
This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-931971-48-5

Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Reaping the performance of fast NVM storage
with uDepot

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas, IBM Research

https://www.usenix.org/conference/fast19/presentation/kourtis

Reaping the performance of fast NVM storage with uDepot

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas∗

IBM Research, Zurich
{kou, nio, iko}@zurich.ibm.com

Abstract
Many applications require low-latency key-value storage, a
requirement that is typically satisfied using key-value stores
backed by DRAM. Recently, however, storage devices built
on novel NVM technologies offer unprecedented perfor-
mance compared to conventional SSDs. A key-value store
that could deliver the performance of these devices would
offer many opportunities to accelerate applications and re-
duce costs. Nevertheless, existing key-value stores, built for
slower SSDs or HDDs, cannot fully exploit such devices.

In this paper, we present uDepot, a key-value store built
bottom-up to deliver the performance of fast NVM block-
based devices. uDepot is carefully crafted to avoid ineffi-
ciencies, uses a two-level indexing structure that dynami-
cally adjusts its DRAM footprint to match the inserted items,
and employs a novel task-based IO run-time system to max-
imize performance, enabling applications to use fast NVM
devices at their full potential. As an embedded store, uDe-
pot’s performance nearly matches the raw performance of
fast NVM devices both in terms of throughput and latency,
while being scalable across multiple devices and cores. As
a server, uDepot significantly outperforms state-of-the-art
stores that target SSDs under the YCSB benchmark. Finally,
using a Memcache service on top of uDepot we demonstrate
that data services built on NVM storage devices can offer
equivalent performance to their DRAM-based counterparts
at a much lower cost. Indeed, using uDepot we have built
a cloud Memcache service that is currently available as an
experimental offering in the public cloud.

1 Introduction

Advancements in non-volatile memory (NVM) technologies
enable a new class of block-based storage devices with un-
precedented performance. These devices, which we refer to
as Fast NVMe Devices (FNDs), achieve hundreds of thou-
sands of IO operations per second (IOPS) as well as low la-
∗Now at Google.

tency, and constitute a discrete point in the performance/cost
tradeoff spectrum between DRAM and conventional SSDs.
To illustrate the difference, the latency of fetching a 4 KiB
block in conventional NVMe Flash SSD is 80 µs, while in
FNDs the same operation takes 7 µs (Optane drive [88]) or
12 µs (Z-SSD [48,74]). To put this in perspective, a common
round-trip latency of a TCP packet over 10 Gigabit Ethernet
is 25 µs-50 µs, which means that using FNDs in commodity
datacenters results in storage no longer being the bottleneck.

Hence, FNDs act as a counterweight to the prevalent archi-
tectural trend of data stores placing all data in main memory
[26,35,72,73,78]. Specifically, many key-value (KV) stores
place all their data in DRAM [21,25,44,52,57,59,68,73] to
meet application performance requirements. An FND-based
KV store offers an attractive alternative to DRAM-based sys-
tems in terms of cost and capacity scalability.1 We expect
that many applications, for which conventional SSDs are not
performant enough, can now satisfy their performance re-
quirements using KV stores built on FNDs. In fact, since for
many common setups FNDs shift the bottleneck from stor-
age to the network, it is possible for FND-based KV stores
to provide equivalent performance to that of their DRAM-
based counterparts.

Existing KV stores, however, cannot use FNDs to their full
potential. First, KV stores that place all their data in DRAM
require OS paging to transparently use FNDs, which results
in poor performance [33]. Second, KV stores that place their
data in storage devices [8, 24, 31, 50], even those that specif-
ically target conventional SSDs [3, 19, 20, 58, 60, 84, 87, 91],
are designed with different requirements in mind: slower de-
vices, smaller capacity, and/or no need to scale over multiple
devices and cores. As Barroso et al. [7] point out, most exist-
ing systems under-perform in the face of IO operations that
take a few microseconds.

Motivated by the above, we present uDepot, a KV store
designed from the ground up to deliver the performance of
FNDs. The core of uDepot is an embedded store that can

1At the time of writing: DRAM costs about $10/GiB, an Optane NVMe
drive $1.25/GiB, and a commodity Flash NVMe drive $0.4/GiB.

USENIX Association 17th USENIX Conference on File and Storage Technologies 1

be used by applications as a library. Using this embedded
store we build two network services: a distributed KV store
using a custom network protocol, and a distributed cache
that implements the Memcache [64] protocol, which can be
used as a drop-in replacement for memcached [65], a widely
used [5, 70] DRAM-based cache.

By design, uDepot is lean: it provides streamlined func-
tions for efficient data access, optimizing for performance
instead of richer functionality (e.g., range queries). uDe-
pot is efficient in that it: i) achieves low latency, ii) provides
high throughput per core, iii) scales its performance with the
number of drives and cores, iv) enforces low bounds to end–
to-end IO amplification, in terms of bytes and number of op-
erations, and, finally, v) achieves a high utilization of storage
capacity. This requires multiple optimizations throughout
the system, but two aspects are especially important. First,
efficiently accessing FNDs. Most existing KV stores use
synchronous IO that severely degrades performance because
it relies on kernel-scheduled threads to handle concurrency.
Instead, uDepot employs asynchronous IO and, if possible,
directly accesses the storage device from user-space. To this
end, uDepot is built on TRT, a task runtime for IO at the mi-
crosecond scale that uses user-space collaborative schedul-
ing. Second, uDepot uses a high-performance DRAM in-
dex structure that is able to match the performance of FNDs
while keeping its memory footprint small. (A small memory
footprint leads to efficient capacity utilization because less
DRAM is needed to index the same storage capacity.) uDe-
pot’s index structure is resizable, adapting its memory con-
sumption to the number of items stored. Resizing does not
require any IO operations, and is performed incrementally so
that it causes minimal disruption.

In summary, our contributions are: 1) uDepot, a KV store
that delivers the performance of FNDs, offering low latency,
high throughput, scalability, and efficient use of CPUs, mem-
ory, and storage. 2) TRT, a task run-time system suitable for
IO at the microsecond scale, which acts as a substrate for
uDepot. TRT provides a programmer-friendly framework for
writing applications that fully exploit fast storage. 3) uDe-
pot’s index data structure that enables it to meet its perfor-
mance goals while being space efficient, dynamically resiz-
ing to match the number of KV pairs stored. 4) An exper-
imental evaluation demonstrating that uDepot matches the
performance of FNDs, which, to our knowledge, no existing
system can. Indeed, uDepot vastly outperforms SSD-opti-
mized stores by up to ×14.7 but also matches the perfor-
mance of a DRAM-backed memcached server allowing it to
be used as a Memcache replacement to dramatically reduce
cost. A cloud Memcache service built using uDepot is avail-
able as an experimental offering in the public cloud [39].

The rest of the paper is organized as follows. We motivate
our work in §2, discuss TRT in §3, and present and evaluate
uDepot in §4 and §5, respectively. In §6 we discuss related
work and conclude in §7.

0 100 200 300 400 500 600
Throughput (kops/sec)

0

50

100

150

200

250

300

350

La
te

nc
y

(u
s)

qd=1
143 kops/sec
6.8 us

qd=8
589 kops/sec
13.0 us

qd=1
14 kops/sec
79.1 us

qd=64
290 kops/sec
181.5 us

Optane
Flash SSD

(a) Latency and throughput of 4 KiB ran-
dom reads on two NVMe devices: a NVMe
Flash SSD, and an Optane, as we vary the
queue depth (operations in flight) in powers
of two using SPDK’s perf benchmark [86].

0 2 4 6 8
Throughput (Mops/sec)

spdk

Linux aio

RocksDB
(LSM-tree)

Wiredtiger
(B-tree)

6.87

3.89

0.96

0.19

Achieved read throughput
on a 20-core 24-device system

(b) Aggregate throughput of
random 4 KiB reads using
different IO facilities (aio,
spdk) and storage engines
(WiredTiger, RocksDB).

Figure 1

2 Background and Motivation

In 2010, arguing for an in-memory KV store, Ousterhout et
al. predicted that “Within 5–10 years, assuming continued
improvements in DRAM technology, it will be possible to
build RAM-Clouds with capacities of 1–10 Petabytes at a
cost less than $5/GB” [72]. Since then, researchers have
been conducting an “arms race” to maximize performance
for in-memory KV stores [10, 21, 44, 52, 57, 68, 73]. In con-
trast to the above prediction, however, DRAM scaling is ap-
proaching physical limits [69] and DRAM is becoming more
expensive [22, 40]. Hence, as capacity demands increase,
memory KV stores rely on scaling out to achieve the re-
quired storage capacity by adding more servers. Naturally,
this is inefficient and comes at a high cost as the rest of the
node (CPUs, storage) remains underutilized and resources
required to support the additional nodes need to increase pro-
portionally as well (space, power supplies, cooling). In ad-
dition, while the performance of memory KV stores is im-
pressive, many depend on high-performance or specialized
networking (e.g., RDMA, FPGAs) and cannot be deployed
in commodity datacenter infrastructures such as the ones of-
fered by many public cloud providers.

Fast NVMe devices (FNDs) that were released recently
offer a cost-effective alternative to DRAM, with signifi-
cantly better performance than conventional SSDs (Fig. 1a).
Specifically, the Optane drive, based on 3D XPoint (3DXP),2

delivers a throughput close to 0.6 Mops/s, and achieves read
access latencies of 7 µs, an order of magnitude lower than
conventional SSDs, which have latencies of 80 µs or higher
[34]. Furthermore, Samsung announced availability of Z-
SSD, a new device [89] that utilizes Z-NAND [74] and
has similar performance characteristics to Optane, achiev-
ing read access latencies of 12 µs. Hence, a KV store ef-
fectively using FNDs offers an attractive alternative to its

2 3DXP is also used to build devices accessible as memory that offer
even lower latencies. Our work focuses on IO devices because they are
widely available and the most cost effective option.

2 17th USENIX Conference on File and Storage Technologies USENIX Association

DRAM counterparts. This is especially true in environments
with commodity networking (e.g., 10 Gbit/s Ethernet) where
FNDs shift the bottleneck from the storage to the network,
and the full performance of DRAM KV stores cannot be ob-
tained over the network.

Existing KV stores are built with slower devices in mind
and fail to deliver the performance of FNDs. As a motivating
example, we consider a multi-core and multi-device system
aimed at minimizing cost with 20 cores and 24 NVMe drives,
and compare the performance of the devices against the per-
formance of two ubiquitous storage engines: RocksDB and
WiredTiger. These engines epitomize modern KV store de-
signs, using LSM- and B-trees. We measure device perfor-
mance with microbenchmarks using the Linux asynchronous
IO facility (aio) and SPDK, a library for directly accessing
devices from user-space. For the two KV stores, we load
50M items of 4 KiB and measure the throughput of ran-
dom GET operations using their accompanying microbench-
marks while setting appropriate cache sizes so that requests
are directed to the devices. Even after tuning RocksDB and
WiredTiger to the best of our ability, we were not able to ex-
ceed 1 Mops/s and 120 Kops/s, respectively. On the other
hand, the storage devices themselves can provide 3.89 Mop-
s/s using asynchronous IO and 6.87 Mops/s using user-space
IO (SPDK). (More details about this experiment and how
uDepot performs in the same setup can be found in §5.)

Overall, these stores underutilize the devices and even
though experts can probably tune them to improve their
performance, there are fundamental issues with their de-
sign. First, these systems, built for slower devices, use syn-
chronous IO which is highly problematic for IO at the mi-
crosecond scale [7]. Second, they use LSM- or B-trees which
are known to cause significant IO amplification. In the pre-
vious experiment, for example, RocksDB IO amplification
was ×3 and WiredTiger’s ×3.5. Third, they cache data in
DRAM which requires additional synchronization but also
limits scalability due to memory requirements, and finally
they offer many additional features (e.g., transactions) which
may have a toll on performance.

uDepot follows a different path: it is built bottom-up to de-
liver the performance of FNDs (e.g., by eliminating IO am-
plification), offers only the basic operations of a KV store,
does not cache data, and uses asynchronous IO via TRT,
which we describe next.

3 TRT: a task run-time system for fast IO

Broadly speaking, there are three ways to access storage:
synchronous IO, asynchronous IO, and user-space IO. The
majority of existing applications access storage via syn-
chronous systems calls (e.g., pread, pwrite). As it is al-
ready well established for networking [45], synchronous IO
does not scale because handling concurrent requests requires
one thread for each, leading to context switches that degrade

performance when the number of in-flight requests is higher
than the number of cores. Hence, as with network program-
ming, utilizing the performance of fast IO devices requires
utilizing asynchronous IO [7]. For example, Linux AIO [43],
allows multiple IO requests (and their completions) to be is-
sued (and received) in batches from a single thread. Per-
forming asynchronous IO in itself, however, is not enough to
fully reap the performance of FNDs. A set of new principles
have emerged for building applications that efficiently ac-
cess fast IO devices. These principles include removing the
kernel from the datapath, favouring polling over interrupts,
and minimizing, if not precluding, cross-core communica-
tion [9, 75]. While the above techniques initially targeted
mostly fast networks, they also apply to storage [47, 94]. In
contrast to Linux AIO that is a kernel facility, user-space
IO frameworks such as SPDK [85], allow maximizing per-
formance by avoiding context switches, data copying, and
scheduling overheads. On the other hand, it is not always
possible to use them because they require direct (and in many
cases unsafe) access to the device and many environments
(e.g., cloud VMs) do not (yet) support them.

Hence, an efficient KV store (or a similar application)
needs to access both the network and the storage asyn-
chronously, potentially using user-space IO if available
to maximize performance. Existing frameworks, such as
libevent [55], are ill-suited for this use-case because they
assume a single endpoint for the application to check for
events (e.g., the epoll wait [46] system call). When com-
bining both access to the storage and network, multiple event
(and event completion) endpoints that need to be checked
might exist. For example, it might be that epoll wait

is used for network sockets, and io getevents [42] or
SPDK’s completion processing call is used for storage. Fur-
thermore, many of these frameworks are based on callbacks
which can be troublesome to use due to the so-called “stack
ripping” problem [1, 49].

To enable efficient, yet programmer-friendly, access to
FNDs, we developed TRT, a Task-based Run-Time system,
where tasks are collaboratively scheduled (i.e., no preemp-
tion) and each has its own stack. TRT spawns a number of
threads (typically one per core) and executes a user-space
scheduler on each. The scheduler executes in its own stack.
Switching between the scheduler and tasks is lightweight,
consisting of saving and restoring a number of registers
without involving the kernel. In collaborative scheduling,
tasks voluntarily switch to the scheduler via executing proper
calls. An example of such a call to the scheduler is yield
that defers execution to the next task. There are also calls
to spawn tasks, and synchronization calls: waiting and no-
tifying. The synchronization interface is based on Futures
[29, 30]. Because TRT tries to avoid cross-core communi-
cation as much as possible, it provides two variants for the
synchronization primitives: intra- and inter-core. Intra-core
primitives are more efficient because they do not require syn-

USENIX Association 17th USENIX Conference on File and Storage Technologies 3

chronization to protect against concurrent access as long as
critical sections do not include commands that switch to the
scheduler.

Based on the above primitives, TRT provides an infras-
tructure for asynchronous IO. In a typical scenario, each net-
work connection would be served by a different TRT task. To
enable different IO backends and facilities, each IO backend
implements a poller task that is responsible for polling for
events and notifying tasks to handle these events. To avoid
cross-core communication, each core runs its own poller in-
stance. As a result, tasks cannot move across core when they
have pending IO operations. Poller tasks are scheduled by
the scheduler as any other task.

TRT currently supports four backends: Linux AIO, SPDK
(single device and RAID-0 multi-device configurations), and
Epoll, with backends for RDMA and DPDK in development.
Each backend provides a low-level interface that allows tasks
to issue requests and wait for results, and, built on top of that,
a high-level interface for writing code resembling its syn-
chronous counterpart. For example, a trt::spdk::read()
call will issue a read command to SPDK device queues, and
call the TRT scheduler to suspend task execution until noti-
fied by the poller that processes SPDK completions.

To avoid synchronization, pollers of all backends running
on different cores use separate endpoints: Linux AIO pollers
use different IO contexts, SPDK pollers use different de-
vice queues, and Epoll pollers use a different control file-
descriptor.

4 uDepot

uDepot supports GET, PUT, and DELETE operations (§4.5) on
variable-sized keys and values. The maximum key and value
sizes are 64 KiB and 4 GiB, respectively, with no minimum
size for either. uDepot directly operates on the device and
does its own (log-structured) space management (§4.1), in-
stead of depending on a filesystem. To minimize IO ampli-
fication, uDepot uses a two-level hash table in DRAM as an
index structure (§4.2) which allows implementing KV oper-
ations with a single IO operation (if no hash collision exists),
but lacks support for efficient range queries. The index struc-
ture can utilize PBs of storage while still remaining memory
efficient by adapting its size to the number of KV entries
stored at run-time (resizing). Resizing (§4.3) causes minimal
disruption because it is incremental and does not incur IO.
uDepot does not cache data and is persistent (§4.4): when a
PUT (or DELETE) operation returns, the data are stored in the
device (not in OS cache) and will be recovered in case of a
crash. uDepot supports multiple IO backends (§4.6), allow-
ing users to maximize performance depending on their setup.
uDepot can currently be used in three ways: as an embedded
store linked to the application, as a distributed store over the
network (§4.7), or as a cache that implements the Memcache
protocol [64] (§4.8).

index (DRAM)

FND space

directory

table

segment

K len V len K V csum
KV record

index seg. KV seg.

Figure 2: uDepot maintains its index structure (directory and tables)
in DRAM. The FND space is split into segments of two types: index
segments for flushing index tables, and KV segments for storing
KV records.

4.1 Storage device space management
uDepot manages device space using a log-structured ap-
proach [67, 79], i.e., space is allocated sequentially and
garbage collection (GC) deals with fragmentation. We use
this approach for three reasons. First, it achieves good per-
formance on idiosyncratic storage like NAND Flash. Sec-
ond, it is more efficient than traditional allocation methods
even for non-idiosyncratic storage like DRAM [80]. Third,
an important use case for uDepot is caching, and there are a
number of optimization opportunities when co-designing GC
and caches [81, 84]. Allocation is implemented via a user-
space port of the log-structured allocator of SALSA [41].
Device space is split into segments (default size: 1 GiB),
which are in turn split into grains (typically sized equal to the
blocks of the IO device). There are two types of segments:
KV segments for storing KV records, and index segments
for flushing the index structure to speed up startup (§4.4).
uDepot calls SALSA to (sequentially) allocate and release
grains. SALSA performs GC and upcalls uDepot to relocate
specific grains to free segments [41]. SALSA’s GC [76] is
a generalized variant of the greedy [12] and circular buffer
(CB) [79] algorithms, which augments a greedy policy with
the aging factor of the CB.

4.2 Index data structure
uDepot’s index is an in-memory two-level mapping directory
for mapping keys to record locations in storage (Fig. 2). The
directory is implemented as an atomic pointer to a read-only
array of pointers to hash tables.

Hash table Each hash table implements a modified hop-
scotch [37] algorithm, where an entry is stored within a range
of consecutive locations, which we call neighborhood.3 Ef-
fectively, hopscotch works similarly to linear probe, but
bounds probe distance within the neighborhood. If an en-
try hashes to index i in the hash table array, and H is the

3The original paper [37] also uses the term “virtual” bucket.

4 17th USENIX Conference on File and Storage Technologies USENIX Association

ht00 ht10

00
01
10
11

d

0

227

0

227x

y

z

10

00

10

0272935

indextag
fingerprint

x

y

z

Figure 3: How key fingerprints are used to determine the neighbor-
hood for a key. d is a directory with 4 tables, where only two are
shown (ht00 and ht10).

neighborhood size (default: 32), then the entry can be stored
in any of the H valid entries starting from i. In the subse-
quent paragraphs, we refer to i as neighborhood index. We
choose hopscotch because of its high occupancy, cache effi-
cient accesses, bounded lookup performance – even in high
occupancy, and simple concurrency control [21].

We make two modifications to the original algorithm.
First, we use a power of two number of entries, indexing
the hash table similarly to set-associative caches [38]: we
calculate the neighborhood index using the least-significant
bits (LSB) of a fingerprint computed from the key. This al-
lows efficiently reconstructing the original fingerprint during
resize without needing to fully store it or perform IO to fetch
the key and recompute it.

Second, we do not maintain a bitmap per neighborhood,
nor a linked-list of entries per neighborhood, that the original
algorithm suggests [37]. The latter would increase the mem-
ory requirements by 50% for the default configuration (8B
entries, and neighborhood size of 32, 4B per entry). A linked
list would at least double the memory requirement (assum-
ing 8B pointers and singly or doubly linked list); let alone
increase in complexity. Instead of using a bitmap or a list,
we perform a linear probe directly on the entries both for
lookup and insert.

Synchronization We use an array of locks for concurrency
control. These locks protect different regions (lock regions)
of the hash table, with a region being strictly larger than the
neighborhood size (8192 entries by default). A lock is ac-
quired based on the neighborhood’s region; if a neighbor-
hood spans two regions, a second lock is acquired in order.
(The last neighborhoods do not wrap-around to the begin-
ning of the table so lock order is maintained.) Moreover, to
avoid inserts spanning more than two lock regions, we do not
displace entries further than two regions apart. Hence, oper-
ations take two locks at maximum, and, assuming good key
distribution, there is negligible lock contention.

Hash table entry Each hash table entry consists of 8 bytes:

s t r u c t HashEnt ry {
u i n t 6 4 t n e i g h o f f : 5 ; / / ne ighborhood o f f s e t
u i n t 6 4 t k e y f p t a g : 8 ; / / f i n g e r p r i n t MSBs
u i n t 6 4 t k v s i z e : 1 1 ; / / KV s i z e (g r a i n s)
u i n t 6 4 t pba : 4 0 ; / / s t o r a g e addr . (g r a i n s)

} ;

The pba field contains the grain offset on storage where
the KV pair resides. To allow utilization of large-capacity de-
vices we use 40 bits for this field, thus able to index petabytes
of storage (e.g., 4 PiB for 4 KiB grains). The pba value of all
1s indicates an invalid (free) entry.

We use 11 bits to store the size of the KV pair in grains
(kv size). This allows issuing a single IO read for GETs to
KV pairs of up-to 8 MiB when using 4 KiB grains. KV pairs
larger than that require a second operation. A valid entry
with a KV size of 0 indicates a deleted entry.

The remaining 13 bits are used as follows. The in-memory
index operates on a fingerprint of 35 bits, which are the LSBs
of a 64 bit cityhash [14] hash of the key (Fig. 3). We divide
the fingerprint into a index (27 bits) and a tag (8 bits). The
index is used to index the hash table, allowing for a maxi-
mum of 227 entries per table (the default). Reconstructing
the fingerprint from a table location requires: i) the off-
set of the entry within the neighborhood, and ii) the fin-
gerprint tag. We store both on the entry: 8 bits for the tag
(key fp tag), and 5 bits to allow for 32 entries in a neigh-
borhood (neigh off). Hence, if an entry has location λ in
the table, then its neighborhood index is λ−neigh off, and
its fingerprint is key fp tag : (λ−neigh off).

Capacity utilization Effectively utilizing storage capacity
requires being able to address it (pba field), but also hav-
ing enough table entries. Using the LSBs of the tag (8 bits
in total) to index the directory, uDepot’s index allows for 28

tables, each with 227 entries for a total of 235 entries. At
the cost of increased collisions, we can further increase the
directory by also using up to 5 LSBs from the fingerprint
to index it, allowing for 213 tables. We can use up to the
5 neighborhood bits this way because the existing hopscotch
collision mechanisms will end up filling positions in the table
where no neighborhood starts. If we consider KV pairs with
an average size of 1 KiB, this allows utilizing up to 1 PiB
(235+5 ·210) of storage. Based on the expected workload and
available capacity, users can maximize utilization by config-
uring the table size parameters accordingly.

Operations For lookups, a key fingerprint is generated.
We use the fingerprint tag LSBs to index the directory and
find the table for this key (if the fingerprint tag is not enough
we also use the fingerprint LSBs as described above). Next,
we index the table with the fingerprint index to find the
neighborhood (also see: Fig. 3). A linear probe is then per-
formed in the neighborhood, and the entries for which the

USENIX Association 17th USENIX Conference on File and Storage Technologies 5

...
0

..1 .
d

..

ht0

..
i

.

ex

.

ey

..

ht′00

..
i

...
i

.

ht′10

..
00

.. 01..
10

..

11

.

d′

.

ex

.

ey

Figure 4: Incremental resizing example, transitioning from a direc-
tory with two hash tables (d) to a directory with four (d′). Dur-
ing resizing, insertions copy data from the lock region of ht0 that
contains the neighborhood for the inserted entry, to the same lock
regions across two hash tables (ht ′00,ht ′10).

fingerprint tag (key fp tag) matches, if any, are returned.
For inserts, the hash table and neighborhood are located as

described for the lookup. Then a linear probe is performed
on the neighborhood and if no existing entry matches the
fingerprint tag (key fp tag), then insert returns the first free
entry, if one exists. The user may then fill the entry. If no free
entry exists, then the hash table performs a series of displace
attempts until a free entry can be found within the neighbor-
hood. If this fails, an error is returned, at which point the
caller usually triggers a resize operation. If matching entries
exist, then insert returns them. The caller decides whether
to update an entry in-place or continue the search for a free
entry where they left off.

4.3 Resize operation

The optimal size of the index data structure depends on the
number of KV records. Setting the size of the index data
structure too low limits the number of records that can be
handled. Setting the size too high could waste a significant
amount of memory. For example, assuming an average KV
record size of 1 KiB, a dataset of 1 PiB would require around
8 TB of memory.

uDepot avoids this issue by dynamically adapting the in-
dex data structure to the workload. The resize operation is
fast, because it does not require any IO to the device, and
causes minimal disruption to normal operations because it is
executed incrementally.

The directory grows in powers of two, so that at any point
the index holds n∗2m entries, where m is the number of grow
operations, and n is the number of entries in each hash table.
We only need the fingerprint to determine the new locations,
so no IO operations are required to move hash entries to their
new locations. A naive approach would be to move all en-
tries at once, however, it would result in significant delays

to user requests. Instead, we use an incremental approach
(Fig. 4). During the resize phase, both the new and the old
structures are maintained. We migrate entries from the old
to the new structure at the granularity of the lock regions.
A “migration” bit per lock indicates whether the region has
already migrated. An atomic “resize” counter keeps track
of whether the total resize operation has concluded, and is
initialized to the total number of locks.

Migration is triggered by an insertion operation that fails
to find a free entry. The first such failure triggers a resize op-
eration, and sets up a new shadow directory. Subsequent in-
sertion operations migrate all the entries under the locks they
hold (one or two) to the new structure, setting the “migra-
tion” bit for each lock, and decrementing the “resize” counter
(by one or two). Hash tables are pre-allocated during the re-
size operation in a separate thread to avoid delays. When all
entries are migrated from the old to the new structure (“re-
size” count is zero), the memory of the old structure is re-
leased. During the resize operation, lookups need to check
either the new or the old structure, depending on the lookup
region’s “migration” status.

4.4 Metadata and persistence

uDepot maintains metadata at three different levels: per de-
vice, per segment, and per KV record. At the device level the
uDepot configuration is stored together with a unique seed
and a checksum. At each segment’s header, its configura-
tion is stored (owning allocator, segment geometry, etc.) to-
gether with a timestamp and checksum that matches the de-
vice metadata. At the KV record (Fig. 2), uDepot prepends
to each KV pair 6B of metadata containing the key size (2B)
in bytes, and value size (4B) in bytes, and appends (to avoid
the torn page problem) a 2B checksum matching the seg-
ment metadata (not computed over the data). The device and
segment metadata require 128B and 64B, respectively, are
stored in grain aligned locations and their overhead is neg-
ligible. The main overhead is due to the per KV metadata
which depends on the average key-value size; for a 1 KiB
average size the overhead amounts to 0.8%.

To speed up startup, in-memory index tables are flushed
to persistent storage, but they are not guaranteed to be up-
to-date: the persistent source of truth is the log. Flushing
to storage occurs in normal shutdown, but also periodically
to speed recovery. Upon initialization, uDepot iterates in-
dex segments, restores the index tables, and reconstructs the
directory. If uDepot was cleanly shut down (we check this
using checksums and unique session identifiers), the index is
up to date. Otherwise, uDepot reconstructs the index from
KV records found in KV segments. KV records for the same
key (new values or tombstones) are disambiguated using seg-
ment version information. Because we are not reading data
(only keys and metadata) during recovery, starting up after a
crash typically takes a few seconds.

6 17th USENIX Conference on File and Storage Technologies USENIX Association

4.5 KV operations

For GET, a 64 bit hash of the key is computed and locking of
the associated hash table region is performed. A lookup (see
§4.2) is performed, returning zero or more matching hash en-
tries. After the lookup, the table’s region is unlocked. If no
matching entry is found, the key does not exist. Otherwise,
the KV record is fetched from storage for each matching en-
try; either a full key match is found and the value is returned,
or the key does exist.

For PUT, we first write a KV record in the log out-of-place.
Subsequently, we perform an operation similar to GET (key
hash, lock, etc.) to determine whether the key already exists,
using the insert (see §4.2) hash table function. If not, we in-
sert a new entry to the hopscotch table if a free entry exists
– if no free entry exists, then we trigger a resize operation.
If a key already exists, we invalidate the grains of the previ-
ous entry, and update the table entry in-place with the new
location (pba) and size of the KV record. Note that, also like
GET, read IOs to matching hash table entries are performed
without holding the table region lock. Unlike GET, though,
PUT re-acquires the lock if the record is found, and repeats
the lookup to detect concurrent mutation(s) on the same key:
if such a concurrent mutation is detected, then the operation
that updated the hash table entry first, wins. If the PUT fails,
then it invalidates the grains it wrote before the lookup, and
returns an appropriate error. PUT updates existing entries by
default, but provides an optional argument where the user
can choose instead to perform a PUT (i) only if the key ex-
ists, or (ii) only if the key does not exist.

DELETE is almost identical to PUT, other than it writes a
tombstone entry instead of the KV record. Tombstone entries
are used to identify deleted entries on a restore from the log,
and are recycled during GC.

4.6 IO backends

uDepot bypasses the page cache and accesses the storage di-
rectly (O DIRECT) by default. This prevents uncontrolled
memory consumption, but also avoids scalability problems
caused by concurrently accessing the page cache from mul-
tiple cores [96]. uDepot supports accessing storage both via
synchronous IO and via asynchronous IO. Synchronous IO
is implemented by the uDepot Linux backend (called so be-
cause scheduling is left to Linux). Despite its poor perfor-
mance, this backend allows uDepot to be used by existing
applications without modifications. For example, we have
implemented a uDepot JNI interface that uses this backend.
Its implementation is simple, since most operations directly
translate to system calls. For asynchronous and user-space
IO, uDepot uses TRT, and can use either SPDK or the kernel
Linux AIO facility.

4.7 uDepot server
Embedded uDepot provides two interfaces to users: one
where operations take arbitrary (contiguous) user buffers,
and one where operations take a data structure that holds a
linked list of buffers allocated from uDepot. The former in-
terface, which internally is implemented using the latter, is
simpler but is inherently inefficient. One of the problems is
that for many IO backends it requires a data copy between IO
buffers and the user-provided buffers. For instance, perform-
ing direct IO requires aligned buffers, while SPDK requires
buffers allocated via its run-time system. Our server uses the
second interface so that it can perform IO directly from (to)
the receive (send) buffers. The server is implemented using
TRT and uses the epoll backend for networking. First, a task
for accepting new network connections is spawned. This task
registers with the poller, and is notified when a new connec-
tion is requested. When this happens, the task will check if
it should accept the new connection and spawn a new task
on a (randomly chosen) TRT thread. The task will register
with the local poller to be notified when there are incoming
data for its connection. The connection task handles incom-
ing requests by issuing IO operations to the storage backend
(either Linux AIO or SPDK). After issuing an IO request, the
task defers its execution and the scheduler runs another task.
The storage poller is responsible for waking up the deferred
task when the IO completion is available. The task will then
send the proper reply and wait for a new request.

4.8 Memcache server
uDepot also implements the Memcache protocol [64],
widely used to accelerate object retrieval from slower data
stores (e.g., databases). The standard implementation of
Memcache is in DRAM [65], but implementations for SSDs
also exist [27, 61].

uDepot Memcache is implemented similarly to the uDe-
pot server (§4.7): it avoids data copies, uses the epoll back-
end for networking and either the AIO or the SPDK back-
end for access to storage. Memcache specific KV metadata
(e.g., expiration time, flags, etc.) are appended at the end of
the value. Expiration is implemented in a lazy fashion: it is
checked when a lookup is performed (either for a Memcache
GET or a STORE command).

uDepot Memcache exploits synergies in the cache evic-
tion and the space management GC design space: a merged
cache eviction and GC process is implemented that reduces
the GC cleanup overhead to zero in terms of IO amplifi-
cation. Specifically, a GC LRU-policy is employed at the
segment level (§4.1): on a cache hit the segment contain-
ing the KV is updated as the most recently accessed; when
running low on free segments the least recently used one is
chosen for cleanup, its valid KV entries (both expired and
unexpired) are invalidated (i.e., evicted) in the uDepot di-
rectory, and the segment is now free to be re-filled, with-

USENIX Association 17th USENIX Conference on File and Storage Technologies 7

out performing any relocation IO. This scheme allows us
to maintain a steady performance even in the presence of
sustained random updates, and also to reduce the overprovi-
sioning at the space management level (SALSA) to a bare
minimum (enough spare segments to accommodate the sup-
ported write-streams) thus maximizing capacity utilization at
the space management level. A drawback of this scheme is
potentially reduced cache hit ratio [81,93]; we think this is a
good tradeoff to make since the cache hit ratio is amortized
by having a larger caching capacity due to the reduced over-
provisioning. The uDepot memcache server is the basis of
an experimental cloud memcache service currently available
in the public cloud [39].

4.9 Implementation notes

uDepot is implemented in C++11. It is worth noting that
uDepot’s performance requires many optimizations: we
eliminate heap allocations from the data path using core-
local slab allocators, we use huge pages, we favor static
over dynamic polymorphism, we avoid copies using scatter-
gather IO and placing data from the network at the proper
location of IO buffers, we use batching, etc.

5 Evaluation

We perform our experiments on a machine with two 10-core
Xeon CPUs (configured to operate at their maximum fre-
quency: 2.2GHz), 125 GiB RAM, and running a 4.14 Linux
kernel (including support for KPTI [16] – a mitigation for
CPU security problems that increases context switch over-
head). The machine has 26 NVMe drives: 2 Intel Optanes
(P4800X 375GB HHHL PCIe), and 24 Intel Flash SSDs
(P3600 400GB 2.5in PCIe).

5.1 Index structure

We start by evaluating the performance of our index struc-
ture both in the absence and presence of resize operations.
We use 512 MiB (226 entries) hash tables with 8192 locks
per table. Our experiment consists of inserting a number
of random keys, and then performing random lookups on
those keys. We consider two cases: i) inserting 50M (5 ·107)
items where no resize happens, and ii) inserting 1B (109)
items where four grow operations happen. We compare
against libcuckoo [53, 54], a-state-of-the-art hash table im-
plementation by running its accompanying benchmarking
tool (universal benchmark), configuring an initial capac-
ity of 226/230 for our 50M/1B runs. Results are shown in
Fig. 5. For 50M items, our implementation achieves 87.7
million lookups and 64 million insertions per second, ×5.8
and ×6.9 better than libcuckoo, respectively. For 1B items,
the insertion rate drops to 23.3 Mops/sec due to the resizing

1 2 4 6 8 10 12 14 16 18 20
Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

uDepot lookups
uDepot inserts
libcuckoo lookups
libcuckoo inserts

(a) throughput: 50M items (no grow)

1 2 4 6 8 10 12 14 16 18 20
Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

uDepot lookups
uDepot inserts
libcuckoo lookups
libcuckoo inserts

(b) throughput: 1B items (4 grows)

percentile lookup/50M lookup/1B insert/50M insert/1B
50% 0.2 µs 0.3 µs 0.2 µs 0.4 µs
99% 1.1 µs 1.2 µs 0.6 µs 1.0 µs
99.9% 1.9 µs 2.0 µs 1.6 µs 9.2 µs
99.99% 11.0 µs 8.9 µs 7.5 µs 1168.0 µs

(c) Operation latencies

Figure 5: Mapping structure performance results.

operations. To better understand the cost of resizing, we per-
form another run where we sample latencies. Fig. 5c shows
the resulting median and tail latencies. The latency of insert
operations needing to copy items is seen in the 99.99% per-
centile, where latency is 1.17 ms. Note that this is a worse
case scenario, where only insertions and no lookups are per-
formed. It is possible to reduce the latency of these slow
insertions by increasing the number of locks, at the cost of
additional memory.

5.2 Embedded uDepot

Next, we examine the performance of uDepot as an embed-
ded store. Our goal is to evaluate uDepot’s ability to utilize
FNDs, and compare the performance of the three different IO
backends: syncronous IO using threads (linux-directIO),
TRT using Linux asynchronous IO (trt-aio), and TRT us-
ing SPDK (trt-spdk). We are interested in two properties:
efficiency and scalability. For the first, we restrain the appli-
cation to use 1 core and 1 drive (§5.2.1). For the second, we
use 24 drives and 20 cores (§5.2.2).

We use a custom microbenchmark to generate load for
uDepot. We annotate the microbenchmark to sample the ex-
ecution time for the operations performed, which we use to
compute the median latency. In the following experiments,
we use random keys of 8-32 bytes and values of 4K bytes.
We perform 50M random PUTs, and 50M random GETs on
the inserted keys.

5.2.1 Efficiency (one drive, one core)

We evaluate the efficiency of uDepot and its IO backends
by using one core to drive one Optane drive. We compare
uDepot’s performance to the raw performance achievable by
the device.

8 17th USENIX Conference on File and Storage Technologies USENIX Association

0 100 200 300 400 500 600
Throughput (Kops/s)

0

20

40

60

80

100

m
ed

ia
n

la
te

nc
y

(u
se

c)

qd=8

qd=4

qd=2

trt-spdk
trt-aio
linux-directIO

(a) PUTs

0 100 200 300 400 500 600
Throughput (Kops/s)

0

20

40

60

80

100

m
ed

ia
n

la
te

nc
y

(u
se

c)

qd=8

qd=4

qd=4

trt-spdk
trt-aio
linux-directIO

(b) GETs

Figure 6: uDepot running on a single core/single device setup. Me-
dian latency and throughput for a uniform random workload of 4K
values for different IO backends and different queue depths.

We bind all threads on a single core (one that is on the
same NUMA node as the drive). We apply the workload
described in §5.2 for queue depths (qd) of 1,2,4, . . . ,128
and for the three different IO backends. For synchronous
IO (linux-directIO) we spawn a number of threads equal
to the qd. For TRT backends we spawn a single thread and
a number of tasks equal to the qd. Both linux-directIO

and trt-aio use direct IO to bypass the page cache.

linux-directIO trt-aio trt-spdk
0

2

4

6

8

10

12

La
te

nc
y

(u
se

cs
)

spdk raw
fio raw

(a) Median latency for qd=1
linux-directIO trt-aio trt-spdk
0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

spdk raw
fio raw

(b) Throughput for qd=128

Figure 7: uDepot running on a single core/single device setup under
a uniform random workload of GET operations for 4K values.

Results are shown in Fig. 6b for GETs and Fig. 6a for PUTs.
The linux-directIO backend performs the worst. To a
large extent, this is because it uses one thread per in-flight
request, resulting in frequent context switches by the OS to
allow all these threads to run on a single core. trt-aio im-
proves performance by using TRT’s tasks to perform asyn-
chronous IO and perform a single system call for multiple
operations. Finally, trt-spdk exhibits (as expected) the best
performance as it avoids switching to the kernel.

We consider the better performing GET operations to com-
pare uDepot against the device performance. We focus on
latency with a single request in flight (qd = 1), and through-
put at a high queue depth (qd = 128). Fig. 7a shows the
median latency achieved for qd = 1 for each backend. The
figure includes two lines depicting the raw performance

0 500 1000 1500 2000 2500
Concurrency (trt:128 × #threads, linux:#threads)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

linux-directIO
trt-aio
trt-spdk
spdk raw
fio raw

(a) GETs

0 100 200 300 400 500 600
Concurrency (trt:32 × #threads, linux #threads)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

linux-directIO
trt-aio
trt-spdk
spdk raw
fio raw

(b) PUTs

Figure 8: Aggregate GET/PUT throughput of uDepot backends when
using 24 NVMe drives for different concurrencies.

of the device under a similar workload obtained using ap-
propriate benchmarks for each IO facility. That is, one
core, one device, 4KiB random READ operations at qd = 1
across the whole device which was randomly written (pre-
conditioned). fio raw shows the latency achieved by fio

[23] with the libaio (i.e., Linux AIO) backend, while for
spdk raw we use SPDK’s perf utility [86]. uDepot under
trt-spdk achieves a latency of 7.2 µs which is very close
the latency of the raw device using SPDK (6.8 µs). The
trt-aio backend achieves a latency of 9.5 µs with the cor-
responding raw device number using fio being 9 µs. An ini-
tial implementation of the trt-aio backend that used the
io getevents() system call to receive IO completions, re-
sulted in a higher latency (close to 12 µs). We improved per-
formance by implementing this functionality in user-space
[17, 28, 77]. fio’s latency remained unchanged when using
this technique (fio option userspace reap). Fig. 7b shows
the throughput achieved by each backend at high (128) queue
depth. linux-directIO achieves 200 kops/s, trt-aio

272 kops/s, and trt-spdk 585 kops/s. As before, fio raw

and spdk raw show the device performance under a simi-
lar workload (4KiB random READs, qd=128) as reported by
fio and SPDK’s perf. Overall, uDepot performance is very
close to the device performance.

5.2.2 Scalability (24 drives, 20 cores)

Next, we examine how well uDepot scales when using multi-
ple drives and multiple cores, and how the different IO back-
ends behave under these circumstances.

To maximize aggregate throughput, we use the 24 Flash-
based NVMe drives in the system, and all of its 20 cores.
(Even though these drives are not FNDs, we use a large
number of them to achieve a high aggregate throughput and
examine uDepot’s scalability.) For the uDepot IO back-
ends that operate on a block device (linux-directIO and
trt-aio), we create a software RAID-0 device that com-
bines the 24 drives into one using the Linux md driver. For
the trt-spdk backend we use the RAID-0 uDepot SPDK
backend. We use the workload described in §5.2, and take
measurements for different numbers of concurrent requests.

USENIX Association 17th USENIX Conference on File and Storage Technologies 9

For linux-directIO we use one thread per request, up to
1024 threads. For TRT backends, we use 128 TRT tasks per
thread for GETs and 32 TRT tasks for PUTs (we use different
numbers for different operations because they are saturated
at different queue depths). We vary the number of threads
from 1 up to 20.

Results are presented in Fig. 8. We also include two lines
depicting the maximum aggregate throughput achieved on
the same drives by SPDK perf and fio using the libaio

(Linux AIO) backend. We focus on GETs, because that’s the
most challenging workload. The linux-directIO back-
end initially has better throughput as it uses more cores.
For example, for a concurrency of 256, it uses 256 threads,
and subsequently all the cores of the machine; for the
TRT backends, the same concurrency uses 2 threads (128
tasks per thread), and subsequently 2 out of the 20 cores
of the machine. Its performance, however, is capped at
1.66 Mops/s. The trt-aio backend achieves a maximum
throughput of 3.78 Mops/s, which is very close to the per-
formance achieved by fio: 3.89 Mops/s. Finally, trt-spdk
achieves 6.17 Mops/s which is about 90% of the raw SPDK
performance (6.87 Mops/s). We use normal SSDs to reach
a larger throughput than the one that we could using Op-
tane drives due to limited PCIe slots on our server. Because
we measure throughput, these results can be generalized to
FNDs with the difference being that it would require fewer
drives to reach the achieved throughput. Moreover, the raw
SPDK performance measured (6.87 Mops/s) is close to the
throughput that the IO subsystem of our server can deliver:
6.91 Mops/s. The latter number is the throughput achieved
by the SPDK benchmark when using uninitialized drives that
return zeroes without accessing Flash. The PCIe bandwidth
of our server is 30.8 GB/s (or 7.7 Mops/s for 4 KiB), which
is consistent with our results if we consider PCIe and other
overheads.

Overall, both uDepot backends (trt-aio, trt-spdk)
perform very close in terms of efficiency and scalability to
what the device can provide for each different IO facility.
In contrast, using blocking system calls (linux-directIO)
and multiple threads has significant performance limitations
both in terms of throughput and latency.

5.3 uDepot server / YCSB

In this section we evaluate the performance of the uDepot
server against two NoSQL stores: Aerospike [2] and Scyl-
laDB [82]. Even though uDepot has (by design) less func-
tionality than these systems, we select them because they are
NVMe-optimized and offer, to the best of our knowledge,
the best options for exploiting FNDs today.

To facilitate a fair comparison, we use the YCSB [15]
benchmark, and run the following workloads: A (update
heavy: 50/50), B (read mostly: 95/5), C (read only), D (read
latest), and F (read-modify-write), with 10M records and the

A B C D F
YCSB workload

0

100

200

300

400

500

600

700

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

scylla aerospike uDepot-trt-aio uDepot-trt-spdk

Figure 9: Overall throughput when using 256 YCSB client threads
for different key-value stores.

default record size of 1 KiB. (We exclude workload E be-
cause uDepot does not support range queries.) We configure
all systems to use two Optane drives and 10 cores (more than
enough to drive 2 Optane drives), and generate load using
a single client machine connected via 10 Gbit/sec Ethernet.
For uDepot, we develop a YCSB driver using the uDepot
JNI interface to act as a client. Because TRT is incompat-
ible with the JVM, clients use the Linux uDepot backend.
For Aerospike and ScyllaDB we use their available YCSB
driver. We use YCSB version 0.14, Scylla version 2.0.2, and
Aerospike version 3.15.1.4. For Scylla, we set the cassandra-
cql driver’s core and maxconnections parameters at least
equal to the YCSB client threads, and capped its memory use
to 64GiB to mitigate failing YCSB runs on high client thread
counts due to memory allocation.

Fig. 9 presents the achieved throughput for 256 client
threads for all workloads. uDepot using the trt-spdk back-
end improves YCSB throughput from ×1.95 (workload D)
up to×2.1 (workload A) against Aerospike, and from×10.2
(workload A) up to ×14.7 (workload B) against ScyllaDB.
Fig. 10 focuses on the update-heavy workload A (50/50), de-
picting the reported aggregate throughput, update and read
latency for different number of client threads (up to 256) for
all the examined stores. For 256 clients, uDepot using SPDK
achieves a read/write latency of 345 µs/467 µs, Aerospike
882 µs/855 µs, and ScyllaDB 4940 µs (3777 µs).

We profile execution under workload A, to understand the
causes of the performance differences between Aerospike,
ScyllaDB, and uDepot. Aerospike is limited by its use of
multiple IO threads and synchronous IO. Indeed, synchro-
nization functions occupied a significant amount of its exe-
cution time due to contention created by the multiple threads.
ScyllaDB uses asynchronous IO (and in general has an effi-
cient IO subsystem), but it exhibits significant IO amplifica-
tion. We measured the read IO amplification of the user data
(YCSB key and value) versus what was read from the FNDs

10 17th USENIX Conference on File and Storage Technologies USENIX Association

0 50 100 150 200 250
YCSB client threads

0

100

200

300

400

500

600
O

ve
ra

ll
Th

ro
ug

hp
ut

 (K
op

s/
se

c)

0 50 100 150 200 250
YCSB client threads

0

200

400

600

800

1000

R
ea

d
la

te
nc

y
(u

s)

0 50 100 150 200 250
YCSB client threads

0

200

400

600

800

1000

U
pd

at
e

la
te

nc
y

(u
s)

aerospike
scylla
uDepot-trt-aio
uDepot-trt-spdk

Figure 10: Overall throughput, update and read latency, as reported by the YCSB benchmark for different number of client threads applying
workload A (50/50 reads/writes) to different key-value stores.

and the results were as follows: ScyllaDB: ×8.5, Aerospike:
×2.4, and uDepot (TRT-aio): ×1.5.

Overall, uDepot exposes the performance of FNDs signif-
icantly better than Aerospike and ScyllaDB. We note that
YCSB is inefficient since it uses synchronizing Java threads
with synchronous IO, and under-represents uDepot’s perfor-
mance. In the next section, we use a more performant bench-
mark that better illustrates uDepot’s efficiency.

5.4 uDepot Memcache
Lastly, we evaluate the performance of our uDepot Mem-
cache implementation, and investigate if it can provide com-
parable performance to DRAM-based services.

We use memcached [65] (version: 1.5.4), the standard im-
plementation of Memcache that uses DRAM, as the standard
on what applications using Memcache expect, MemC3 [25]
(commit: 84475d1), a state-of-the-art Memcache implemen-
tation, and Fatcache [27] (commit: 512caf3), a Memcache
implementation on SSDs.

0 100 200 300 400 500 600
Concurrency

0

200

400

600

800

1000

1200

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

fatcache
memc3
memcached
uDepot-trt-aio
uDepot-trt-spdk

0 100 200 300 400 500 600
Concurrency

0

100

200

300

400

500

A
ve

ra
ge

 la
te

nc
y

(u
s)

fatcache
memc3
memcached
uDepot-trt-aio
uDepot-trt-spdk

Figure 11: Memcache performance as reported by memaslap us-
ing the default 10%-PUT, 90%-GET workload of 1 KiB objects for
different number of clients (concurrency).

We use memaslap4 [62], a standard Memcache bench-
mark, and generate the default workload: 10%-PUT, 90%-
GET with 1 KiB objects. We execute memaslap on a different
machine, connected over 10 Gbit/s Ethernet to the server.
The Memcache servers are configured to use all 20 cores of

4We applied a number of scalability patches [63] to improve perfor-
mance.

our machine. DRAM-based memcached, and MemC3 are
configured to use enough memory to fit all the working set,
while Fatcache and uDepot are configured to use the two Op-
tane drives in a RAID-0 configuration, using the Linux md
driver when required. We use the default options for Fat-
cache.

The reported latency and throughput is summarized in
Fig. 11. For a single client, the reported latency is 49 µs
for MemC3, 51 µs for both memcached and uDepot using
trt-spdk, 52 µs for Fatcache, and 67 µs for uDepot us-
ing trt-aio. Contrarily to uDepot, Fatcache caches data
in DRAM which leads to the low latency at low queue
depths. As the number of clients increase, however, the per-
formance of Fatcache significantly diverges, while uDepot’s
performance remains close. Case in point, for 128 clients,
MemC3’s latency is 110 µs, memcached’s 126 µs, uDe-
pot with trt-spdk achieves 128 µs, uDepot with trt-aio

139 µs, and Fatcache 2418 µs; The achieved throughputs
are: MemC3:1145 kops/s, memcached:1001 kops/s, uDe-
pot trt-spdk: 985 kops/s uDepot trt-aio: 911 kops/s,
and Fatcache: 53 kops/s.

Hence, our results show that memcached on DRAM can
be replaced with uDepot on NVM with a negligible perfor-
mance hit, since the bottleneck is the network. Moreover,
Fatcache cannot exploit the performance benefits of FNDs.

6 Related work

Flash KV stores Two early KV stores that specifically tar-
geted Flash are FAWN [3], a distributed KV store, built with
low-power CPUs and small amounts of Flash storage, and
FlashStore [19], a multi-tiered KV store using both DRAM,
Flash, and Disks. These systems are similar to uDepot in that
they keep an index in the form of a hash-table in DRAM, and
they use a log-structured approach. They both use 6-byte en-
tries: 4 bytes to address Flash, and 2 bytes for they key fin-
gerprint, while subsequent evolutions of these works [20,56]
further reduce the entry size. uDepot increases the entry to
8 bytes, enabling features not supported by the above sys-
tems: i) uDepot stores the size of the KV entry, allowing it
to fetch both key and value with a single read request. That

USENIX Association 17th USENIX Conference on File and Storage Technologies 11

is, a GET operation requires a single access. ii) uDepot sup-
ports online resizing that does not require accessing NVM
storage. iii) uDepot uses 40 instead of 32 bits for addressing
storage, supporting up to 1 PB of grains. Moreover, uDe-
pot efficiently accesses FNDs (via asynchronous IO back-
ends) and scales over many devices and cores which these
systems, built for slower devices, do not support. A number
of works [60,91] built Flash KV stores or caches [81,84] that
rely on non-standard storage devices, such as open-channel
SSDs. uDepot does not depend on special devices, and using
richer storage interfaces to improve uDepot is future work.

High-performance DRAM KV stores A large number of
works targets to maximize the performance of DRAM-based
KV stores using RDMA [21,44,68,73], direct access to net-
work hardware [57], or, FPGAs [10, 52]. uDepot, on the
other hand, operates over TCP/IP and places data in storage
devices. Nevertheless, many of these systems use a hash-
table to maintain their mapping, and access it with one-sided
RDMA operations from the client when possible. FaRM
[21], for example, identifies the problems of cuckoo hash-
ing, and, similarly to uDepot, uses a variant of hopscotch
hashing. A fundamental difference of FaRM and uDepot is
that the former is concerned with minimizing RDMA oper-
ations to access the hash table, which is not a concern for
uDepot. Moreover, uDepot’s index structure supports online
resizing, while FaRM uses an overflow chain per bucket that
can cause a performance hit for checking the chain.

NVM KV stores A number of recent works [4, 71, 92, 95]
propose NVM KV stores. These systems are fundamen-
tally different in that they operate on byte-addressable NVM
placed on the memory bus. uDepot, instead, uses NVM on
storage devices because the technology is widely available
and more cost effective. MyNVM [22] also uses NVM stor-
age as a way to reduce the memory footprint of RocksDB,
where NVM storage is introduced as a second level block
cache. uDepot takes a different approach by building a
KV store that places data exclusively on NVM. Aerospike
[87], that targets NVMe SSDs, follows a similar design to
uDepot by keeping its index in DRAM and the data in a log
that resides in storage. Nevertheless, because it is designed
with SSDs in mind, it cannot fully exploit the performance of
FNDs (e.g., it uses synchronous IO). Faster [11] is a recent
KV store that, similarly to uDepot, maintains an resizable
in-memory hash index and stores its data into a log. In con-
trast to uDepot, Faster uses a hybrid log that resides both in
DRAM and in storage.

Memcache Memcache is an extensively used service [5,
6, 32, 65, 70]. MemC3 [25] redesigns memcached using a
concurrent cuckoo hashing table. Similarly to the original
memcached, the hash table cannot be dynamically resized
and the amount of used memory must be defined when the
service starts. uDepot supports online resizing of the hash

table, while also allowing for faster warm-up times if the
service restarts since the data are stored in persistent stor-
age. Recently, usage of FNDs in memcached was explored
as means to reduce costs and expand the cache [66].

Task-based asynchronous IO A long-standing debate ex-
ists on programming asynchronous IO using threads versus
events [1, 18, 49, 51, 90]. uDepot is built on TRT that uses a
task-based approach, where each task has its own stack. A
useful extension to TRT would be to provide a composable
interface for asynchronous IO [36]. Flashgraph [97] uses an
asynchronous task-based IO system to process graphs stored
on Flash. Seastar [83], the run-time used by ScyllaDB, fol-
lows the same design principles as TRT, but does not (cur-
rently) support SPDK.

7 Conclusion and Future Work

We presented uDepot, a KV store that fully utilizes the per-
formance of fast NVM storage devices like Intel Optane. We
showed that uDepot reaches the performance available from
the underlying IO facility it uses, and can better utilize these
new devices compared to existing systems. Moreover, we
showed that uDepot can use these devices to implement a
cache service that achieves a similar performance to DRAM
implementations, at a much lower cost. Indeed, we use our
uDepot Memcache implementation as the basis of an exper-
imental public cloud service [39].

uDepot has two main limitations that we plan to address
in future work. First, uDepot does not (efficiently) support
a number operations that have been proven useful for ap-
plications such as range queries, transactions, checkpoints,
data structure abstractions [78], etc. Second, there are many
opportunities to improve efficiency by supporting multiple
tenants [13], that uDepot does not currently exploit.

8 Acknowledgements

We would like to thank the anonymous reviewers and espe-
cially our shepherd, Peter Macko, for their valuable feedback
and suggestions, as well as Radu Stoica for providing feed-
back on early drafts of our paper. Finally, we would like to
thank Intel for providing early access to an Optane testbed.

References

[1] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J., AND
DOUCEUR, J. R. Cooperative task management without manual stack
management. USENIX ATC ’02.

[2] Aerospike — high performance NoSQL database. https://www.

aerospike.com/.

[3] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-
ISHAYEE, A., TAN, L., AND VASUDEVAN, V. FAWN: A fast array
of wimpy nodes. SOSP ’09.

12 17th USENIX Conference on File and Storage Technologies USENIX Association

https://www.aerospike.com/
https://www.aerospike.com/

[4] ARULRAJ, J., LEVANDOSKI, J., MINHAS, U. F., AND LARSON, P.-
A. Bztree: a high-performance latch-free range index for non-volatile
memory. Proc. VLDB Endow. 11, 5 (2018).

[5] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value store.
SIGMETRICS ’12.

[6] Amazon ElastiCache. https://aws.amazon.com/elasticache/.

[7] BARROSO, L., MARTY, M., PATTERSON, D., AND RANGANATHAN,
P. Attack of the killer microseconds. Commun. ACM 60, 4 (2017).

[8] Oracle Berkeley DB. http://www.oracle.com/technetwork/

database/database-technologies/berkeleydb/overview/

index.html.

[9] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A protected dataplane op-
erating system for high throughput and low latency. OSDI ’14.

[10] CHALAMALASETTI, S. R., LIM, K., WRIGHT, M., AUYOUNG, A.,
RANGANATHAN, P., AND MARGALA, M. An FPGA memcached
appliance. FPGA ’13.

[11] CHANDRAMOULI, B., PRASAAD, G., KOSSMANN, D., LEVAN-
DOSKI, J., HUNTER, J., AND BARNETT, M. FASTER: an embedded
concurrent key-value store for state management. Proceedings of the
VLDB Endowment (2018).

[12] CHANG, L.-P., KUO, T.-W., AND LO, S.-W. Real-time garbage
collection for flash-memory storage systems of real-time embedded
systems. ACM Trans. Embed. Comput. Syst. 3, 4 (2004).

[13] CIDON, A., RUSHTON, D., RUMBLE, S. M., AND STUTSMAN, R.
Memshare: a dynamic multi-tenant key-value cache. USENIX ATC
’17.

[14] CityHash, a family of hash functions for strings. https://github.
com/google/cityhash.

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking cloud serving systems with YCSB.
SoCC ’10.

[16] CORBET, J. The current state of kernel page-table isolation. https:
//lwn.net/Articles/741878/, Dec. 2017.

[17] CORBET, J. A new kernel polling interface. https://lwn.net/

Articles/743714/, 2018.

[18] DABEK, F., ZELDOVICH, N., KAASHOEK, F., MAZIERES, D., AND
MORRIS, R. Event-driven programming for robust software. In Pro-
ceedings of the 10th workshop on ACM SIGOPS European workshop
(2002).

[19] DEBNATH, B., SENGUPTA, S., AND LI, J. Flashstore: High through-
put persistent key-value store. Proc. VLDB Endow. 3, 1-2 (2010).

[20] DEBNATH, B., SENGUPTA, S., AND LI, J. Skimpystash: RAM space
skimpy key-value store on flash-based storage. SIGMOD ’11.

[21] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HODSON,
O. FaRM: fast remote memory. NSDI ’14.

[22] EISENMAN, A., GARDNER, D., ABDELRAHMAN, I., AXBOE, J.,
DONG, S., HAZELWOOD, K., PETERSEN, C., CIDON, A., AND
KATTI, S. Reducing DRAM footprint with NVM in Facebook. Eu-
roSys ’18.

[23] Flexible I/O tester, https://linux.die.net/man/1/fio.

[24] FACEBOOK. RocksDB — a persistent key-value store. http://

rocksdb.org.

[25] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3: Com-
pact and concurrent memcache with dumber caching and smarter
hashing. NSDI ’13.

[26] FÄRBER, F., CHA, S. K., PRIMSCH, J., BORNHÖVD, C., SIGG,
S., AND LEHNER, W. SAP HANA database: Data management for
modern business applications. SIGMOD Rec. 40, 4 (2012).

[27] fatcache. https://github.com/twitter/fatcache.

[28] fio user io getevents() implementation. https://github.

com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120.

[29] C++ documentation: std::future. http://en.cppreference.com/
w/cpp/thread/future.

[30] Java documentation: java.util.concurrent: Future. https:

//docs.oracle.com/javase/7/docs/api/java/util/

concurrent/Future.html.

[31] GOOGLE. LevelDB. https://github.com/google/leveldb.

[32] App engine memcache service. https://cloud.google.com/

appengine/docs/standard/python/memcache/.

[33] GRAEFE, G., VOLOS, H., KIMURA, H., KUNO, H., TUCEK, J.,
LILLIBRIDGE, M., AND VEITCH, A. In-memory performance for
big data. Proc. VLDB Endow. 8, 1 (2014).

[34] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The bleak future
of nand flash memory. FAST ’12.

[35] HARIZOPOULOS, S., ABADI, D. J., MADDEN, S., AND STONE-
BRAKER, M. OLTP through the looking glass, and what we found
there. SIGMOD ’08.

[36] HARRIS, T., ABADI, M., ISAACS, R., AND MCILROY, R. AC: Com-
posable asynchronous io for native languages. OOPSLA ’11.

[37] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hopscotch hashing.
DISC ’08.

[38] HILL, M. D., AND SMITH, A. J. Evaluating associativity in CPU
caches. IEEE Trans. Comput. 38, 12 (1989).

[39] ”IBM”. Data store for memcache. https://cloud.ibm.com/

catalog/services/data-store-for-memcache.

[40] Are the major dram suppliers stunting dram demand?
http://www.icinsights.com/news/bulletins/Are-The-

Major-DRAM-Suppliers-Stunting-DRAM-Demand/. Accessed:
2018-09-10.

[41] IOANNOU, N., KOURTIS, K., AND KOLTSIDAS, I. Elevating com-
modity storage with the SALSA host translation layer. MASCOTS
’18.

[42] io getevents(2) - read asynchronous i/o events from the comple-
tion queue. http://man7.org/linux/man-pages/man2/io_

getevents.2.html.

[43] io submit(2) - submit asynchronous I/O blocks for processing. http:
//man7.org/linux/man-pages/man2/io_submit.2.html.

[44] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design guide-
lines for high performance RDMA systems. USENIX ATC ’16.

[45] KEGEL, D. The c10k problem. http://www.kegel.com/c10k.

html, 2014.

[46] KERRISK, M. The Linux Programming interface. 2010.

[47] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. NVMeDirect: A user-space
I/O framework for application-specific optimization on NVMe SSDs.
HotStorage ’16.

[48] KOH, S., LEE, C., KWON, M., AND JUNG, M. Exploring system
challenges of ultra-low latency solid state drives. HotStorage ’18.

[49] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Events can make
sense. USENIX ATC ’07.

[50] Kyoto cabinet: a straightforward implementation of dbm. http://

fallabs.com/kyotocabinet/, 2011.

[51] LAUER, H. C., AND NEEDHAM, R. M. On the duality of operating
system structures. SIGOPS Oper. Syst. Rev. 13, 2 (1979).

[52] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM,
A., CHEN, E., AND ZHANG, L. KV-Direct: high-performance in-
memory key-value store with programmable NIC. SOSP ’17.

USENIX Association 17th USENIX Conference on File and Storage Technologies 13

https://aws.amazon.com/elasticache/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://github.com/google/cityhash
https://github.com/google/cityhash
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/743714/
https://lwn.net/Articles/743714/
https://linux.die.net/man/1/fio
http://rocksdb.org
http://rocksdb.org
https://github.com/twitter/fatcache
https://github.com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120
https://github.com/axboe/fio/blob/fio-3.3/engines/libaio.c#L120
http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/future
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://github.com/google/leveldb
https://cloud.google.com/appengine/docs/standard/python/memcache/
https://cloud.google.com/appengine/docs/standard/python/memcache/
https://cloud.ibm.com/catalog/services/data-store-for-memcache
https://cloud.ibm.com/catalog/services/data-store-for-memcache
http://www.icinsights.com/news/bulletins/Are-The-Major-DRAM-Suppliers-Stunting-DRAM-Demand/
http://www.icinsights.com/news/bulletins/Are-The-Major-DRAM-Suppliers-Stunting-DRAM-Demand/
http://man7.org/linux/man-pages/man2/io_getevents.2.html
http://man7.org/linux/man-pages/man2/io_getevents.2.html
http://man7.org/linux/man-pages/man2/io_submit.2.html
http://man7.org/linux/man-pages/man2/io_submit.2.html
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://fallabs.com/kyotocabinet/
http://fallabs.com/kyotocabinet/

[53] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND FREEDMAN, M. J.
Algorithmic improvements for fast concurrent cuckoo hashing. Eu-
roSys ’14.

[54] libcuckoo. https://github.com/efficient/libcuckoo. Ac-
cessed: 2018-09-20.

[55] libevent – an event notification library. http://libevent.org/.
Accessed: 2017-02-27.

[56] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. SILT:
A memory-efficient, high-performance key-value store. SOSP ’11.

[57] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. MICA:
A holistic approach to fast in-memory key-value storage. NSDI ’14.

[58] LU, L., PILLAI, T. S., GOPALAKRISHNAN, H., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. WiscKey: separating keys
from values in SSD-conscious storage. Trans. Storage 13, 1 (2017).

[59] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness for
fast multicore key-value storage. EuroSys ’12.

[60] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND GANE-
SAN, S. NVMKV: A scalable and lightweight flash aware key-value
store. HotStorage ’14.

[61] Mcdipper: A key-value cache for flash storage. https:

//www.facebook.com/notes/facebook-engineering/

mcdipper-a-key-value-cache-for-flash-storage/

10151347090423920/, 2013.

[62] memaslap - Load testing and benchmarking a server. http://docs.
libmemcached.org/bin/memaslap.html.

[63] Scalability issues with memaslap client. https://bugs.

launchpad.net/libmemcached/+bug/1721048.

[64] Memcache protocol. https://github.com/memcached/

memcached/wiki/Protocols. Retrieved Oct 2017.

[65] memcached – a distributed memory object caching system. http:

//www.memcached.org/.

[66] Caching beyond RAM: the case for NVMe. https://memcached.

org/blog/nvm-caching/. Accessed: 2019-12-15.

[67] MENON, J. A performance comparison of RAID-5 and log-structured
arrays. In High Performance Distributed Computing (1995).

[68] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided RDMA reads
to build a fast, CPU-efficient key-value store. USENIX ATC ’13.

[69] MUTLU, O., AND SUBRAMANIAN, L. Research problems and op-
portunities in memory systems. Supercomput. Front. Innov.: Int. J. 1,
3 (2014).

[70] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
Memcache at Facebook. NSDI ’13.

[71] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T., AND
LEHNER, W. FPTree: a hybrid SCM-DRAM persistent and concur-
rent B-Tree for storage class memory. SIGMOD ’16.

[72] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN, A.,
PARULKAR, G., ROSENBLUM, M., RUMBLE, S. M., STRATMANN,
E., AND STUTSMAN, R. The case for RAMClouds: scalable high-
performance storage entirely in dram. SIGOPS Oper. Syst. Rev. 43, 4
(2010).

[73] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE,
C., MONTAZERI, B., ONGARO, D., PARK, S. J., QIN, H., ROSEN-
BLUM, M., RUMBLE, S., STUTSMAN, R., AND YANG, S. The
RAMCloud storage system. ACM Trans. Comput. Syst. 33, 3 (2015).

[74] PAIK, Y. Developing extremely low-latency NVMe SSDs. Flash
Memory Summit, 2017. https://www.flashmemorysummit.

com/English/Collaterals/Proceedings/2017/20170809_

FA21_Paik.pdf.

[75] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KR-
ISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The
operating system is the control plane. OSDI ’14.

[76] PLETKA, R., KOLTSIDAS, I., IOANNOU, N., TOMIĆ, S., PAPAN-
DREOU, N., PARNELL, T., POZIDIS, H., FRY, A., AND FISHER, T.
Management of next-generation nand flash to achieve enterprise-level
endurance and latency targets. ACM Trans. Storage 14, 4 (2018).

[77] qemu io getevents peek() and io getevents commit()

implementation. https://git.qemu.org/?p=

qemu.git;a=blob;f=block/linux-aio.c;h=

88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#

l131.

[78] Redis. http://redis.io/.

[79] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS) 10, 1 (1992).

[80] RUMBLE, S. M., KEJRIWAL, A., AND OUSTERHOUT, J. Log-
structured memory for dram-based storage. FAST ’14.

[81] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. Flashtier: A
lightweight, consistent and durable storage cache. EuroSys ’12.

[82] ScyllaDB. http://www.scylladb.com/.

[83] Seastar: High performance server-side application framework. http:
//www.seastar-project.org/. Accessed: 2017-03-01.

[84] SHEN, Z., CHEN, F., JIA, Y., AND SHAO, Z. DIDACache: A deep in-
tegration of device and application for flash based key-value caching.
FAST ’17.

[85] Storage performance development kit. http://www.spdk.io/.

[86] Spdk perf. https://github.com/spdk/spdk/blob/master/

examples/nvme/perf/perf.c.

[87] SRINIVASAN, V., BULKOWSKI, B., CHU, W.-L., SAYYAPARAJU,
S., GOODING, A., IYER, R., SHINDE, A., AND LOPATIC, T.
Aerospike: Architecture of a real-time operational dbms. Proc. VLDB
Endow. (2016).

[88] TALLIS, B. The intel Optane SSD DC P4800X (375GB) review:
Testing 3D XPoint performance. http://www.anandtech.

com/show/11209/intel-optane-ssd-dc-p4800x-review-

a-deep-dive-into-3d-xpoint-enterprise-performance,
2017.

[89] TALLIS, B. Samsung launches Z-SSD SZ985: Up to 800gb of Z-
NAND. https://www.anandtech.com/show/12376/samsung-

launches-zssd-sz985-up-to-800gb-of-znand, 2018.

[90] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why events are a
bad idea (for high-concurrency servers). HOTOS ’03.

[91] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S., ZHANG, C.,
AND CONG, J. An efficient design and implementation of LSM-tree
based key-value store on open-channel SSD. EuroSys ’14.

[92] XIA, F., JIANG, D., XIONG, J., AND SUN, N. HiKV: a hybrid index
Key-Value store for DRAM-NVM memory systems. USENIX ATC
’17.

[93] XIA, Q., AND XIAO, W. High-performance and endurable cache
management for flash-based read caching. IEEE Transactions on Par-
allel and Distributed Systems 27, 12 (2016).

[94] YANG, J., MINTURN, D. B., AND HADY, F. When poll is better than
interrupt. FAST’12.

[95] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L., AND HE,
B. NV-Tree: reducing consistency cost for NVM-based single level
systems. FAST ’15.

14 17th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/efficient/libcuckoo
http://libevent.org/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
https://bugs.launchpad.net/libmemcached/+bug/1721048
https://bugs.launchpad.net/libmemcached/+bug/1721048
https://github.com/memcached/memcached/wiki/Protocols
https://github.com/memcached/memcached/wiki/Protocols
http://www.memcached.org/
http://www.memcached.org/
https://memcached.org/blog/nvm-caching/
https://memcached.org/blog/nvm-caching/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FA21_Paik.pdf
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
https://git.qemu.org/?p=qemu.git;a=blob;f=block/linux-aio.c;h=88b8d55ec71076e24436ba4a80ec6de4d711e896;hb=HEAD#l131
http://redis.io/
http://www.scylladb.com/
http://www.seastar-project.org/
http://www.seastar-project.org/
http://www.spdk.io/
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
http://www.anandtech.com/show/11209/intel-optane-ssd-dc-p4800x-review-a-deep-dive-into-3d-xpoint-enterprise-performance
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand

[96] ZHENG, D., BURNS, R., AND SZALAY, A. S. A parallel page cache:
Iops and caching for multicore systems. HotStorage ’12.

[97] ZHENG, D., MHEMBERE, D., BURNS, R., VOGELSTEIN, J.,
PRIEBE, C. E., AND SZALAY, A. S. Flashgraph: Processing billion-
node graphs on an array of commodity SSDs. FAST ’15.

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel, Intel Xeon, and Intel Optane are trademarks or
registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries. Linux is a regis-
tered trademark of Linus Torvalds in the United States, other
countries, or both. Other products and service names might
be trademarks of IBM or other companies.

USENIX Association 17th USENIX Conference on File and Storage Technologies 15

	Introduction
	Background and Motivation
	TRT: a task run-time system for fast IO
	uDepot
	Storage device space management
	Index data structure
	Resize operation
	Metadata and persistence
	KV operations
	IO backends
	uDepot server
	Memcache server
	Implementation notes

	Evaluation
	Index structure
	Embedded uDepot
	Efficiency (one drive, one core)
	Scalability (24 drives, 20 cores)

	uDepot server / YCSB
	uDepot Memcache

	Related work
	Conclusion and Future Work
	Acknowledgements

