A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joyt,
Samuel JLeffler}, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkelgy, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more flexible allocation policies
that allav better locality of reference and can be adapted to a wide range of peripheral
and processor characteristic¥he nev file system clusters data that is sequentially
accessed and providesawlock sizes to allw fast access to Ige files while not \asting
large amounts of space for small files. File access rates of up to tenasteystiian the
traditional UNIX file system arexperienced. Longeeded enhancements to the pro-
grammers’ interface are discussed. These include a mechanism to place advisory locks
on files, atensions of the name space across file systems, the ability to use long file
names, and provisions for administvatioontrol of resource usage.

Revised February 18, 1984

CR Categories and Subject Descriptors: D JDerating Systems] File Systems Management fite
organization, directory structures, access methdalg.2 [Operating Systems] Storage Management —
allocation/deallocation sategies, secondary stage avices D.4.8 [Operating Systems] Performance -
measuements, operational analysid.3.2[Inf ormation Systems] Information Storage file organization

Additional Keywords and Phrases: UNIX, file systenganization, file system performance, file system
design, application program interface.

General Terms: file system, measurement, performance.

* UNIX is a trademark of Bell Laboratories.

T William N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Gareiende, Mountain éw, CA
94043

T Samuel J. Leffler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912

This work was done under grants from the National Scielcsmdation under grant MCS80-05144, and the
Defense Advance Research Projects AggioD) under ARR Order No. 4031 monitored by Ma Elec-
tronic System Command under Contract No. NO0039-82-C-0235.

SMM:05-2 AFast File System fouNix

TABLE OF CONTENTS

1. Introduction
2. Oldfile system

3. Newfile system organization
3.1. Optimizingstorage utilization
3.2. Filesystem parameterization
3.3. Layoutpolicies

4. Performance

5. File system functional enhancements
5.1. Longfile names

5.2. Filelocking

5.3. Symbolidinks

5.4. Rename

5.5. Quotas

Acknowledgements

References

1. Introduction

This paper describes the changes from the original 512 byte UNIX file system towthenae
released with the 4.2 Begley Software Distritution. It presents the matitions for the changes, the meth-
ods used to &ct these changes, the rationale behind the design decisions, and a description wf the ne
implementation. Thigliscussion is followed by a summary of the results tha¢ llmen obtained, direc-
tions for future vork, and the additions and changes thaeH@en made to the facilities that areitable
to programmers.

The original UNIX system that runs on the PDP-111 has simple agehelde system dcilities.
File system input/output isuffered by the kernel; there are no alignment constraints on data transfers and
all operations are made to appear synchrondlistransfers to the disk are in 512 byte blocks, which can
be placed arbitrarily within the data area of the file syst¥intually no constraints other thawaable
disk space are placed on file growth [Ritchie74], [Thompson78].*

When used on theAX-11 together with other UNIX enhancements, the original 512 byte UNIX file
system is incapable of providing the data throughput rates that gpatications require.For example,
applications such as VLSI design and image processing do a small amount of processingeoqueidi-
ties of data and need toveaa high throughput from the file system. High throughput rates are also needed
by programs that map files from the file system into large virtual address spageg) data in and out of
the file system is lily to occur frequently [Ferrin82b]. This requires a file system providing higher band-
width than the original 512 byte UNIX one that provides only aboot gercent of the maximum disk
bandwidth or about 20 kilobytes per second per arm [White80], [Smith81b].

Modifications hae been made to the UNIX file system to impeats performance. Since the UNIX
file system intedce is well understood and not inherentlyslthis development retained the abstraction
and simply changed the underlying implementation to increase its througbpusequentlyusers of the
system hee rot been faced with massi ©ftware comersion.

Problems with file system performancevé@aleen dealt with xensiely in the literature; see
[Smith81a] for a sury. Previous work to impree the UNIX file system performance has been done by
[Ferrin82a]. TheUNIX operating system dve mary of its ideas from Multics, a large, high performance

T DEC, PDRVAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.
* In practice, a file3 5ze is constrained to be less than about one gigabyte.

A Fast File System foonix SMM:05-3

operating system [Feiertag71]. Other work includes Hydra [Almes78], Spice [Thompson80], and a file sys-
tem for a LISP environment [Symbolics81p good introduction to the physical latencies of disks is
described in [Pechura83].

2. Old File System

In the file system deloped at Bell Laboratories (théraditional” file system), each disk dg is
divided into one or more partitions. Each of these disk partitions may contain one file spstidensys-
tem neer spans multiple partitions.A file system is described by its supdock, which contains the
basic parameters of the file systefirhese include the number of data blocks in the file system, a count of
the maximum number of files, and a pointer toftiee list a inked list of all the free blocks in the file sys-
tem.

Within the file system are fileertain files are distinguished as directories and contain pointers to
files that may themselves be directori€ssery file has a descriptor associated with it calledihade An
inode contains information describing ownership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for tRerftiee purposes
of this section, we assume that the first 8 blocks of the file are directly referenced by values stored in an
inode itself*. An inode may also contain references to indirect blocks containing further data block indices.
In a file system with a 512 byte block size, a singly indirect block contains 128 further block addresses, a
doubly indirect block contains 128 addresses of further singly indirect blocks, and a triply indirect block
contains 128 addresses of further doubly indirect blocks.

A 150 maabyte traditional UNIX file system consists of 4 gabytes of inodes followed by 146
megabytes of data. This genization sgregéaes the inode information from the data; thus accessing a file
normally incurs a long seek from the fidhode to its dataFiles in a single directory are not typically
allocated consecuwi dots in the 4 mgabytes of inodes, causing manon-consecutie Hocks of inodes to
be accessed whereeuting operations on the inodes o¥aal files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file systentraasfers
more than 512 bytes per disk transaction and often finds thattheewential data block is not on the
same glinder, forcing seeks between 512 byte transféfie combination of the small block size, limited
read-ahead in the system, and gnsaeks seerely limits file system throughput.

The first work at Ber&ley on the UNIX file system attempted to impe both reliability and
throughput. Theeliability was impreed by faging modifications to critical file system information so
that thg could either be completed or repaired cleanly by a program after a crasfa$ki78]. Thefile
system performance was impedl by a factor of more than tavby changing the basic block size from 512
to 1024 bytes.The increase was because obtfactors: each disk transfer accessed twice as much data,
and most files could be described without need to access indirect blocks since the direct blocks contained
twice as much data. The file system with these changes will henceforth be referred wicéltheystem.

This performance impr@ment gavea drong indication that increasing the block sizaswa good
method for improving throughput. Although the throughput had doubled, the old file syatestilvusing
only about four percent of the disk bandwidifhe main problem was that although the free list was ini-
tially ordered for optimal access, it quickly became scrambled as files were created avet refaventu-
ally the free list became entirely random, causing files t@ ltzeir blocks allocated randomlyer the
disk. Thisforced a seek beforevery block access. Although old file systems provided transfer rates of up
to 175 kilobytes per second whenyheere first created, this rate deteriorated to 30 kilobytes per second
after a fev weeks of moderate use because of this randomization of data block placement. There was no
way of restoring the performance of an old file systewept to dump, rebuild, and restore the file system.
Another possibility as siggested by [Maruyama76], would be tovéaa pocess that periodically

T By “partition” here we refer to the subdivision ofystical space on a disk de In the traditional file sys-
tem, as in the nefile system, file systems are really located in logical disk partitions that vedgm This
overlapping is madeailable, for example, to all@ programs to cop entire disk drves cntaining multiple file
systems.

* The actual number may vary from system to system, but is usually in the range 5-13.

SMM:05-4 AFast File System fouNix

reomganized the data on the disk to restore locality.

3. Newfile system organization

In the nev file system aganization (as in the old file systemganization), each disk dré mntains
one or more file system® file system is described by its super-block, located at the beginning of the file
system$ dsk partition. Because the super-block contains critical data, it is replicated to praetttag
catastrophic lossThis is done when the file system is created; since the super-block data does not change,
the copies need not be referenced unless a head crash or other hard disk error causes the dddtak super
to be unusable.

To insure that it is possible to create files agdaas % bytes with only tw levds of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks candosvanof two
greater than or equal to 4096. The block size of a file system is recorded in the filessggienfslock so
it is possible for file systems with tBfent block sizes to be simultaneously accessible on the same system.
The block size must be decided at the time that the file system is created; it cannot be subsequently changed
without rebuilding the file system.

The nev file system aganization divides a disk partition into one or more areas caljdichder
groups A cylinder group is comprised of one or more conseeutijfinders on a disk. Associated with
each cylinder group is some bo@dping information that includes a redundantycopthe supeiblock,
space for inodes, a bit map describingilable blocks in the cylinder group, and summary information
describing the usage of data blocks within thiénder group. The bit map ofvailable blocks in the yin-
der group replaces the traditional file systefree list. For each cylinder group a static number of inodes
is allocated at file system creation time. The default padi¢o dlocate one inode for each 2048 bytes of
space in the cylinder group, expecting this to be far more thanweilbe reeded.

All the cylinder group bookéeping information could be placed at the beginning of eglihder
group. Havever if this approach were used, all the redundant information would be on the top platter
single hardware failure that destroyed the top platter could cause the loss of all redundant copies of the
supetrblock. Thusthe cylinder group bookkeeping information begins at a varying offset from the-be
ning of the glinder group. The offset for each successiylinder group is calculated to be about one track
further from the beginning of the cylinder group than the preceding cylinder group. In this way the redun-
dant information spirals down into the pack so thgtsmgle track, glinder, or patter can be lost without
losing all copies of the supbtock. Excepfor the first cylinder group, the space between thgnmeng of
the cylinder group and the beginning of the cylinder group information is used for data blocks.t

3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transaction, greatly increasing
file system throughput. As axample, consider a file in thewdile system composed of 4096 byte data
blocks. Inthe old file system this file @uld be composed of 1024 byte blocks. By increasing the block
size, disk accesses in theanile system may transfer up to four times as much information per disk trans-
action. Inlarge files, seeral 4096 byte blocks may be allocated from the same cylinder sovtmakeger
data transfers are possible before requiring a seek.

The main problem with lger blocks is that most UNIX file systems are composed ofyrsaall
files. Auniformly large block size wastes spackable 1 shows the effect of file system block size on the
amount of wasted space in the file systérhe files measured to obtain these figures reside on one of our

T While it appears that the first cylinder group could be laid out with its shlpek at the ‘known” location,

this would not verk for file systems with blocks sizes of 16 kilobytes or gredrfars is because of a require-
ment that the first 8 kilobytes of the disk be resdrior a bootstrap program and a separate requirement that the
cylinder group information begin on a file system block bounddoygart the cylinder group on a file system
block boundaryfile systems with block sizes larger than 8 kilobytes woulek Ha leave an empty space
between the end of the boot block and the beginning of the cylinder gvditipout knaving the size of the file
system blocks, the system would not wnehat roundup function to use to find theglming of the first glin-

der group.

A Fast File System foonix SMM:05-5

time sharing systems that has roughly 1.2 gigabytes of on-line stofaganeasurements are based on the
active wser file systems containing about 920gyalytes of formatted space.

Space used | % waste | Oganization
775.2 Mb 0.0 Dateonly, no £paration between files
807.8 Mb 4.2 Dateonly, each file starts on 512 byte boundary
828.7 Mb 6.9 Datat inodes, 512 byte block UNIX file system
866.5 Mb 11.8 Datat inodes, 1024 byte block UNIX file system
948.5 Mb 22.4 Datat inodes, 2048 byte block UNIX file system
1128.3 Mb 45.6 Datat inodes, 4096 byte block UNIX file system

Table 1 — Amount of wasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing Usethdata.
block size on the disk increases, the waste rises quickin ntolerable 45.6% waste with 4096 byte file
system blocks.

To be ale to use large blocks without unduaste, small files must be stored in a more efficieyt w
The nav file system accomplishes this goal by ailay the division of a single file system block into one
or morefragments The file system fragment size is specified at the time that the file system is created;
each file system block can optionally be broken into 2, 4, or 8 fragments, each of which is addréksable.
lower bound on the size of these fragments is constrained by the disk sector size, typically 51Pheytes.
block map associated with each cylinder group records the spaitable in a cylinder group at the frag-
ment level; to determine if a block isvailable, aligned fragments areamined. Figurd shows a piece of
a map from a 4096/1024 file system.

Bits in map XXXX XXOO O0OOXX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragmentXarshows that the fragment is in use, while@™

shaws that the fragment isvalable for allocation.In this example, fragments 0-5, 10, and 11 are in use,
while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as a full block,
evan if they are large enoughlin this example, fragments 6—9 cannot be allocated as a full block; only frag-
ments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is repre-
sented by zero or more 4096 byte blocks of data, and possibly a single fragmentedfldddk. system
block must be fragmented to obtain space for a small amount of data, the remaining fragments of the block
are made \ailable for allocation to other filesAs an example consider an 11000 byte file stored on a
4096/1024 byte file system. This file would uses fwll size blocks and one three fragment portion of
another block. If no block with three aligned fragmentsvaslable at the time the file is created, a full size
block is split yielding the necessary fragments and a single unused fragrhentemaining fragment can
be allocated to another file as needed.

Space is allocated to a file when a program dossta system call. Each time data is written to a
file, the system checks to see if the size of the file has increased*. If the file needs to be expanded to hold
the nev data, one of three conditions exists:

1) Thereis enough space left in an already allocated block or fragment to holdvihdatee Thenew
data is written into thevailable space.

2) Thefile contains no fragmented blocks (and the last block in the file contains insufficient space to
hold the nes data). Ifspace exists in a block already allocated, the space is filled witldlata. If
the remainder of the medata contains more than a full block of data, a full block is allocated and the

* A program may be@rwriting data in the middle of an existing file in which case space would already ha
been allocated.

SMM:05-6 AFast File System fouNix

first full block of nev data is written there. This process is repeated until less than a full block of
new data remains. If the remainingwedata to be written will fit in less than a full block, a block
with the necessary fragments is located, otherwise a full block is located. The remainideanes
written into the located space.

3) Thefile contains one or more fragments (and the fragments contain insufficient space to hold the ne
data). Ifthe size of the e data plus the size of the data already in the fragments exceeds the size of
a full block, a nev block is allocated.The contents of the fragments are copied to the beginning of
the block and the remainder of the block is filled witlvidlata. Theprocess then continues as in (2)
abore. Otherwise, if the ne data to be written will fit in less than a full block, a block with the nec-
essary fragments is located, otherwise a full block is located. The contents of the existing fragments
appended with the medata are written into the allocated space.

The problem with xpanding a file one fragment at a a time is that data may be copigdimas as
a fragmented blockxpands to a full block. Fragment reallocation can be minimized if the user program
writes a full block at a time xeept for a partial block at the end of the file. Since file systems wittr-dif
ent block sizes may reside on the same system, the file system interface has been extenildel apjpro
cation programs the optimal size for a read or wriex files the optimal size is the block size of the file
system on which the file is being accessEd: other objects, such as pipes and stskthe optimal size is
the underlying bffer size. This feature is used by the Standard Input/Output Ljtegmckage used by
most user programs. This feature is also used by certain system utilities suchessaacii loaders that
do their own input and output management and need the highest possible file system bandwidth.

The amount of wsted space in the 4096/1024 bytevrfde system aganization is empirically
obsened to be about the same as in the 1024 byte old file systgamization. Afile system with 4096
byte blocks and 512 byte fragments has about the same amouasteldvepace as the 512 byte block
UNIX file system. The n& file system uses less space than the 512 byte or 1024 byte file systems for
indexing information for lage files and the same amount of space for small files. These savingfsetre of
by the need to use more space for keeping trackailfible free blocks. The net result is about the same
disk utilization when a nvefile systems fragment size equals an old file systehhock size.

In order for the layout policies to befedtive, a fle system cannot be kept completely fiior each
file system there is a parametrmed the free space resgrthat gies the minimum acceptable percent-
age of file system blocks that should be free. If the number of free blocks drowstiusltevel only the
system administrator can continue to allocate blodkse value of this parameter may be changed wt an
time, even when the file system is mounted and\&tiThe transfer rates that appear in section 4 were
measured on file systems kept less than 90% full (a estdd%). If the number of free blocks falls to
zero, the file system throughput tends to be cut in half, because of the inability of the file system to localize
blocks in a file. If a file system®’performance degrades because wérfilling, it may be restored by
removing files until the amount of free space once again reaches the minimum accepthblddeess
rates for files created during periods of little free space may be restoredvingrtizeir data once enough
space is eilable. Thefree space reseevirust be added to the percentage of waste when comparing the
organizations g¥en in Table 1. Thus, the percentage of waste in an old 1024 byte UNIX file system is
roughly comparable to a wed096/512 byte file system with the free space researtzat 5%. (Compare
11.8% wasted with the old file system to 6.9% waste + 5% reserved space i file sgstem.)

3.2. Filesystem parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of the under
lying hardware. Ithas no information about either the physical characteristics of the mass storage de
or the hardware that interacts with i goal of the nw file system is to parameterize the processor capa-
bilities and mass storage characteristics so that blocks can be allocated in an optimum configuration-
dependent ay. Parameters used include the speed of the procelednardware support for mass storage
transfers, and the characteristics of the mass storagsede Disktechnology is constantly improving and
a gven installation can hae sveal different disk technologies running on a single procesEach file
system is parameterized so that it can be adapted to the characteristics of the disk on which it is placed.

For mass storage devices such as disks, thefile system tries to allocatewélocks on the same
cylinder as the previous block in the same fi@ptimally, these ne blocks will also be rotationally well

A Fast File System foonix SMM:05-7

positioned. Thedistance betweerrotationally optimal’ blocks varies greatly; it can be a consegaiti

block or a rotationally delayed block depending on system characteristics. On a processor with an
input/output channel that does not requirey gmnocessor inter@ntion between mass storage transfer
requests, tw consecutre dsk blocks can often be accessed without suffering lost time because of an inter
vening disk reolution. For processors without input/output channels, the main processor must field an
interrupt and prepare for awedisk transfer The expected time to service this interrupt and schedule a
new disk transfer depends on the speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the rate at which
the disk spins.The allocation routines use this information to calculate the number of milliseconds
required to skip wer a Hock. Thecharacteristics of the processor include the expected time to service an
interrupt and schedule awealisk transfer Given a Hock allocated to a file, the allocation routines calcu-
late the number of blocks to skipep so hat the next block in the file will come into position under the
disk head in the expected amount of time that it takes to staw disletransfer operationFor programs
that sequentially access large amounts of data, this strategy minimizes the amount of timaispgriouw
the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary informa-
tion includes a count of thevalable blocks in a cylinder group at fiifent rotational positions. Eight rota-
tional positions are distinguished, so the resolution of the summary information is 2 milliseconds for a typi-
cal 3600 reolution per minute drie. The super-block contains a vector of lists callethtional layout
tables The vector is indeed by rotational position. Each component of the vector lists thexinute the
block map for eery data block contained in its rotational position. When looking for an allocatable block,
the system first looks through the summary counts for a rotational position with a non-zero blocktcount.
then uses the indeof the rotational position to find the appropriate list to use toxittd@ugh only the rel-
evant parts of the block map to find a free block.

The parameter that defines the minimum number of milliseconds between the completion of a data
transfer and the initiation of another data transfer on the same cylinder can be changeiiheg, anen
when the file system is mounted and\atilf a file system is parameterized to lay out blocks with a rota-
tional separation of 2 milliseconds, and the disk pack is theredrio asystem that has a processor requir
ing 4 milliseconds to schedule a disk operation, the throughput will drop precipitously because of lost disk
revolutions on nearly ery block. If the &entual target machine is knm, the file system can be parame-
terized for it @en though it is initially created on a €#fent processorEven if the mae is ot known in
adwance, the rotational layout delay can be reconfigured after the diskésl swhat all further allocation
is done based on the characteristics of thve fmest.

3.3. Layout policies

The file system layout policies are divided int@tdistinct parts. At the top leel are global policies
that use file system wide summary information to enedcisions rgarding the placement of meinodes
and data blocks. These routines are responsible for deciding the placemewnt difectories and files.
They aso calculate rotationally optimal block layouts, and decide when to force a long seekumaoydime
der group because there are ifisiént blocks left in the current cylinder group to do reasonable layouts.
Below the global polig routines are the local allocation routines that use a locally optimal scheme to lay
out data blocks.

Two methods for impreing file system performance are to increase the locality of reference to mini-
mize seek laterycas cescribed by [fivedi80], and to impree the layout of data to makiarger transfers
possible as described by [#ainen77]. Theglobal layout policies try to impke performance by cluster
ing related information.They cannot attempt to localize all data references, but must also try to spread
unrelated data among different cylinder groups. If too much localization is attempted, theyliockrc
group may run out of space forcing the data to be scattered to non-local cylinder grekgsto an
extreme, total localization can result in a single huge cluster of data resembling the old file Shis¢em.
global policies try to balance thedwonflicting goals of localizing data that is concurrently accessed while
spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and diréctaiéssof
files in the same directory are frequently accessed togefberexample, the “list directory’command

SMM:05-8 AFast File System fouNix

often accesses the inode for each file in a directdng layout polig tries to place all the inodes of files in

a drectory in the same cylinder grougo ensure that files are distrted throughout the disk, a fdifent

policy is used for directory allocationA new drectory is placed in a cylinder group that has a greater than
aveage number of free inodes, and the smallest number of directories already in it. The intent of this pol-
icy is to dlow the inode clustering polcto succeed most of the timeThe allocation of inodes within a
cylinder group is done using a next free siggteAlthough this allocates the inodes randomly within a
cylinder group, all the inodes for a particuladinder group can be read with 8 to 16 disk transf¢rs.

most 16 disk transfers are required because a cylinder group maydhaore than 2048 inodes.Jhis

puts a small and constant upper bound on the number of disk transfers required to access the inodes for all
the files in a directoryln contrast, the old file system typically requires one disk transfer to fetch the inode
for each file in a directory.

The other major resource is data bloci&nce data blocks for a file are typically accessed together
the polig/ routines try to place all data blocks for a file in the same cylinder group, preferably at rotationally
optimal positions in the samglmder. The problem with allocating all the data blocks in the saytinder
group is that large files will quickly use upadable space in the cylinder group, forcing a spiteroto
other areas.Further using all the space in a cylinder group causes future allocations ydilarin the
cylinder group to also spill to other areas. Ideally none of the cylinder groups sheulbeeome com-
pletely full. The heuristic solution chosen is to redirect block allocation tdexetit cylinder group when
a file exceeds 48 kilobytes, and ateey megabyte thereaftet The newly chosen cylinder group is selected
from those glinder groups that hee a geater thanaerage number of free blocks left. Although big files
tend to be spread out@ the disk, a mgabyte of data is typically accessible before a long seek must be
performed, and the cost of one long seek pagamge is small.

The global polig routines call local allocation routines with requests for specific blocks. The local
allocation routines will alays allocate the requested block if it is free, otherwise it allocates a free block of
the requested size that is rotationally closest to the requested block. If the global layout policies had com-
plete information, the could alvays request unused blocks and the allocation routirmegdabe reduced to
simple bookkeping. Hwvever, maintaining complete information is costly; thus the implementation of the
global layout polig uses heuristics that empglonly partial information.

If a requested block is novalable, the local allocator uses a fouvdeallocation strategy:

1) Usethe next gailable block rotationally closest to the requested block on the sglineler. It is
assumed here that head switching time is z@mw.disk controllers where this is not the case, it may
be possible to incorporate the time required to switch between disk platters when constructing the
rotational layout tables. This, hower, has not yet been tried.

2) If there are no blocksvalable on the same cylindasse a block within the same cylinder group.

3) If that cylinder group is entirely full, quadratically hash the cylinder group number to choose another
cylinder group to look for a free block.

4) Finallyif the hash fails, apply an exhawstisarch to all cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables
[Knuth75]. Filesystems that are parameterized to maintain at least 10% free space rarely use this strate
File systems that are run without maintaining &ee space typically va o few free blocks that almost
ary alocation is random; the most important characteristic of the strategy used under such conditions is
that the strategy be fast.

* The first spill aer point at 48 kilobytes is the point at which a file on a 4096 byte block file system first
requires a single indirect block. This appears to be a natural first point at which to redirect block allocation.
The other spillger points are chosen with the intent of forcing block allocation to be redirected when a file has
used about 25% of the data blocks in a cylinder group. In observingwhi&gl@system in day to day use, the
heuristics appear to work well in minimizing the number of completely filled cylinder groups.

A Fast File System foonix

4. Performance

SMM:05-9

Ultimately, the proof of the déctiveness of the algorithms described in the previous section is the
long term performance of thewdile system.

Our empirical studies wa shown that the inode layout polichas been éctive. When running the
“list directory’ command on a large directory that itself contains yrdirectories (to force the system to
access inodes in multiple cylinder groups), the number of disk accesses for inodes is cut by a fastor of tw
The impravements are \ven more dramatic for lage directories containing only files, disk accesses for
inodes being cut by @aé€tor of eight. This is most encouraging for programs such as spooling daemons that
access mansmall files, since these programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput of thefibe system. Several comments need to be
made about the conditions under which these tests were run. The test programs measure the rate at which
user programs can transfer data to or from a file without performipgranessing on it. These programs
must read and write enough data to insure tb#ebing in the operating system does not affect the results.
They are also run at least three times in succession; the first to get the system intenastate and the
second tw to insure that thex@eriment has stabilized and is repeatable. The tests used and their results
are discussed in detail in [Kridle83]t. The systems were running multi-user but were otherwise quiescent.
There was no contention for either the CPU or the disk dine. only difference between the UNIBUS and
MASSBUS tests s the controller All tests used an AMPEX Capricorn 330 gaayte Winchester disk.
As Table 2 shows, all file system test runs were on a VAX 11/750. All file systems had been in production
use for at least a month before being measured. The same number of system calls were performed in all
tests; the basic system callechead was a negligible portion of the total running time of the tests.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIRJS 29Kbytes/sec 29/983% 11%
new 4096/1024 750/UNIBUS 22Kbytes/sec 221/9822% 43%
new 8192/1024 750/UNIBUS 23Rbytes/sec 233/9824% 29%
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/98% 73%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/98% 54%
Table 2a — Reading rates of the old and/éNIX file systems.
Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIRJS 48Kbytes/sec 48/983% 29%
new 4096/1024 750/UNIBUS 14Rbytes/sec 142/98B4% 43%
new 8192/1024 750/UNIBUS 21Bbytes/sec 215/9822% 46%
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/98%% 94%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/8836 95%

Table 2b — Writing rates of the old andmé&NIX file systems.

Unlike the old file system, the transfer rates for the ffiee system do not appear to changero
time. Thethroughput rate is tied much more strongly to the amount of free space that is maintdiaed.
measurements in Table 2 were based on a file system with a 10% free spaee ®gettvetiavork loads
suggest that throughput deteriorates to about half the raesigiTable 2 when the file systems are full.

The percentage of bandwidthvegn in Table 2 is a measure of thdegftive uilization of the disk by
the file system.An upper bound on the transfer rate from the disk is calculated by multiplying the number
of bytes on a track by the number ofatritions of the disk per secondhe bandwidth is calculated by
comparing the data rates the file system is able to\schea prcentage of this rate. Using this metric,
the old file system is only able to use about 3-5% of the disk bandwidth, whilenttidengystem uses up

to 47% of the bandwidth.

T A UNIX command that is similar to the reading test that we used is “cp fiéntaé’, where ‘file’’ is eight

megabytes long.

SMM:05-10 AFast File System fouNix

Both reads and writes are faster in thevsgstem than in the old system. The biggestdr in this
speedup is because of theglar block size used by thewdile system. Thewerhead of allocating blocks
in the n&v system is greater than theahead of allocating blocks in the old systemwbeer fewer blocks
need to be allocated in thewnsystem because th@re bigger The net effect is that the cost per byte allo-
cated is about the same for both systems.

In the nev file system, the reading rate isvays at least asakt as the writing rate. This is to be
expected since thegknel must do more work when allocating blocks than when simply reading theta.
that the write rates are about the same as the read rates in the 8192 byte block file system; the write rates
are slover than the read rates in the 4096 byte block file system. The slower write rates occur because the
kernel has to do twice as maisk allocations per second, making the processor unableeip lp with
the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This is because
the write system call is asynchronous and temél can generate disk transfer requests much faster than
they can be serviced, hence disk transfers queue up in the uffek bache. Because the diskffer cache
is sorted by minimum seek distance, therage seek between the scheduled disk writes is much less than
it would be if the data blocks were written out in the random disk order in whiglathgeneratedHow-
eva when the file is read, the read system call is processed synchronously so the disk blocks must be
retrieved from the disk in the non-optimal seek order in whichytbe requested. This forces the disk
scheduler to do long seeks resulting in a lower throughput rate.

In the nev system the blocks of a file are more optimally ordered on the disk&n though reads are
still synchronous, the requests are presented to the disk in a much bettefEsedehough the writes are
still asynchronous, tlyeare already presented to the disk in minimum seek order so there is no gain to be
had by reordering them. Hence the disk seek latencies that limited the old file syegelittla@zeffect in
the nev file system. The cost of allocation is tleetbr in the n& system that causes writes to bevgto
than reads.

The performance of the wefile system is currently limited by memory to memory coperations
required to mee data from disk bffers in the systers’aldress space to dataffers in the uses aldress
space. Theseopy operations account for about 40% of the time spent performing an input/output opera-
tion. If the uffers in both address spaces were properly aligned, this transfer could be performed without
copying by using the XX virtual memory management hardve. Thiswould be especially desirable
when transferring large amounts of datdle dd not implement this because ibuld change the user inter
face to the file system in twmajor ways: user programs would be required to allocaftets on page
boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be acle® by rewriting the disk dwers to chain togetherétnel
buffers. Thiswould allow contiguous disk blocks to be read in a single disk transachary disks used
with UNIX systems contain either 32 or 48 512 byte sectors per tfaakh track holds exactly twar
three 8192 byte file system blocks, or four or six 4096 byte file system blocks. The inability to use contigu-
ous disk blocks é&ctively limits the performance on these disks to less than 50% ofviilatde band-
width. If the next block for a file cannot be laid out contigugusign the minimum spacing to thexhe
allocatable block on grplatter is between a sixth and a half aotation. Theimplication of this is that the
best possible layout without contiguous blocks uses only half of the bandwidti gizam track. If each
track contains an odd number of sectors, then it is possible toedselkotational delay to gmumber of
sectors by finding a block thatdias at the desired rotational position on another track. The reason that
block chaining has not been implemented is because it would require rewriting all the ek idrithe
system, and the current throughput rates are already limited by the speedvaildiidegprocessors.

Currently only one block is allocated to a file at a timetechnique used by the DEMOS file system
when it finds that a file is growing rapidig to preallocate seeral blocks at once, releasing them when the
file is closed if thg remain unused. By batching up allocations, the system can reducesthean of allo-
cating at each write, and it can cutngoon the number of disk writes needed to keep the block pointers on
the disk synchronized with the block allocationeti79]. Thistechnique was not included because block
allocation currently accounts for less than 10% of the time spent in a write system call and aoamddeag
current throughput rates are already limited by the speed of#halde processors.

A Fast File System foonix SMM:05-11

5. File system functional enhancements

The performance enhancements to the UNIX file system did not reqyichamges to the semantics
or data structures visible to application programiswever, sevaal changes had been generally desired for
some time bt had not been introduced because theuld require users to dump and restore all their file
systems. Sincéhe nev file system already required all existing file systems to be dumped and restored,
these functional enhancements were introduced at this time.

5.1. Longfile names

File names can mobe of rearly arbitrary length. Only programs that read directories are affected by
this change.To promote portability to UNIX systems that are not running the file system, a set of
directory access routinesveabeen introduced to provide a consistent irztegf to directories on both old
and nev systems.

Directories are allocated in 512 byte units called churikss size is chosen so that each allocation
can be transferred to disk in a single operati@hunks are broken up into variable length records termed
directory entries.A directory entry contains the information necessary to map the name of a file to its asso-
ciated inode. No directory entry is alled to span multiple chunks. The first three fields of a directory
entry are fixed length and contain: an inode numibersize of the entnyand the length of the file name
contained in the entryThe remainder of an entry is variable length and contains a null terminated file
name, padded to a 4 byte boundafjie maximum length of a file name in a directory is currently 255
characters.

Available space in a directory is recorded byihg one or more entries accumulate the free space in
their entry size fieldsThis results in directory entries that are larger than required to hold the entry name
plus fixed length fields. Space allocated to a directory showia/slbe completely accounted for by total-
ing up the sizes of its entrie¥Vhen an entry is deleted from a directdaty space is returned to a pie@us
entry in the same directory chunk by increasing the size of theopseentry by the size of the deleted
entry If the first entry of a directory chunk is free, then the estngde number is set to zero to indicate
that it is unallocated.

5.2. Filelocking

The old file system had no provision for locking files. Processes that needed to synchronize the
updates of a file had to use a separbiek’ file. A process would try to create ‘®ock’ file. If the cre-
ation succeeded, then the process could proceed with its update; if the craismntlien the process
would wait and try agin. Thismechanism had three dvbhacks. Processesnsumed CPU time by loop-
ing over attempts to create lockd.ocks left lying around because of system crashes had to be manually
removed (normally in a system startup command scrigijnally, processes running as system administra-
tor are alvays permitted to create files, so were forced to use a different mechanism. While it is possible to
get around all these problems, the solutions are not straight forward, so a mechanism for locking files has
been added.

The most general schemes allultiple processes to concurrently update a flkeveral of these
techniques are discussed in [Peterson@3%impler technique is to serialize access to a file with lodks.
attain reasonable fefiencgy, certain applications require the ability to lock pieces of a file. Locking down to
the byte lgel has been implemented in the Onyx file system by [Basd8ajvever, for the standard sys-
tem applications, a mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into twdasses, those using hard locks and those using advisory ldbks.
primary diference between advisory locks and hard locks is the extent of enforceféatd lock is
always enforced when a program tries to access a file; an advisory lock is only applied when it is requested
by a program. Thus advisory locks are onlfeefive when all programs accessing a file use the locking
scheme. Wh hard locks there must be someawide policy implemented in thedenel. Wth advisory
locks the polig is left to the user programs. In the UNIX system, programs with system administrator pri
ilege are allwed werride ary protection scheme. Because masf the programs that need to use locks
must also run as the system administrater chose to implement advisory locks rather than create an addi-
tional protection scheme that was inconsistent with the UNIX philgsopliould not be used by system

SMM:05-12 AFast File System fouNix

administration programs.

The file locking facilities allev cooperating programs to apply advis@tyaredor exclusivelocks on
files. Onlyone process may @ an exclusive lock on a file while multiple shared locks may be present.
Both shared andxelusive locks cannot be present on a file at the same tifray lock is requested when
another process holds axctusive lock, or an gclusive lock is requested when another process holgs an
lock, the lock request will block until the lock can be obtainBdcause shared andokusive locks are
advisory only even if a process has obtained a lock on a file, another process may access the file.

Locks are applied or remmed only on open files. This means that locks can be manipulated without
needing to close and reopen a file. This is useful, Xample, when a process wishes to apply a shared
lock, read some information and determine whether an update is required, then aplysivedock and
update the file.

A request for a lock will cause a process to block if the lock can not be immediately obtained. In cer
tain instances this is unsatisfory For example, a process that wants only to check if a lock is present
would require a separate mechanism to find out this informattmmsequentlya pocess may specify that
its locking request should return with an error if a lock can not be immediately obtained. Being able to
conditionally request a lock is useful tddemon’ processes that wish to service a spooling atéthe
first instance of the daemon locks the directory where spoolieg talece, later daemon processes can eas-
ily check to see if an ag® daemon gists. Sincdocks exist only while the locking processes exist, lock
files can neer be left active dter the processes exit or if the system crashes.

Almost no deadlock detection is attemptéddhe only deadlock detection done by the system is that
the file to which a lock is applied must not alreadyeha bck of the same type (i.e. the second af tuc-
cessve alls to apply a lock of the same type will fail).

5.3. Symboliclinks

The traditional UNIX file system ales multiple directory entries in the same file system to tefer
ence a single fileEach directory entrylinks’’ a file’'s nrame to an inode and its contents. The link concept
is fundamental; inodes do not reside in directories, but exist separately and are referenced kyhiarks.
all the links to an inode are renwl, the inode is deallocatedhis style of referencing an inode does not
allow references across ydical file systems, nor does it support inter-machine linkageavoid these
limitationssymbolic linkssimilar to the scheme used by Multics [Feiertag7 {eHaen added.

A symbolic link is implemented as a file that contains a pathname. When the system encounters a
symbolic link while interpreting a component of a pathname, the contents of the symbolic link is prepended
to the rest of the pathname, and this name is interpreted to yield the resulting pathmaiiX, path-
names are specified relai the root of the file system hieraschor relative o a pocesss aurrent work-
ing directory Pathnames specified rebati © the root are called absolute pathnameghnames specified
relatve © the current working directory are termed relatipathnames. Ifa ymbolic link contains an
absolute pathname, the absolute pathname is used, otherwise the contents of the symbohealliakeid e
relative o the location of the link in the file hierangh

Normally programs do not want to bevae that there is a symbolic link in a pathname that the
using. Havever certain system utilities must be able to detect and manipulate symbolic links. Three ne
system calls pnade the ability to detect, read, and write symbolic linkseses/stem utilities required
changes to use these calls.

In future Berleley software distributions it may be possible to reference file systems located on
remote machines using pathnames. When this occurs, it will be possible to create symbolic links that span
machines.

5.4. Rename

Programs that create ame&ersion of an esting file typically create the meversion as a temporary
file and then rename the temporary file with the name of tgettéite. In the old UNIX file system renam-
ing required three calls to the system. If a program were interrupted or the system crashed between these
calls, the target file could be left with only its temporary nafe.diminate this possibility theename
system call has been addethe rename call does the rename operation in a fashion that guarantees the

A Fast File System foonix SMM:05-13

existence of the target name.

Rename works both on data files and directorl&hen renaming directories, the system must do
special validation checks to insure that the directory tree structure is not corrupted by the creation of loops
or inaccessible directories. Such corruption would occur if a parent directory weeel into one of its
descendants. Thelidation check requires tracing the descendents of the target directory to insure that it
does not include the directory being ved.

5.5. Quotas

The UNIX system has traditionally attempted to share\ailable resources to the greatestemt
possible. Thusry single user can allocate all theailable space in the file system. In certairvieon-
ments this is unacceptabl€onsequentlya quota mechanism has been added for restricting the amount of
file system resources that a user can obtélre quota mechanism sets limits on both the number of inodes
and the number of disk blocks that a user may allocatseparate quota can be set for each user on each
file system. Resources areg both a hard and a soft limit. When a program exceeds a soft limérra w
ing is printed on the users terminal; théeatling program is not terminated unless it exceeds its hard limit.
The idea is that users should stay tetbeir soft limit between login sessions, butytheay use more
resources while thyeare actvely working. To encourage this bekar, users are warned when logging in if
they are over any o their soft limits. If usersdils to correct the problem for too malogin sessions, tlye
are &entually reprimanded by having their soft limit enforced as their hard limit.

Acknowledgements

We thank Robert Elz for his ongoing interest in thevridle system, and for adding disk quotas in a
rational and efficient mannek\e dso acknowledge Dennis Ritchie for his suggestions on the appropriate
modifications to the user intade. V¢ gpreciate Michael Reell's explanations on he the DEMOS file
system worked; mawy of his ideas were used in this implementation. Special commendation goes to Peter
Kessler and Robert Henry for actingdikeal users during the early dejging stage when file systems were
less stable than tiieshould hae teen. Thecriticisms and suggestions by theviesvs contributed signifi-
cantly to the coherence of the papEinally we thank our sponsors, the National Science Foundation under
grant MCS80-05144, and the Defense Advance Research ProjectsyADe) under ARR Order No.

4031 monitored by Nal Electronic System Command under Contract No. NO0O039-82-C-0235.

References

[Almes78] AlmesG., and Robertson, G'An Extensible File System for Hydra" Proceedings
of the Third International Conference on Software Engineering, IEEE, May 1978.

[Bass81] Bass]. "ImplementatioDescription for File Locking", Onyx Systems Inc, 73 E.
Trimble Rd, San Jose, CA 95131 Jan 1981.

[Feiertag71] Feiertadgk. J. and Qganick, E. I., "The Multics Input-Output System", Proceed-
ings of the Third Symposium on Operating Systems Principl€d1,A0ct 1971.
pp 35-41

[Ferrin82a] Ferrin, T.E., "Performance and Rostness Impnements in Version 7 UNIX",
Computer Graphics Laboratory Technical Report 2, School of Phgridawer-
sity of California, San Francisco, January 198%esented at the 1982inier
Usenix Conference, Santa Monica, California.

[Ferrin82b] Ferrin,T.E., "Performance Issuses of VMUNIX Revisited", ;login: (The Usenix
Association Newsletter), Vol 7, #5, Member 1982. pp 3-6

[Kridle83] Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem Choices

for VAX Systems Running 4.2BSD UNIX", Computer Systems Research Group,

SMM:05-14

[Kowdski78]
[Knuth75]
[Maruyama76]
[Nevalainen77]
[Pechura83]
[Peterson83]
[Powell79]
[Ritchie74]
[Smith81a]
[Smith81b]
[Symbolics81]
[Thompson78]
[Thompson80]
[Trivedi8O0]

[White80]

AFast File System fouNix

Dept of EECS, Berkele CA 94720, Technical Report #8.

Kowdski, T. "FSCK - The UNIX System Check Program”, Bell Laborattur-
ray Hill, NJ 07974. March 1978

Knuth,D. "TheArt of Computer Programming”, Volume 3 - Sorting and Search-
ing, Addison-Weslg Publishing Compay Inc, Reading, Mass, 1975. pp 506-549
Maruyam&., and Smith, S. "Optimal reganization of Distributed Space Disk
Files", CACM, 19, 11. N© 1976. pp 634-642

Neaainen, O., Vesterinen, M. "Determining Blockingdtors for Sequential
Files by Heuristic Methods", The Computer Journal, 20, 3. Aug 1977. pp 245-247

Pechurdy., and Schodler, J "Estimating File Access Time of Flop®isks",
CACM, 26, 10. Oct 1983. pp 754-763

Petersog. "ConcurrentReading While Writing”, ACM Transactions on Pro-
gramming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55

Pavell, M. "The DEMOS File System", Proceedings of the Sixth Symposium on
Operating Systems Principles, ACM, WtQ77. pp 33-42

Ritchie,D. M. and Thompson, K., "The UNIX Time-Sharing System", CACM 17,
7. July 1974. pp 365-375

SmithA. "Input/OutputOptimization and Disk Architectures: A S/, Perfor
mance and Evaluation 1. Jan 1981. pp 104-117

Smith,A. "Bibliography on Fle and I/O System Optimization and RelatezpT
ics", Operating Systems Rewigl5, 4. Oct 1981. pp 39-54

"SymbolicsFile System", Symbolics Inc, 9600 DeSotweA Chatsworth, CA
91311 Aug 1981.

ThompsorkK. "UNIX Implementation”, Bell Systemethnical Journal, 57, 6,
part 2. pp 1931-1946 July-August 1978.

ThompsorM. "SpiceFile System", Carnegie-Mellon Urrsity, Department of
Computer Science, Pittsburgh 5213 #CMU-CS-80, Sept 1980.

Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and File
Assignments"”, Journal of the ACM, 27, 3. July 1980. pp 457-473

White, R. M. "Disk Storage Technology", Scientific American, 243(2), August
1980.

