sheet, and exporting that spreadsheet to XLS. To model a possible
home user working on a budget, the tasks utilize a five page spread-
sheet with one column graph per sheet.

iWork Keynote 5.0.3 (791): a presentation and slideshow appli-
cation. Keynote saves to a .key ZIP-based format and exports to
Microsoft’s PPT format. The seven iBench tasks for Keynote in-
clude starting Keynote, creating slides with and without images,
opening and playing presentations, and exporting to PPT. Each
Keynote task uses a 20-slide presentation.



Accesses I/O MB
Name Description Files (MB) Accesses (MB) RD% WR% / CPU Sec / CPU Sec

iL
ife

iP
ho

to
Start Open iPhoto with library of 400 photos 779 (336.7) 828 (25.4) 78.8 21.2 151.1 4.6
Imp Import 400 photos into empty library 5900 (1966.9) 8709 (3940.3) 74.4 25.6 26.7 12.1
Dup Duplicate 400 photos from library 2928 (1963.9) 5736 (2076.2) 52.4 47.6 237.9 86.1
Edit Sequentially edit 400 photos from library 12119 (4646.7) 18927 (12182.9) 69.8 30.2 19.6 12.6
Del Sequentially delete 400 photos; empty trash15246 (23.0) 15247 (25.0) 21.8 78.2 280.9 0.5
View Sequentially view 400 photos 2929 (1006.4) 3347 (1005.0) 98.1 1.9 24.1 7.2

iT
un

es

Start Open iTunes with 10 song album 143 (184.4) 195 (9.3) 54.7 45.3 72.4 3.4
ImpS Import 10 song album to library 68 (204.9) 139 (264.5) 66.3 33.7 75.2 143.1
ImpM Import 3 minute movie to library 41 (67.4) 57 (42.9) 48.0 52.0 152.4 114.6
PlayS Play album of 10 songs 61 (103.6) 80 (90.9) 96.9 3.1 0.4 0.5
PlayM Play 3 minute movie 56 (77.9) 69 (32.0) 92.3 7.7 2.2 1.0

iM
ov

ie

Start Open iMovie with 3 minute clip in project 433 (223.3) 786 (29.4) 99.9 0.1 134.8 5.0
Imp Import 3 minute .m4v (20MB) to “Events” 184 (440.1) 383 (122.3) 55.6 44.4 29.3 9.3
Add Paste 3 minute clip from “Events” to project 210 (58.3) 547 (2.2) 47.8 52.2 357.8 1.4
Exp Export 3 minute video clip 70 (157.9) 546 (229.9) 55.1 44.9 2.3 1.0

iW
or

k

P
ag

es

Start Open Pages 218 (183.7) 228 (2.3) 99.9 0.1 97.7 1.0
New Create 15 text page document; save as .pages135 (1.6) 157 (1.0) 73.3 26.7 50.8 0.3
NewP Create 15 JPG document; save as .pages 408 (112.0) 997 (180.9) 60.7 39.3 54.6 9.9
Open Open 15 text page document 103 (0.8) 109 (0.6) 99.5 0.5 57.6 0.3
PDF Export 15 page document as .pdf 107 (1.5) 115 (0.9) 91.0 9.0 41.3 0.3
PDFP Export 15 JPG document as .pdf 404 (77.4) 965 (110.9) 67.4 32.6 49.7 5.7
DOC Export 15 page document as .doc 112 (1.0) 121 (1.0) 87.9 12.1 44.4 0.4
DOCP Export 15 JPG document as .doc 385 (111.3) 952 (183.8) 61.1 38.9 46.3 8.9

N
um

be
rs Start Open Numbers 283 (179.9) 360 (2.6) 99.6 0.4 115.5 0.8

New Save 5 sheets/column graphs as .numbers 269 (4.9) 313 (2.8) 90.7 9.3 9.6 0.1
Open Open 5 sheet spreadsheet 119 (1.3) 137 (1.3) 99.8 0.2 48.7 0.5
XLS Export 5 sheets/column graphs as .xls 236 (4.6) 272 (2.7) 94.9 5.1 8.5 0.1

K
ey

no
te

Start Open Keynote 517 (183.0) 681 (1.1) 99.8 0.2 229.8 0.4
New Create 20 text slides; save as .key 637 (12.1) 863 (5.4) 92.4 7.6 129.1 0.8
NewP Create 20 JPG slides; save as .key 654 (92.9) 901 (103.3) 66.8 33.2 70.8 8.1
Play Open and play presentation of 20 text slides 318 (11.5) 385 (4.9) 99.8 0.2 95.0 1.2
PlayP Open and play presentation of 20 JPG slides 321 (45.4) 388 (55.7) 69.6 30.4 72.4 10.4
PPT Export 20 text slides as .ppt 685 (12.8) 918 (10.1) 78.8 21.2 115.2 1.3
PPTP Export 20 JPG slides as .ppt 723 (110.6) 996 (124.6) 57.6 42.4 61.0 7.6

Table 1:34 Tasks of the iBench Suite.The table summarizes the 34 tasks of iBench, specifying the application, a short name for the task,
and a longer description of the actions modeled. The I/O is characterized according to the number of files read or written, the sum of the
maximum sizes of all accessed files, the number of file accesses that read or write data, the number of bytes read or written, the percentage
of I/O bytes that are part of a read (or write), and the rate of I/O per CPU-second in terms of both file accesses and bytes. Each core is
counted individually, so at most 2 CPU-seconds can be counted per second on our dual-core test machine. CPU utilization is measured with
the UNIX top utility, which in rare cases produces anomalous CPU utilization snapshots; those values are ignored.

Table 1 contains a brief description of each of the 34 iBench tasks
as well as the basic I/O characteristics of each task when running
on Mac OS X Snow Leopard 10.6.2. The table illustrates that the
iBench tasks perform a significant amount of I/O. Most tasks access
hundreds of files, which in aggregate contain tens or hundreds of
megabytes of data. The tasks typically access files hundreds of
times. The tasks perform widely differing amounts of I/O, from
less than a megabyte to more than a gigabyte. Most of the tasks
perform many more reads than writes. Finally, the tasks exhibit
high I/O throughput, often transferring tens of megabytes of data
for every second of computation.

3.2 Easy to Use
To enable other system evaluators to easily use these tasks, the

iBench suite is packaged as a set of 34 system call traces. To ensure
reproducible results, the 34 user tasks were first automated with
AppleScript, a general-purpose GUI scripting language. Apple-
Script provides generic commands to emulate mouse clicks through
menus and application-specific commands to capture higher-level
operations. Application-specific commands bypass a small amount
of I/O by skipping dialog boxes; however, we use them whenever
possible for expediency.

The system call traces were gathered using DTrace [8], a kernel
and user level dynamic instrumentation tool. DTrace is used to

instrument the entry and exit points of all system calls dealing with
the file system; it also records the current state of the system and
the parameters passed to and returned from each call.

While tracing with DTrace was generally straightforward, we ad-
dressed four challenges in collecting the iBench traces. First, file
sizes are not always available to DTrace; thus, we record every
file’s initial size and compute subsequent file size changes caused
by system calls such aswrite or ftruncate. Second, iTunes
uses theptrace system call to disable tracing; we circumvent this
block by usinggdb to insert a breakpoint that automatically re-
turns without callingptrace. Third, thevolfs pseudo-file sys-
tem in HFS+ (Hierarchical File System) allows files to be opened
via their inode number instead of a file name; to include path-
names in the trace, we instrument thebuild path function to
obtain the full path when the task is run. Fourth, tracing system
calls misses I/O resulting from memory-mapped files; therefore,
we purged memory and instrumented kernel page-in functions to
measure the amount of memory-mapped file activity. We found
that the amount of memory-mapped I/O is negligible in most tasks;
we thus do not include this I/O in the iBench traces or analysis.

To provide reproducible results, the traces must be run on a sin-
gle file-system image. Therefore, the iBench suite also contains
snapshots of the initial directories to be restored before each run;
initial state is critical in file-system benchmarking [1].



4. ANALYSIS OF IBENCH TASKS
The iBench task suite enables us to study the I/O behavior of

a large set of home-user actions. As shown from the timeline of
I/O behavior for one particular task in Section 2, these tasks are
likely to access files in complex ways. To characterize this complex
behavior in a quantitative manner across the entire suite of 34 tasks,
we focus on answering four categories of questions.

• What different types of files are accessed and what are the
sizes of these files?

• How are files accessed for reads and writes? Are files ac-
cessed sequentially? Is space preallocated?

• What are the transactional properties? Are writes flushed
with fsync or performed atomically?

• How do multi-threaded applications distribute I/O across dif-
ferent threads?

Answering these questions has two benefits. First, the answers
can guide file and storage system developers to target their systems
better to home-user applications. Second, the characterization will
help users of iBench to select the most appropriate traces for eval-
uation and to understand their resulting behavior.

All measurements were performed on a Mac Mini running Mac
OS X Snow Leopard version 10.6.2 and the HFS+ file system.
The machine has 2 GB of memory and a 2.26 GHz Intel Core
Duo processor.

4.1 Nature of Files
Our analysis begins by characterizing the high-level behavior of

the iBench tasks. In particular, we study the different types of files
opened by each iBench task as well as the sizes of those files.

4.1.1 File Types
The iLife and iWork applications store data across a variety of

files in a number of different formats; for example, iLife applica-
tions tend to store their data in libraries (or data directories) unique
to each user, while iWork applications organize their documents in
proprietary ZIP-based files. The extent to which tasks access dif-
ferent types of files greatly influences their I/O behavior.

To understand accesses to different file types, we place each file
into one of six categories, based on file name extensions and us-
age. Multimedia files contain images (e.g., JPEG), songs (e.g.,
MP3, AIFF), and movies (e.g., MPEG-4). Productivity files are
documents (e.g., .pages, DOC, PDF), spreadsheets (e.g., .numbers,
XLS), and presentations (e.g., .key, PPT).SQLite files are database
files. Plist files are property-list files in XML containing key-value
pairs for user preferences and application properties.Strings files
contain strings for localization of application text. Finally,Other
contains miscellaneous files such as plain text, logs, files without
extensions, and binary files.

Figure 2 shows the frequencies with which tasks open and ac-
cess files of each type; most tasks perform hundreds of these ac-
cesses. Multimedia file opens are common in all workloads, though
they seldom predominate, even in the multimedia-heavy iLife ap-
plications. Conversely, opens of productivity files are rare, even in
iWork applications that use them; this is likely because most iWork
tasks create or view a single productivity file. Because .plist files
act as generic helper files, they are relatively common. SQLite files
only have a noticeable presence in iPhoto, where they account for
a substantial portion of the observed opens. Strings files occupy a
significant minority of most workloads (except iPhoto and iTunes).
Finally, between 5% and 20% of files are of type “Other” (except
for iTunes, where they are more prevalent).

Figure 3 displays the percentage of I/O bytes accessed for each
file type. In bytes, multimedia I/O dominates most of the iLife
tasks, while productivity I/O has a significant presence in the iWork
tasks; file descriptors on multimedia and productivity files tend to
receive large amounts of I/O. SQLite, Plist, and Strings files have
a smaller share of the total I/O in bytes relative to the number of
opened files; this implies that tasks access only a small quantity of
data for each of these files opened (e.g., several key-value pairs in
a .plist). In most tasks, files classified as “Other” receive a more
significant portion of the I/O (the exception is iTunes).

Summary: Home applications access a wide variety of file types,
generally opening multimedia files the most frequently. iLife tasks
tend to access bytes primarily from multimedia or files classified
as “Other”; iWork tasks access bytes from a broader range of file
types, with some emphasis on productivity files.

4.1.2 File Sizes
Large and small files present distinct challenges to the file sys-

tem. For large files, finding contiguous space can be difficult, while
for small files, minimizing initial seek time is more important. We
investigate two different questions regarding file size. First, what is
the distribution of file sizes accessed by each task? Second, what
portion of accessed bytes resides in files of various sizes?

To answer these questions, we record file sizes when each unique
file descriptor is closed. We categorize sizes as very small (< 4KB),
small (< 64KB), medium (< 1MB), large (< 10MB), or very large
(≥ 10MB). We track how many accesses are to files in each cate-
gory and how many of the bytes belong to files in each category.

Figure 4 shows the number of accesses to files of each size. Ac-
cesses to very small files are extremely common, especially for
iWork, accounting for over half of all the accesses in every iWork
task. Small file accesses have a significant presence in the iLife
tasks. The large quantity of very small and small files is due to
frequent use of .plist files that store preferences, settings, and other
application data; these files often fill just one or two 4 KB pages.

Figure 5 shows the proportion of the files in which the bytes of
accessed files reside. Large and very large files dominate every
startup workload and nearly every task that processes multimedia
files. Small files account for few bytes and very small files are
essentially negligible.

Summary: Agreeing with many previous studies (e.g., [4]), we
find that while applications tend to open many very small files
(< 4 KB), most of the bytes accessed are in large files (> 1 MB).

4.2 Access Patterns
We next examine how the nature of file accesses has changed,

studying the read and write patterns of home applications. These
patterns include whether files are used for reading, writing, or both;
whether files are accessed sequentially or randomly; and finally,
whether or not blocks are preallocated via hints to the file system.

4.2.1 File Accesses
One basic characteristic of our workloads is the division between

reading and writing on open file descriptors. If an application uses
an open file only for reading (or only for writing) or performs more
activity on file descriptors of a certain type, then the file system
may be able to make more intelligent memory and disk allocations.

To determine these characteristics, we classify each opened file
descriptor based on the types of accesses–read, write, or both read
and write–performed during its lifetime. We also ignore the ac-
tual flags used when opening the file since we found they do not
accurately reflect behavior; in all workloads, almost all write-only
file descriptors were opened withO RDWR. We measure both the



0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

multimedia productivity plist sqlite strings other

Figure 2: Types of Files Accessed By Number of Opens.This
plot shows the relative frequency with which file descriptors are
opened upon different file types. The number at the end of each bar
indicates the total number of unique file descriptors opened on files.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

25
M

B
4G

B
2G

B
12

G
B

25
M

B
10

05
M

B

9M
B

26
5M

B
43

M
B

91
M

B
32

M
B

29
M

B
12

2M
B

2M
B

23
0M

B

2M
B

59
8K

B
1M

B
18

1M
B

94
1K

B
11

1M
B

10
21

K
B

18
4M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

56
M

B
5M

B
10

3M
B

10
M

B
12

5M
B

multimedia productivity plist sqlite strings other

Figure 3: Types of Files Opened By I/O Size. This plot shows
the relative frequency with which each task performs I/O upon dif-
ferent file types. The number at the end of each bar indicates the
total bytes of I/O accessed.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

<4KB <64KB <1MB <10MB >=10MB

Figure 4: File Sizes, Weighted by Number of Accesses.This
graph shows the number of accessed files in each file size range
upon access ends. The total number of file accesses appears at the
end of the bars. Note that repeatedly-accessed files are counted
multiple times, and entire file sizes are counted even upon partial
file accesses.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

34
6M

B
7G

B
4G

B
19

G
B

23
M

B
2G

B

22
2M

B
64

2M
B

26
9M

B
26

9M
B

16
1M

B

37
3M

B
2G

B
60

M
B

29
6M

B

18
4M

B
2M

B
2M

B
29

3M
B

2M
B

18
7M

B
1M

B
25

6M
B

18
0M

B
2M

B
6M

B
6M

B

18
4M

B
16

M
B

11
8M

B
16

M
B

17
8M

B
16

M
B

17
8M

B

<4KB <64KB <1MB <10MB >=10MB

Figure 5: File Sizes, Weighted by the Bytes in Accessed Files.
This graph shows the portion of bytes in accessed files of each size
range upon access ends. The sum of the file sizes appears at the
end of the bars. This number differs from total file footprint since
files change size over time and repeatedly accessed file are counted
multiple times.

proportional usage of each type of file descriptor and the relative
amount of I/O performed on each.

Figure 6 shows how many file descriptors are used for each type
of access. The overwhelming majority of file descriptors are used
exclusively for reading or writing; read-write file descriptors are
quite uncommon. Overall, read-only file descriptors are the most
common across a majority of workloads; write-only file descriptors
are popular in some iLife tasks, but are rarely used in iWork.

We observe different patterns when analyzing the amount of I/O
performed on each type of file descriptor, as shown in Figure 7.
First, even though iWork tasks have very few write-only file de-
scriptors, they often write significant amounts of I/O to those de-
scriptors. Second, even though read-write file descriptors are rare,
when present, they account for relatively large portions of total I/O
(particularly when exporting to .doc, .xls, and .ppt).

Summary: While many files are opened with theO RDWR flag,
most of them are subsequently accessed write-only; thus, file open
flags cannot be used to predict how a file will be accessed. How-
ever, when an open file is both read and written by a task, the
amount of traffic to that file occupies a significant portion of the to-
tal I/O. Finally, the rarity of read-write file descriptors may derive
in part from the tendency of applications to write to a temporary
file which they then rename as the target file, instead of overwriting
the target file; we explore this tendency more in§4.3.2.

4.2.2 Sequentiality
Historically, files have usually been read or written entirely se-

quentially [4]. We next determine whether sequential accesses are
dominant in iBench. We measure this by examining all reads and
writes performed on each file descriptor and noting the percentage



0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

82
8

87
09

57
36

18
92

7
15

24
7

33
47

19
5

13
9

57 80 69 78
6

38
3

54
7

54
6

22
8

10
9

15
7

99
7

11
5

96
5

12
1

95
2

36
0

13
7

31
3

27
2

68
1

38
5

38
8

86
3

90
1

91
8

99
6

Read Only Both Write Only

Figure 6: Read/Write Distribution By File Descriptor. File de-
scriptors can be used only for reads, only for writes, or for both
operations. This plot shows the percentage of file descriptors in
each category. This is based on usage, notopen flags. Any dupli-
cate file descriptors (e.g., created bydup) are treated as one and file
descriptors on which the program does not perform any subsequent
action are ignored.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

25
M

B
4G

B
2G

B
12

G
B

25
M

B
10

05
M

B

9M
B

26
5M

B
43

M
B

91
M

B
32

M
B

29
M

B
12

2M
B

2M
B

23
0M

B

2M
B

59
8K

B
1M

B
18

1M
B

94
1K

B
11

1M
B

10
21

K
B

18
4M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

56
M

B
5M

B
10

3M
B

10
M

B
12

5M
B

Read Only Both (Reads) Both (Writes) Write Only

Figure 7: Read/Write Distribution By Bytes. The graph shows
how I/O bytes are distributed among the three access categories.
The unshaded dark gray indicates bytes read as a part of read-only
accesses. Similarly, unshaded light gray indicates bytes written in
write-only accesses. The shaded regions represent bytes touched
in read-write accesses, and are divided between bytes read and
bytes written.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

20
M

B
3G

B
1G

B
8G

B
5M

B
98

6M
B

5M
B

17
5M

B
21

M
B

88
M

B
29

M
B

29
M

B
68

M
B

1M
B

12
7M

B

2M
B

59
5K

B
78

2K
B

11
0M

B
85

7K
B

75
M

B
89

8K
B

11
2M

B

3M
B

1M
B

3M
B

3M
B

1M
B

5M
B

39
M

B
5M

B
69

M
B

8M
B

72
M

B

Sequential Nearly Sequential Non-sequential

Figure 8:Read Sequentiality.This plot shows the portion of file
read accesses (weighted by bytes) that are sequentially accessed.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

5M
B

10
10

M
B

98
8M

B
4G

B
20

M
B

19
M

B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
K

B
54

M
B

1M
B

10
3M

B

3K
B

3K
B

28
6K

B
71

M
B

84
K

B
36

M
B

12
3K

B
71

M
B

10
K

B
3K

B
26

4K
B

14
3K

B

2K
B

9K
B

17
M

B
42

4K
B

34
M

B
2M

B
53

M
B

Sequential Nearly Sequential Non-sequential

Figure 9:Write Sequentiality. This plot shows the portion of file
write accesses (weighted by bytes) that are sequentially accessed.

of files accessed in strict sequential order (weighted by bytes).
We display our measurements for read and write sequentiality

in Figures 8 and 9, respectively. The portions of the bars in black
indicate the percent of file accesses that exhibit pure sequentiality.
We observe high read sequentiality in iWork, but little in iLife (with
the exception of the Start tasks and iTunes Import). The inverse is
true for writes: most iLife tasks exhibit high sequentiality; iWork
accesses are largely non-sequential.

Investigating the access patterns to multimedia files more closely,
we note that many iLife applications first touch a small header be-
fore accessing the entire file sequentially. To better reflect this be-
havior, we define an access to a file as “nearly sequential” when at
least 95% of the bytes read or written to a file form a sequential run.
We found that a large number of accesses fall into the “nearly se-
quential” category given a 95% threshold; the results do not change
much with lower thresholds.

The slashed portions of the bars in Figures 8 and 9 show ob-
served sequentiality with a 95% threshold. Tasks with heavy use of
multimedia files exhibit greater sequentiality with the 95% thresh-
old for both reading and writing. In several workloads (mainly
iPhoto and iTunes), the I/O classified almost entirely as non-sequential
with a 100% threshold is classified as nearly sequential. The dif-
ference for iWork applications is much less striking, indicating that
accesses are more random.

Summary: A substantial number of tasks contain purely sequen-
tial accesses. When the definition of a sequential access is loosened
such that only 95% of bytes must be consecutive, then even more
tasks contain primarily sequential accesses. These “nearly sequen-
tial” accesses result from metadata stored at the beginning of com-
plex multimedia files: tasks frequently touch bytes near the begin-
ning of multimedia files before sequentially reading or writing the
bulk of the file.



0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

99
2B

19
8K

B
96

6M
B

94
3M

B
17

4K
B

1K
B

34
M

B

19
2B

19
2B

19
2B

38
4B

38
4B

Useful Unnecessary

Figure 10: Preallocation Hints. The sizes of the bars indicate
which portion of file extensions are preallocations; unnecessary
preallocations are diagonally striped. The number atop each bar
indicates the absolute amount preallocated.

4.2.3 Preallocation
One of the difficulties file systems face when allocating contigu-

ous space for files is not knowing how much data will be written
to those files. Applications can communicate this information by
providing hints [27] to the file system to preallocate an appropriate
amount of space. In this section, we quantify how often applica-
tions use preallocation hints and how often these hints are useful.

We instrument two calls usable for preallocation:pwrite and
ftruncate. pwrite writes a single byte at an offset beyond the
end of the file to indicate the future end of the file;ftruncate
directly sets the file size. Sometimes a preallocation does not com-
municate anything useful to the file system because it is immedi-
ately followed by a single write call with all the data; we flag these
preallocations as unnecessary.

Figure 10 shows the portion of file growth that is the result of pre-
allocation. In all cases, preallocation was due to calls topwrite;
we never observedftruncate preallocation. Overall, applica-
tions rarely preallocate space and preallocations are often useless.

The three tasks with significant preallocation are iPhoto Dup,
iPhoto Edit, and iMovie Exp. iPhoto Dup and Edit both call a
copyPath function in the Cocoa library that preallocates a large
amount of space and then copies data by reading and writing it
in 1 MB chunks. iPhoto Dup sometimes usescopyPath to copy
scaled-down images of size 50-100 KB; since these smaller files are
copied with a single write, the preallocation does not communicate
anything useful. iMovie Exp calls a Quicktime append function
that preallocates space before writing the actual data; however, the
data is appended in small 128 KB increments. Thus, the append is
not split into multiplewrite calls; the preallocation is useless.

Summary: Although preallocation has the potential to be use-
ful, few tasks use it to provide hints, and a significant number of the
hints that are provided are useless. The hints are provided inconsis-
tently: although iPhoto and iMovie both use preallocation for some
tasks, neither application uses preallocation during import.

4.3 Transactional Properties
In this section, we explore the degree to which the iBench tasks

require transactional properties from the underlying file and stor-
age system. In particular, we investigate the extent to which ap-

plications require writes to be durable; that is, how frequently they
invoke calls tofsync and which APIs perform these calls. We also
investigate the atomicity requirements of the applications, whether
from renaming files or exchanging inodes.

4.3.1 Durability
Writes typically involve a trade-off between performance and

durability. Applications that require write operations to complete
quickly can write data to the file system’s main memory buffers,
which are lazily copied to the underlying storage system at a sub-
sequent convenient time. Buffering writes in main memory has a
wide range of performance advantages: writes to the same block
may be coalesced, writes to files that are later deleted need not be
performed, and random writes can be more efficiently scheduled.

On the other hand, applications that rely on durable writes can
flush written data to the underlying storage layer with thefsync
system call. The frequency offsync calls and the number of bytes
they synchronize directly affect performance: iffsync appears
often and flushes only several bytes, then performance will suffer.
Therefore, we investigate how modern applications usefsync.

Figure 11 shows the percentage of written data each task syn-
chronizes withfsync. The graph further subdivides the source of
the fsync activity into six categories.SQLite indicates that the
SQLite database engine is responsible for callingfsync; Archiv-
ing indicates an archiving library frequently used when access-
ing ZIP formats;Pref Sync is thePreferencesSynchronize
function call from the Cocoa library;writeToFile is the Cocoa call
writeToFilewith theatomically flag set; and finally,Flush-
Fork is the CarbonFSFlushFork routine.

At the highest level, the figure indicates that half the tasks syn-
chronize close to 100% of their written data while approximately
two-thirds synchronize more than 60%. iLife tasks tend to syn-
chronize many megabytes of data, while iWork tasks usually only
synchronize tens of kilobytes (excluding tasks that handle images).

To delve into the APIs responsible for thefsync calls, we ex-
amine how each bar is subdivided. In iLife, the sources offsync
calls are quite varied: every category of API except for Archiving
is represented in one of the tasks, and many of the tasks call mul-
tiple APIs which invokefsync. In iWork, the sources are more
consistent; the only sources are Pref Sync, SQLite, and Archiving
(for manipulating compressed data).

Given that these tasks require durability for a significant per-
centage of their write traffic, we next investigate the frequency of
fsync calls and how much data each individual call pushes to disk.
Figure 12 groupsfsync calls based on the amount of I/O per-
formed on each file descriptor whenfsync is called, and displays
the relative percentage each category comprises of the total I/O.

These results show that iLife tasks callfsync frequently (from
tens to thousands of times), while iWork tasks callfsync infre-
quently except when dealing with images. From these observa-
tions, we infer that calls tofsync are mostly associated with me-
dia. The majority of calls tofsync synchronize small amounts of
data; only a few iLife tasks synchronize more than a megabyte of
data in a singlefsync call.

Summary: Developers want to ensure that data enters stable
storage durably, and thus, these tasks synchronize a significant frac-
tion of their data. Based on our analysis of the source offsync
calls, some calls may be incidental and an unintentional side-effect
of the API (e.g., those from SQLite or Pref Sync), but most are
performed intentionally by the programmer. Furthermore, some of
the tasks synchronize small amounts of data frequently, presenting
a challenge for file systems.



0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

5M
B

57
M

B
12

M
B

3G
B

15
M

B
18

M
B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
K

B
34

M
B

1M
B

69
M

B

3K
B

3K
B

12
K

B
71

M
B

3K
B

35
M

B
7K

B
35

M
B

10
K

B
3K

B
32

K
B

21
K

B

2K
B

9K
B

17
M

B
16

K
B

34
M

B
14

K
B

17
M

B

SQLite Pref Sync Archiving writeToFile FlushFork Other No fsync

Figure 11: Percentage of Fsync Bytes. The percentage of
fsync’d bytes written to file descriptors is shown, broken down
by cause. The value atop each bar shows total bytes synchronized.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

12
59

11
77

1
28

56
19

02
5

84
34

16
34

53 95 32 11
7

29 6 63 18
5

15 1 1 5 12
2

1 10
3

2 94 3 1 13 8 1 5 25 10 50 9 29

0B <4KB <64KB <1MB <10MB >=10MB

Figure 12:Fsync Sizes.This plot shows a distribution offsync
sizes. The total number offsync calls appears at the end of
the bars.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

27 16
18

41
4

52
11

13 12
16

29 27 17 48 17 6 26 18
5

8 1 1 7 91 2 86 2 76 3 1 11 5 1 2 2 8 8 6 6
Rename (same dir) Rename (diff dir) Exchange Not atomic

Figure 13: Atomic Writes. The portion of written bytes written
atomically is shown, divided into groups: (1)rename leaving a
file in the same directory; (2)rename causing a file to change
directories; (3)exchangedata which never causes a directory
change. The atomic file-write count appears atop each bar.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

27 16
18

41
4

52
11

13 12
16

26 25 15 25 15 6 26 18
5

8 1 1 7 91 2 86 2 76 3 1 11 5 1 2 2 8 8 6 6

Pref Sync writeToFile movePath FSRenameUnicode Other

Figure 14: Rename Causes. This plot shows the portion of
rename calls caused by each of the top four higher level func-
tions used for atomic writes. The number ofrename calls appears
at the end of the bars.

4.3.2 Atomic Writes
Applications often require file changes to be atomic. In this sec-

tion, we quantify how frequently applications use different tech-
niques to achieve atomicity. We also identify cases where perform-
ing writes atomically can interfere with directory locality optimiza-
tions by moving files from their original directories. Finally, we
identify the causes of atomic writes.

Applications can atomically update a file by first writing the de-
sired contents to a temporary file and then using either therename
or exchangedata call to atomically replace the old file with the
new file. Withrename, the new file is given the same name as the
old, deleting the original and replacing it. Withexchangedata,
the inode numbers assigned to the old file and the temporary file are
swapped, causing the old path to point to the new data; this allows
the file path to remain associated with the original inode number,
which is necessary for some applications.

Figure 13 shows how much write I/O is performed atomically
with rename orexchangedata; rename calls are further sub-
divided into those which keep the file in the same directory and
those which do not. The results show that atomic writes are quite
popular and that, in many workloads, all the writes are atomic. The
breakdown of each bar shows thatrename is frequent; a signifi-
cant minority of therename calls move files between directories.
exchangedata is rare and used only by iTunes for a small frac-
tion of file updates.

We find that most of therename calls causing directory changes
occur when a file (e.g., a document or spreadsheet) is saved at the
user’s request. We suspect different directories are used so that
users are not confused by seeing temporary files in their personal
directories. Interestingly, atomic writes are performed when files
are saved to Apple formats, but not when exporting to Microsoft
formats. We suspect that the interface between applications and the
Microsoft libraries does not specify atomic operations well.



0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

2G
B

98
M

B
7G

B

98
1M

B

41
6K

B

28
M

B

32
3K

B
45

M
B

32
K

B
92

M
B

AIO Reads / All Reads

Figure 15: Asynchronous Reads. This plot shows the percent-
age of read bytes read asynchronously viaaio read. The total
amount of asynchronous I/O is provided at the end of the bars.

Figure 14 identifies the APIs responsible for atomic writes via
rename. Pref Sync, from the Cocoa library, allows applications
to save user and system wide settings in .plist files.WriteToFile
andmovePath are Cocoa routines andFSRenameUnicode is a Car-
bon routine. A solid majority of the atomic writes are caused by
Pref Sync; this is an example of I/O behavior caused by the API
rather than explicit programmer intention. The second most com-
mon atomic writer is writeToFile; in this case, the programmer is
requesting atomicity but leaving the technique up to the library.
Finally, in a small minority of cases, programmers perform atomic
writes themselves by calling movePath or FSRenameUnicode, both
of which are essentiallyrename wrappers.

Summary: Many of our tasks write data atomically, generally
doing so by callingrename. The bulk of atomic writes result
from API calls; while some of these hide the underlying nature
of the write, others make it clear that they act atomically. Thus,
developers desire atomicity for many operations, and file systems
will need to either address the ensuing renames that accompany it
or provide an alternative mechanism for it. In addition, the absence
of atomic writes when writing to Microsoft formats highlights the
inconsistencies that can result from the use of high level libraries.

4.4 Threads and Asynchronicity
Home-user applications are interactive and need to avoid block-

ing when I/O is performed. Asynchronous I/O and threads are of-
ten used to hide the latency of slow operations from users. For our
final experiments, we investigate how often applications use asyn-
chronous I/O libraries or multiple threads to avoid blocking.

Figure 15 shows the portion of read operations performed asyn-
chronously withaio read; none of the tasks useaio write.
We find that asynchronous I/O is used rarely and only by iLife
applications. However, in those cases where asynchronous I/O is
performed, it is used quite heavily.

Figure 16 investigates how threads are used by these tasks: specif-
ically, the portion of I/O performed by each of the threads. The
numbers at the tops of the bars report the number of threads per-
forming I/O. iPhoto and iTunes leverage a significant number of
threads for I/O, since many of their tasks are readily subdivided
(e.g., importing 400 different photos). Only a handful of tasks per-
form all their I/O from a single thread. For most tasks, a small

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

41
7

47
2

40
7

37
1

33
4

7 8 58 12 64 9 5 8 3 6 4 1 4 12 1 12 1 11 3 1 6 3 2 4 5 7 7 6 6

Primary Secondary Others

Figure 16: I/O Distribution Among Threads. The stacked bars
indicate the percentage of total I/O performed by each thread. The
I/O from the threads that do the most and second most I/O are dark
and medium gray respectively, and the other threads are light gray.
Black lines divide the I/O across the latter group; black areas appear
when numerous threads do small amounts of I/O. The total number
of threads that perform I/O is indicated next to the bars.

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

S
ta

rt
Im

p
D

up
E

di
t

D
el

V
ie

w

S
ta

rt
Im

pS
Im

pM
P

la
yS

P
la

yM

S
ta

rt
Im

p
A

dd
E

xp

S
ta

rt
O

pe
n

N
ew

N
ew

P
P

D
F

P
D

F
P

D
O

C
D

O
C

P

S
ta

rt
O

pe
n

N
ew

X
LS

S
ta

rt
P

la
y

P
la

yP
N

ew
N

ew
P

P
P

T
P

P
T

P

41
7

47
2

40
7

37
1

33
4

7 8 58 12 64 9 5 8 3 6 4 1 4 12 1 12 1 11 3 1 6 3 2 4 5 7 7 6 6

Read Only Both Write Only

Figure 17: Thread Type Distribution. The plot categorizes
threads that do I/O into three groups: threads that read, threads
that write, or threads that both read and write. The total number of
threads that perform I/O is indicated next to the bars.

number of threads are responsible for the majority of I/O.
Figure 17 shows the responsibilities of each thread that performs

I/O, where a thread can be responsible for reading, writing, or both.
The measurements show that significantly more threads are devoted
to reading than to writing, with a fair number of threads responsi-
ble for both. These results indicate that threads are the preferred
technique to avoiding blocking and that applications may be partic-
ularly concerned with avoiding blocking due to reads.

Summary: Our results indicate that iBench tasks are concerned
with hiding long-latency operations from interactive users and that
threads are the preferred method for doing so. Virtually all of the
applications we study issue I/O requests from multiple threads, and
some launch I/Os from hundreds of different threads.



5. RELATED WORK
Although our study is unique in its focus on the I/O behavior

of individual applications, a body of similar work exists both in
the field of file systems and in application studies. As mentioned
earlier, our work builds upon that of Baker [4], Ousterhout [25],
Vogels [39], and others who have conducted similar studies, pro-
viding an updated perspective on many of their findings. However,
the majority of these focus on academic and engineering environ-
ments, which are likely to have noticeably different application pro-
files from the home environment. Some studies, like those by Ra-
makrishnan [31] and by Vogels, have included office workloads on
personal computers; these are likely to feature applications simi-
lar to those in iWork, but are still unlikely to contain analogues to
iLife products. None of these studies, however, look at the charac-
teristics of individual application behaviors; instead, they analyze
trends seen in prolonged usage. Thus, our study complements the
breadth of this research with a more focused examination, provid-
ing specific information on the causes of the behaviors we observe,
and is one of the first to address the interaction of multimedia ap-
plications with the file system.

In addition to these studies of dynamic workloads, a variety of
papers have examined the static characteristics of file systems, start-
ing with Satyanarayanan’s analysis of files at Carnegie-Mellon Uni-
versity [36]. One of the most recent of these examined metadata
characteristics on desktops at Microsoft over a five year time span,
providing insight into file-system usage characteristics in a setting
similar to the home [2]. This type of analysis provides insight into
long term characteristics of files that ours cannot; a similar study
for home systems would, in conjunction with our paper, provide a
more complete image of how home applications interact with the
file system.

While most file-system studies deal with aggregate workloads,
our examination of application-specific behaviors has precedent in
a number of hardware studies. In particular, Flautneret al.’s [13]
and Blakeet al.’s [6] studies of parallelism in desktop applications
bear strong similarities to ours in the variety of applications they
examine. In general, they use a broader set of applications, a dif-
ference that derives from the subjects studied. In particular, we
select applications likely to produce interesting I/O behavior; many
of the programs they use, like the video game Quake, are more
likely to exercise threading than the file system. Finally it is worth
noting that Blakeet al. analyze Windows software using event trac-
ing, which may prove a useful tool to conduct a similar application
file-system study to ours in Windows.

6. DISCUSSION AND CONCLUSIONS
We have presented a detailed study of the I/O behavior of com-

plex, modern applications. Through our measurements, we have
discovered distinct differences between the tasks in the iBench suite
and traditional workload studies. To conclude, we consider the pos-
sible effects of our findings on future file and storage systems.

We observed that many of the tasks in the iBench suite frequently
force data to disk by invokingfsync, which has strong impli-
cations for file systems. Delayed writing has long been the basis
of increasing file-system performance [34], but it is of greatly de-
creased utility given small synchronous writes. Thus, more study
is required to understand why the developers of these applications
and frameworks are calling these routines so frequently. For ex-
ample, is data being flushed to disk to ensure ordering between
writes, safety in the face of power loss, or safety in the face of
application crashes? Finding appropriate solutions depends upon
the answers to these questions. One possibility is for file systems

to expose new interfaces to enable applications to better express
their exact needs and desires for durability, consistency, and atom-
icity. Another possibility is that new technologies, such as flash and
other solid-state devices, will be a key solution, allowing writes to
be buffered quickly, perhaps before being staged to disk or even
the cloud.

The iBench tasks also illustrate that file systems are now being
treated as repositories of highly-structured “databases” managed by
the applications themselves. In some cases, data is stored in a lit-
eral database (e.g., iPhoto uses SQLite), but in most cases, data is
organized in complex directory hierarchies or within a single file
(e.g., a .doc file is basically a mini-FAT file system). One option
is that the file system could become more application-aware, tuned
to understand important structures and to better allocate and access
these structures on disk. For example, a smarter file system could
improve its allocation and prefetching of “files” within a .doc file:
seemingly non-sequential patterns in a complex file are easily de-
constructed into accesses to metadata followed by streaming se-
quential access to data.

Our analysis also revealed the strong impact that frameworks and
libraries have on I/O behavior. Traditionally, file systems have been
designed at the level of the VFS interface, not breaking into the
libraries themselves. However, it appears that file systems now
need to take a more “vertical” approach and incorporate some of
the functionality of modern libraries. This vertical approach hear-
kens back to the earliest days of file-system development when the
developers of FFS modified standard libraries to buffer writes in
block-sized chunks to avoid costly sub-block overheads [21]. Fu-
ture storage systems should further integrate with higher-level in-
terfaces to gain deeper understanding of application desires.

Finally, modern applications are highly complex, containing mil-
lions of lines of code, divided over hundreds of source files and
libraries, and written by many different programmers. As a re-
sult, their own behavior is increasingly inconsistent: along sim-
ilar, but distinct code paths, different libraries are invoked with
different transactional semantics. To simplify these applications,
file systems could add higher-level interfaces, easing construction
and unifying data representations. While the systems community
has developed influential file-system concepts, little has been done
to transition this class of improvements into the applications them-
selves. Database technology does support a certain class of appli-
cations quite well but is generally too heavyweight. Future storage
systems should consider how to bridge the gap between the needs of
current applications and the features low-level systems provide.

Our evaluation may raise more questions than it answers. To
build better systems for the future, we believe that the research
community must study applications that are important to real users.
We believe the iBench task suite takes a first step in this direction
and hope others in the community will continue along this path.

Acknowledgments
We thank the anonymous reviewers and Rebecca Isaacs (our shep-
herd) for their tremendous feedback, as well as members of our
research group for their thoughts and comments on this work at
various stages.

This material is based upon work supported by the National Sci-
ence Foundation under CSR-1017518 as well as by generous dona-
tions from Network Appliance and Google. Tyler Harter and Chris
Dragga are supported by the Guri Sohi Fellowship and the David
DeWitt Fellowship, respectively.

Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of NSF or other institutions.



7. REFERENCES

[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Generating Realistic Impressions for File-System
Benchmarking. InFAST ’09, San Jose, CA, February 2009.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
Five-Year Study of File-System Metadata. InFAST ’07, San
Jose, CA, February 2007.

[3] Apple Computer, Inc. AppleScript Language Guide, March
2011.

[4] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ouster-
hout. Measurements of a Distributed File System. InSOSP
’91, pages 198–212, Pacific Grove, CA, October 1991.

[5] W. Bartlett and L. Spainhower. Commercial Fault Tolerance:
A Tale of Two Systems.IEEE Transactions on Dependable
and Secure Computing, 1(1):87–96, January 2004.

[6] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evo-
lution of Thread-level Parallelism in Desktop Applications.
SIGARCH Comput. Archit. News, 38:302–313, June 2010.

[7] J. Bonwick and B. Moore. ZFS: The Last Word
in File Systems. http://opensolaris.org/os/community/
zfs/docs/zfslast.pdf, 2007.

[8] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic In-
strumentation of Production Systems. InUSENIX ’04, pages
15–28, Boston, MA, June 2004.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-
Value Store. InSOSP ’07, Stevenson, WA, October 2007.

[10] J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-
System Contents. InSIGMETRICS ’99, pages 59–69, Atlanta,
GA, May 1999.

[11] D. Ellard and M. I. Seltzer. New NFS Tracing Tools and Tech-
niques for System Analysis. InLISA ’03, pages 73–85, San
Diego, CA, October 2003.

[12] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using La-
tency to Evaluate Interactive System Performance. InOSDI
’96, Seattle, WA, October 1994.

[13] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-
level Parallelism and Interactive Performance of Desktop Ap-
plications.SIGPLAN Not., 35:129–138, November 2000.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. InSOSP ’03, pages 29–43, Bolton Landing, NY, Oc-
tober 2003.

[15] R. Hagmann. Reimplementing the Cedar File System Us-
ing Logging and Group Commit. InSOSP ’87, Austin, TX,
November 1987.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Perfor-
mance in a Distributed File System.ACM Transactions on
Computer Systems, 6(1), February 1988.

[17] B. Lampson. Computer Systems Research – Past and Present.
SOSP 17 Keynote Lecture, December 1999.

[18] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual
Disks. InASPLOS VII, Cambridge, MA, October 1996.

[19] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller.
Measurement and Analysis of Large-Scale Network File Sys-
tem Workloads. InUSENIX ’08, pages 213–226, Boston, MA,
June 2008.

[20] Macintosh Business Unit (Microsoft). It’s all in the num-
bers... blogs.msdn.com/b/macmojo/archive/2006/11/03/it-s-
all-in-the-numbers.aspx, November 2006.

[21] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
Fast File System for UNIX.ACM Transactions on Computer
Systems, 2(3):181–197, August 1984.

[22] J. C. Mogul. A Better Update Policy. InUSENIX Summer ’94,
Boston, MA, June 1994.

[23] J. Olson. Enhance Your Apps With File System Transactions.
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx,
July 2007.

[24] J. Ousterhout. Why Threads Are A Bad Idea (for most pur-
poses), September 1995.

[25] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of
the UNIX 4.2 BSD File System. InSOSP ’85, pages 15–24,
Orcas Island, WA, December 1985.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). InSIGMOD ’88, pages
109–116, Chicago, IL, June 1988.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. InSOSP ’95,
pages 79–95, Copper Mountain, CO, December 1995.

[28] R. Pike. Another Go at Language Design.
http://www.stanford.edu/class/ee380/Abstracts/100428.html,
April 2010.

[29] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis and Evolution of Journaling File Systems.
In USENIX ’05, pages 105–120, Anaheim, CA, April 2005.

[30] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S.
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. InSOSP ’05, pages 206–220, Brighton,
UK, October 2005.

[31] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis
of File I/O Traces in Commercial Computing Environments.
SIGMETRICS Perform. Eval. Rev., 20:78–90, June 1992.

[32] D. M. Ritchie and K. Thompson. TheUNIX Time-Sharing
System. InSOSP ’73, Yorktown Heights, NY, October 1973.

[33] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison
of File System Workloads. InUSENIX ’00, pages 41–54, San
Diego, CA, June 2000.

[34] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System.ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[35] R. Sandberg. The Design and Implementation of the Sun Net-
work File System. InProceedings of the 1985 USENIX Sum-
mer Technical Conference, pages 119–130, Berkeley, CA,
June 1985.

[36] M. Satyanarayanan. A Study of File Sizes and Functional
Lifetimes. In SOSP ’81, pages 96–108, Pacific Grove, CA,
December 1981.

[37] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS File System. In
USENIX 1996, San Diego, CA, January 1996.

[38] M. Tilmann. Apple’s Market Share In The PC World Contin-
ues To Surge. maclife.com, April 2010.

[39] W. Vogels. File system usage in Windows NT 4.0. InSOSP
’99, pages 93–109, Kiawah Island Resort, SC, December
1999.

[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. InISCA ’95, pages 24–36, Santa
Margherita Ligure, Italy, June 1995.


