The Cathedral and the Bazaar

Eric Steven Raymond
Thyrsus Enterprises [http://www.tuxedo.or g/~esr/]

<esr @ hyr sus. conp

This is version 3.0
Copyright © 2000 Eric S. Raymond

Copyright

Permission is granted to copy, distribute and/or modifg thdcument under the terms of the Open Publication
License, version 2.0.

$Date: 2002/08/02 09:02:14 $
Revision History

Revision 1.57 11 September 2000 esr
New major section “How Many Eyeballs Tame Complexity”.

Revision 1.52 28 August 2000 esr
MATLAB is a reinforcing parallel to Emacs. Corbato6 & Vyssky got it in 1965.
Revision 1.51 24 August 2000 esr

First DocBook version. Minor updates to Fall 2000 on the tigeasitive material.
Revision 1.49 5 May 2000 esr
Added the HBS note on deadlines and scheduling.

Revision 1.51 31 August 1999 esr

This the version that O’Reilly printed in the first editiontbie book.

Revision 1.45 8 August 1999 esr

Added the endnotes on the Snafu Principle, (pre)histoexxaiples of bazaar development, and originality

in the bazaar.
Revision 1.44 29 July 1999 esr

Added the “On Management and the Maginot Line” section, smsights about the usefulness of bazaars
for exploring design space, and substantially improvedgpiéog.

Revision 1.40 20 Nov 1998 esr
Added a correction of Brooks based on the Halloween Docusnent
Revision 1.39 28 July 1998 esr
| removed Paul Eggert’s 'graph on GPL vs. bazaar in respansedent aguments from RMS on
Revision 1.31 February 10 1998 esr
Added “Epilog: Netscape Embraces the Bazaar!”

Revision 1.29 February 9 1998 esr
Changed “free software” to “open source”.

Revision 1.27 18 November 1997 esr
Added the Perl Conference anecdote.

Revision 1.20 7 July 1997 esr
Added the bibliography.

Revision 1.16 21 May 1997 esr



First official presentation at the Linux Kongress.

| anatomize a successful open-source project, fetchntal, was run as a deliberate test of the surprising
theories about software engineering suggested by therhisfd_inux. | discuss these theories in terms of two
fundamentally different development styles, the “cati€dmodel of most of the commercial world versus the
“bazaar” model of the Linux world. | show that these modelswaefrom opposing assumptions about the nature
of the software-debugging task. | then make a sustainedvagtifrom the Linux experience for the proposition
that “Given enough eyeballs, all bugs are shallow”, suggestuctive analogies with other self-correcting systems
of selfish agents, and conclude with some exploration ofiti@ications of this insight for the future of software.

Table of Contents

The Cathedral and the Bazaar. . .. ... ... e 2
The Mail Must Get Through. . . ... e e 3
The Importance of Having USers. ... ... . i e 6
Release Early, Release Often. . ... e e 7
How Many Eyeballs Tame Complexity . .. ... ..o e e 9
When IsaR0ose NOt @ ROSE. . ... . e 11
Popclient becomes Fetchmall .. ... ... 13
Fetchmail Grows Up . ... oo e e 15
A Few More Lessons from Fetchmall. . ... 17
Necessary Preconditions forthe Bazaar Style. ... 18
The Social Context of Open-Source Software. . ... ... e 19
On Managementand the Maginot Ling ... ... ... e 23
Epilog: Netscape Embracesthe Bazaar ............... i 27
NOT S . e 29
BiblOgrapny ... 33
ACKNOWIEAgEMENTS. . .. 34

The Cathedral and the Bazaar

Linux is subversive. Who would have thought even five years @991) that a world-class operating system
could coalesce as if by magic out of part-time hacking by ssuwhousand developers scattered all over the
planet, connected only by the tenuous strands of the Interne

Certainly not I. By the time Linux swam onto my radar screerearly 1993, | had already been involved in
Unix and open-source development for ten years. | was oneedinst GNU contributors in the mid-1980s. | had
released a good deal of open-source software onto the nvelpgéng or co-developing several programs (nethack,
Emacs’s VC and GUD modes, xlife, and others) that are stillithe use today. | thought | knew how it was done.

Linux overturned much of what | thought | knew. | had been ph#ag the Unix gospel of small tools, rapid

prototyping and evolutionary programming for years. Butsloabelieved there was a certain critical complexity
above which a more centralized, a priori approach was reduif believed that the most important software
(operating systems and really large tools like the Emacgnaraming editor) needed to be built like cathedrals,



carefully crafted by individual wizards or small bands ofgea working in splendid isolation, with no beta to be
released before its time.

Linus Torvalds'’s style of development—release early artergfdelegate everything you can, be open to the point
of promiscuity—came as a surprise. No quiet, reverent cattidouilding here—rather, the Linux community
seemed to resemble a great babbling bazaar of differingdagesnd approaches (aptly symbolized by the Linux
archive sites, who'd take submissions franyoneanyorjeout of which a coherent and stable system could
seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work walthe as a distinct shock. As | learned my way
around, | worked hard not just at individual projects, bugoaat trying to understand why the Linux world not
only didn't fly apart in confusion but seemed to go from striéntp strength at a speed barely imaginable to
cathedral-builders.

By mid-1996 | thought | was beginning to understand. Charareded me a perfect way to test my theory, in
the form of an open-source project that | could consciouslyd run in the bazaar style. So | did—and it was a
significant success.

This is the story of that project. I'll use it to propose sonpharisms about effective open-source development.
Not all of these are things | first learned in the Linux worlditve’ll see how the Linux world gives them
particular point. If I'm correct, they’ll help you understd exactly what it is that makes the Linux community
such a fountain of good software—and, perhaps, they wif lgeli become more productive yourself.

The Mail Must Get Through

Since 1993 I'd been running the technical side of a small-&reeess Internet service provider called Chester
County InterLink (CCIL) in West Chester, Pennsylvania. Hoanded CCIL and wrote our unique multiuser
bulletin-board software—you can check it out by telnetttogocke.ccil.org [telnet://locke.ccil.org]. Today it
supports almost three thousand users on thirty lines. Tihaljowed me 24-hour-a-day access to the net through
CCIL's 56K line—in fact, the job practically demanded it!

| had gotten quite used to instant Internet email. | foundrgto periodically telnet over to locke to check my
mail annoying. What | wanted was for my mail to be deliveredsoark (my home system) so that | would be
notified when it arrived and could handle it using all my lotzadls.

The Internet’s native mail forwarding protocol, SMTP (Siepail Transfer Protocol), wouldn't suit, because it
works best when machines are connected full-time, while erggnal machine isn’t always on the Internet, and
doesn’'t have a static IP address. What | needed was a progedarwaould reach out over my intermittent dialup
connection and pull across my mail to be delivered localknéw such things existed, and that most of them used
a simple application protocol called POP (Post Office Praljo®OP is now widely supported by most common
mail clients, but at the time, it wasn’t built in to the maibier | was using.

I needed a POP3 client. So | went out on the Internet and fonedActually, | found three or four. | used one of
them for a while, but it was missing what seemed an obviousifeathe ability to hack the addresses on fetched
mail so replies would work properly.



The problem was this: suppose someone named ‘joe’ on loakense mail. If | fetched the mail to snark and
then tried to reply to it, my mailer would cheerfully try toipht to a nonexistent ‘joe’ on snark. Hand-editing
reply addresses to tack ex@ci | . or g> quickly got to be a serious pain.

This was clearly something the computer ought to be doingrfer But none of the existing POP clients knew
how! And this brings us to the first lesson:

1. Every good work
of software starts
by scratching a
developer’'s personal
itch.

Perhaps this should have been obvious (it's long been po@lehat “Necessity is the mother of invention”) but
too often software developers spend their days grindingyal@apay at programs they neither need nor love.
But not in the Linux world—which may explain why the averageality of software originated in the Linux
community is so high.

So, did | immediately launch into a furious whirl of coding apbrand-new POP3 client to compete with the
existing ones? Not on your life! | looked carefully at the P@Hities | had in hand, asking myself “Which one is
closest to what | want?” Because:

2. Good programmers
know what to write.
Great ones know what
to rewrite (and reuse).

While | don't claim to be a great programmer, | try to imitataeo An important trait of the great ones is
constructive laziness. They know that you get an A not fooréfbut for results, and that it's almost always
easier to start from a good partial solution than from naghanall.

Linus Torvalds [http://www.tuxedo.org/~esr/fags/liputor example, didn’t actually try to write Linux from
scratch. Instead, he started by reusing code and ideas fronix,M tiny Unix-like operating system for PC
clones. Eventually all the Minix code went away or was cortglerewritten—but while it was there, it provided
scaffolding for the infant that would eventually becomeuin

In the same spirit, | went looking for an existing POP utilityat was reasonably well coded, to use as a
development base.

The source-sharing tradition of the Unix world has alwaysrb&iendly to code reuse (this is why the GNU
project chose Unix as a base OS, in spite of serious resengdibout the OS itself). The Linux world has taken
this tradition nearly to its technological limit; it has #daytes of open sources generally available. So spending
time looking for some else’s almost-good-enough is moreyiko give you good results in the Linux world than
anywhere else.

And it did for me. With those I'd found earlier, my second sgamade up a total of nine candidates—fetchpop,
PopTart, get-mail, gwpop, pimp, pop-perl, popc, popmail apop. The one | first settled on was ‘fetchpop’ by



Seung-Hong Oh. | put my header-rewrite feature in it, and enaatious other improvements which the author
accepted into his 1.9 release.

A few weeks later, though, | stumbled across the code for jpemidoy Carl Harris, and found | had a problem.
Though fetchpop had some good original ideas in it (suchsasaitkground-daemon mode), it could only handle
POP3 and was rather amateurishly coded (Seung-Hong waatdintte a bright but inexperienced programmer,
and both traits showed). Carl's code was better, quite geadmal and solid, but his program lacked several
important and rather tricky-to-implement fetchpop feati(including those I'd coded myself).

Stay or switch? If | switched, I'd be throwing away the codihd) already done in exchange for a better
development base.

A practical motive to switch was the presence of multipletpcol support. POP3 is the most commonly used of
the post-office server protocols, but not the only one. Regprand the other competition didn’t do POP2, RPOP,
or APOP, and | was already having vague thoughts of perhagim@dMAP [http://www.imap.org] (Internet
Message Access Protocol, the most recently designed antdomwsrful post-office protocol) just for fun.

But | had a more theoretical reason to think switching mightb good an idea as well, something | learned long
before Linux.

3.  “Plan to throw
one away; you will,
anyhow.” (Fred
Brooks, The Mythical
Man-Month Chapter
11)

Or, to put it another way, you often don’t really understainel problem until after the first time you implement a
solution. The second time, maybe you know enough to do itri§hb if you want to get it right, be ready to start
overat leastat leasbnce [JB].

Well (I told myself) the changes to fetchpop had been my fiystSo | switched.

After | sent my first set of popclient patches to Carl Harris2iJune 1996, | found out that he had basically
lost interest in popclient some time before. The code wag dusity, with minor bugs hanging out. | had many
changes to make, and we quickly agreed that the logical fleingpe to do was take over the program.

Without my actually noticing, the project had escalated.|dimer was | just contemplating minor patches to an
existing POP client. | took on maintaining an entire one, Hrate were ideas bubbling in my head that | knew
would probably lead to major changes.

In a software culture that encourages code-sharing, tlasistural way for a project to evolve. | was acting out
this principle:

4. If you have the right
attitude,  interesting
problems will find
you.



But Carl Harris’s attitude was even more important. He ustberd that

5. When you lose
interest in a program,
your last duty to it
is to hand it off to a
competent successor.

Without ever having to discuss it, Carl and | knew we had a comgoal of having the best solution out there.
The only question for either of us was whether | could esshtiiat | was a safe pair of hands. Once | did that, he
acted with grace and dispatch. | hope | will do as well whemihes my turn.

The Importance of Having Users

And so | inherited popclient. Just as importantly, | inhedipopclient’s user base. Users are wonderful things to
have, and not just because they demonstrate that you'rmgexwneed, that you've done something right. Properly
cultivated, they can become co-developers.

Another strength of the Unix tradition, one that Linux push@a happy extreme, is that a lot of users are hackers
too. Because source code is available, they caeffeetiveeffectiveackers. This can be tremendously useful for
shortening debugging time. Given a bit of encouragement;, ysers will diagnose problems, suggest fixes, and
help improve the code far more quickly than you could unaided

6. Treating your
users as co-developers
is your least-hassle
route to rapid code
improvement and
effective debugging.

The power of this effect is easy to underestimate. In fagttpmvell all of us in the open-source world drastically
underestimated how well it would scale up with number of sismrd against system complexity, until Linus
Torvalds showed us differently.

In fact, | think Linus’s cleverest and most consequentigkhaas not the construction of the Linux kernel itself,
but rather his invention of the Linux development model. Whexpressed this opinion in his presence once,
he smiled and quietly repeated something he has often shid:basically a very lazy person who likes to get
credit for things other people actually do.” Lazy like a far, as Robert Heinlein famously wrote of one of his
characters, too lazy to fail.

In retrospect, one precedent for the methods and successwf tan be seen in the development of the GNU
Emacs Lisp library and Lisp code archives. In contrast tacdtbhedral-building style of the Emacs C core and most
other GNU tools, the evolution of the Lisp code pool was fluidl @ery user-driven. Ideas and prototype modes
were often rewritten three or four times before reachingablst final form. And loosely-coupled collaborations
enabled by the Interned, la Linux, were frequent.



Indeed, my own most successful single hack previous to meadhwas probably Emacs VC (version control)
mode, a Linux-like collaboration by email with three otherople, only one of whom (Richard Stallman, the
author of Emacs and founder of the Free Software Foundattit: [/www.fsf.org]) | have met to this day. It was
a front-end for SCCS, RCS and later CVS from within Emacstiffatred “one-touch” version control operations.
It evolved from a tiny, crude sccs.el mode somebody else h#tew. And the development of VC succeeded
because, unlike Emacs itself, Emacs Lisp code could go tffiroelease/test/improve generations very quickly.

The Emacs story is not unique. There have been other soffwadeicts with a two-level architecture and a two-
tier user community that combined a cathedral-mode coreasdmazaar-mode toolbox. One such is MATLAB, a
commercial data-analysis and visualization tool. Usem1ATLAB and other products with a similar structure
invariably report that the action, the ferment, the innavamostly takes place in the open part of the tool where
a large and varied community can tinker with it.

Release Early, Release Often

Early and frequent releases are a critical part of the Linewetbpment model. Most developers (including me)
used to believe this was bad policy for larger than trivialjpcts, because early versions are almost by definition
buggy versions and you don’t want to wear out the patienceaf ysers.

This belief reinforced the general commitment to a cathieloudding style of development. If the overriding
objective was for users to see as few bugs as possible, whyyth&d only release a version every six months
(or less often), and work like a dog on debugging betweerasgle. The Emacs C core was developed this way.
The Lisp library, in effect, was not—because there werevadtisp archives outside the FSF’s control, where you
could go to find new and development code versions indepéiyddrEmacs’s release cycle [QR].

The most important of these, the Ohio State Emacs Lisp agchnticipated the spirit and many of the features
of today’s big Linux archives. But few of us really thoughtyéard about what we were doing, or about what
the very existence of that archive suggested about prolitethe FSF’s cathedral-building development model. |
made one serious attempt around 1992 to get a lot of the Oldi® fImwmally merged into the official Emacs Lisp
library. | ran into political trouble and was largely unsessful.

But by a year later, as Linux became widely visible, it wasckhat something different and much healthier was
going on there. Linus’s open development policy was the wgpyosite of cathedral-building. Linux’s Internet
archives were burgeoning, multiple distributions werengeioated. And all of this was driven by an unheard-of
frequency of core system releases.

Linus was treating his users as co-developers in the masttefé possible way:

7. Release early. Re-
lease often. And listen
to your customers.

Linus’s innovation wasn’'t so much in doing quick-turnardureleases incorporating lots of user feedback
(something like this had been Unix-world tradition for a ¢ptime), but in scaling it up to a level of intensity
that matched the complexity of what he was developing. lisehearly times (around 1991) it wasn’t unknown
for him to release a new kernel more than onaag!day! Because he cultivated his base of co-developers and
leveraged the Internet for collaboration harder than aryaise, this worked.



But howhowdid it work? And was it something | could duplicate, or didety on some unique genius of Linus
Torvalds?

| didn’t think so. Granted, Linus is a damn fine hacker. How ynahus could engineer an entire production-
quality operating system kernel from scratch? But Linuxndidepresent any awesome conceptual leap forward.
Linus is not (or at least, not yet) an innovative genius ofigles the way that, say, Richard Stallman or James
Gosling (of NeWS and Java) are. Rather, Linus seems to me éodeaius of engineering and implementation,
with a sixth sense for avoiding bugs and development dedd-and a true knack for finding the minimum-
effort path from point A to point B. Indeed, the whole desigrLmux breathes this quality and mirrors Linus’s
essentially conservative and simplifying design approach

So, if rapid releases and leveraging the Internet mediumadiit were not accidents but integral parts of Linus’s
engineering-genius insight into the minimum-effort pattat was he maximizing? What was he cranking out of
the machinery?

Put that way, the question answers itself. Linus was keepisghacker/users constantly stimulated and
rewarded—stimulated by the prospect of having an egofgatispiece of the action, rewarded by the sight of
constant (evedailydaily) improvement in their work.

Linus was directly aiming to maximize the number of persanis thrown at debugging and development, even
at the possible cost of instability in the code and user-lbaseout if any serious bug proved intractable. Linus
was behaving as though he believed something like this:

8. Given a large
enough beta-tester and
co-developer base,
almost every problem
will be characterized
quickly and the fix

obvious to someone.

Or, less formally, “Given enough eyeballs, all bugs arelskdl | dub this: “Linus’s Law”.

My original formulation was that every problem “will be trgparent to somebody”. Linus demurred that the
person who understands and fixes the problem is not nedgssagizen usually the person who first characterizes
it. “Somebody finds the problem,” he says, “and somebsaldgelseinderstands it. And I'll go on record as saying

that finding it is the bigger challenge.” That correctionrgportant; we’'ll see how in the next section, when we
examine the practice of debugging in more detail. But thepant is that both parts of the process (finding and
fixing) tend to happen rapidly.

In Linus’s Law, | think, lies the core difference underlyitige cathedral-builder and bazaar styles. In the cathedral-
builder view of programming, bugs and development problamnestricky, insidious, deep phenomena. It takes
months of scrutiny by a dedicated few to develop confidenaeybu've winkled them all out. Thus the long
release intervals, and the inevitable disappointment vidiegrawaited releases are not perfect.

In the bazaar view, on the other hand, you assume that buggeaszally shallow phenomena—or, at least, that
they turn shallow pretty quickly when exposed to a thousaagkeco-developers pounding on every single new



release. Accordingly you release often in order to get moreections, and as a beneficial side effect you have
less to lose if an occasional botch gets out the door.

And that's it. That's enough. If “Linus’s Law” is false, themy system as complex as the Linux kernel, being
hacked over by as many hands as the that kernel was, shoudthatmoint have collapsed under the weight of
unforseen bad interactions and undiscovered “deep” bdigs frue, on the other hand, it is sufficient to explain
Linux’s relative lack of bugginess and its continuous ugtinspanning months or even years.

Maybe it shouldn’t have been such a surprise, at that. Sugists years ago discovered that the averaged opinion
of a mass of equally expert (or equally ignorant) obsengtgiite a bit more reliable a predictor than the opinion
of a single randomly-chosen one of the observers. Theyatiis the Delphi effect. It appears that what Linus has
shown is that this applies even to debugging an operatingmys-that the Delphi effect can tame development
complexity even at the complexity level of an OS kernel. [CV]

One special feature of the Linux situation that clearly belfong the Delphi effect is the fact that the contributors
for any given project are self-selected. An early respohgemted out that contributions are received not from a
random sample, but from people who are interested enougtetthe software, learn about how it works, attempt
to find solutions to problems they encounter, and actualbdpce an apparently reasonable fix. Anyone who
passes all these filters is highly likely to have somethirgfulgo contribute.

Linus’s Law can be rephrased as “Debugging is parallelZablAlthough debugging requires debuggers to
communicate with some coordinating developer, it doesguire significant coordination between debuggers.
Thus it doesn't fall prey to the same quadratic complexitg amnagement costs that make adding developers
problematic.

In practice, the theoretical loss of efficiency due to duadlimn of work by debuggers almost never seems to be
an issue in the Linux world. One effect of a “release early aften” policy is to minimize such duplication by
propagating fed-back fixes quickly [JH].

Brooks (the author of he Mythical Man-Montheven made an off-hand observation related to this: “Thed tatst
of maintaining a widely used program is typically 40 peraaninore of the cost of developing it. Surprisingly this
cost is strongly affected by the number of usérare users find more bugsMore users find more Bjgsmphasis
added].

More users find more bugs because adding more users adds ifiererd ways of stressing the program. This
effect is amplified when the users are co-developers. Eaetapproaches the task of bug characterization with a
slightly different perceptual set and analytical toolkilifferent angle on the problem. The “Delphi effect” seems
to work precisely because of this variation. In the speciictext of debugging, the variation also tends to reduce
duplication of effort.

So adding more beta-testers may not reduce the complexithefcurrent “deepest” bug from theevel-
oper’sdeveloper'oint of view, but it increases the probability that soméstieolkit will be matched to the
problem in such a way that the bug is shallmthat personto that person

Linus coppers his bets, too. In case thareareserious bugs, Linux kernel version are numbered in such a way
that potential users can make a choice either to run the ¢aston designated “stable” or to ride the cutting edge
and risk bugs in order to get new features. This tactic is mbotsystematically imitated by most Linux hackers,
but perhaps it should be; the fact that either choice is ablmakes both more attractive. [HBS]



How Many Eyeballs Tame Complexity

It's one thing to observe in the large that the bazaar styématly accelerates debugging and code evolution.
It's another to understand exactly how and why it does soeaiitro-level of day-to-day developer and tester
behavior. In this section (written three years after thegioal paper, using insights by developers who read it
and re-examined their own behavior) we’ll take a hard loothatactual mechanisms. Non-technically inclined
readers can safely skip to the next section.

One key to understanding is to realize exactly why it is thatkind of bug report non—source-aware users normally
turn in tends not to be very useful. Non—source-aware usei$tb report only surface symptoms; they take their
environment for granted, so they (a) omit critical backgrdulata, and (b) seldom include a reliable recipe for
reproducing the bug.

The underlying problem here is a mismatch between the tesied the developer’'s mental models of the program;
the tester, on the outside looking in, and the developer ernrtside looking out. In closed-source development
they’re both stuck in these roles, and tend to talk past ettedr @and find each other deeply frustrating.

Open-source development breaks this bind, making it faieeésr tester and developer to develop a shared
representation grounded in the actual source code and tonooinate effectively about it. Practically, there is
a huge difference in leverage for the developer betweenititedf bug report that just reports externally-visible
symptoms and the kind that hooks directly to the developsigce-code—based mental representation of the
program.

Most bugs, most of the time, are easily nailed given even aoniplete but suggestive characterization of their
error conditions at source-code level. When someone amougheta-testers can point out, "there’s a boundary
problem in line nnn", or even just "under conditions X, Y, andthis variable rolls over", a quick look at the
offending code often suffices to pin down the exact mode airfaiand generate a fix.

Thus, source-code awareness by both parties greatly eesiboth good communication and the synergy between
what a beta-tester reports and what the core developergs).dn turn, this means that the core developers’ time
tends to be well conserved, even with many collaborators.

Another characteristic of the open-source method thatewas developer time is the communication structure
of typical open-source projects. Above | used the term "dmeeloper”; this reflects a distinction between the
project core (typically quite small; a single core developeommon, and one to three is typical) and the project
halo of beta-testers and available contributors (whicarofiumbers in the hundreds).

The fundamental problem that traditional software-depeient organization addresses is Brook’s Law: “Adding
more programmers to a late project makes it later.” More gy Brooks’s Law predicts that the complexity
and communication costs of a project rise with the squarkehtimber of developers, while work done only rises
linearly.

Brooks’s Law is founded on experience that bugs tend styotmgtluster at the interfaces between code written
by different people, and that communications/coordimatwerhead on a project tends to rise with the number
of interfaces between human beings. Thus, problems scéet@ number of communications paths between
developers, which scales as the square of the humber ofagmrs| (more precisely, according to the formula
N*(N - 1)/2 where N is the number of developers).

10



When

The Brooks’s Law analysis (and the resulting fear of largenhars in development groups) rests on a hidden
assummption: that the communications structure of theeptag necessarily a complete graph, that everybody
talks to everybody else. But on open-source projects, the developers work on what are in effect separable
parallel subtasks and interact with each other very littlede changes and bug reports stream through the core
group, and onlyvithinwithin that small core group do we pay the full Brooksian overhe&tl][

There are are still more reasons that source-code—leveBpagting tends to be very efficient. They center around
the fact that a single error can often have multiple possipieptoms, manifesting differently depending on details
of the user’s usage pattern and environment. Such errodsttebe exactly the sort of complex and subtle bugs
(such as dynamic-memory-management errors or nondetistroiimterrupt-window artifacts) that are hardest to

reproduce at will or to pin down by static analysis, and whidohlthe most to create long-term problems in software.

A tester who sends in a tentative source-code—level ctaraation of such a multi-symptom bug (e.g. "It looks
to me like there’s a window in the signal handling near lin®Q2or "Where are you zeroing that buffer?") may
give a developer, otherwise too close to the code to seesiteritical clue to a half-dozen disparate symptoms.
In cases like this, it may be hard or even impossible to knovckvixternally-visible misbehaviour was caused
by precisely which bug—but with frequent releases, it's exessary to know. Other collaborators will be likely
to find out quickly whether their bug has been fixed or not. Imyneases, source-level bug reports will cause
misbehaviours to drop out without ever having been atteub any specific fix.

Complex multi-symptom errors also tend to have multipleéraaths from surface symptoms back to the actual
bug. Which of the trace paths a given developer or tester basecmay depend on subtleties of that person’s
environment, and may well change in a not obviously deteistioway over time. In effect, each developer and
tester samples a semi-random set of the program’s state syfeen looking for the etiology of a symptom. The
more subtle and complex the bug, the less likely that skilllvé able to guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accdrh@on the "semi" rather than the "random"; debugging
skill and intimacy with the code and its architecture will tiea a lot. But for complex bugs, the accent will be

on the "random". Under these circumstances many peopléngmraces will be much more effective than a few

people running traces sequentially—even if the few have elmhigher average skill level.

This effect will be greatly amplified if the difficulty of foliwing trace paths from different surface symptoms
back to a bug varies significantly in a way that can’t be priedidy looking at the symptoms. A single developer
sampling those paths sequentially will be as likely to piakfficult trace path on the first try as an easy one. On
the other hand, suppose many people are trying trace pagiasaftiel while doing rapid releases. Then itis likely
one of them will find the easiest path immediately, and nailihg in a much shorter time. The project maintainer
will see that, ship a new release, and the other people rgriraces on the same bug will be able to stop before
having spent too much time on their more difficult traces [RJ]

Is a Rose Not a Rose?

Having studied Linus’s behavior and formed a theory about ivtvas successful, | made a conscious decision to
test this theory on my new (admittedly much less complex anbligous) project.

But the first thing | did was reorganize and simplify popctiarot. Carl Harris's implementation was very sound,
but exhibited a kind of unnecessary complexity common toyn@programmers. He treated the code as central

11



and the data structures as support for the code. As a resaltade was beautiful but the data structure design
ad-hoc and rather ugly (at least by the high standards of/gteran LISP hacker).

| had another purpose for rewriting besides improving theecand the data structure design, however. That was
to evolve it into something | understood completely. It'sfan to be responsible for fixing bugs in a program you
don’t understand.

For the first month or so, then, | was simply following out thgilications of Carl's basic design. The first serious
change | made was to add IMAP support. | did this by reorgagitfie protocol machines into a generic driver
and three method tables (for POP2, POP3, and IMAP). Thistengrevious changes illustrate a general principle
that's good for programmers to keep in mind, especially imglaages like C that don't naturally do dynamic

typing:

9. Smart data struc-
tures and dumb code
works a lot better than
the other way around.

Brooks, Chapter 9: “Show me your flowchart and conceal yobtes and | shall continue to be mystified.
Show me your tables, and | won't usually need your flowchdit;de obvious.” Allowing for thirty years of
terminological/cultural shift, it's the same point.

At this point (early September 1996, about six weeks fronokkstarted thinking that a name change might be in
order—after all, it wasn’t just a POP client any more. But $it@ed, because there was as yet nothing genuinely
new in the design. My version of popclient had yet to develodantity of its own.

That changed, radically, when popclient learned how to &vdietched mail to the SMTP port. I'll get to that in
a moment. But first: | said earlier that I'd decided to use firigect to test my theory about what Linus Torvalds
had done right. How (you may well ask) did | do that? In thesgsva

« | released early and often (almost never less often thary éee days; during periods of intense development,
once a day).

« | grew my beta list by adding to it everyone who contacted bauafetchmail.
* | sent chatty announcements to the beta list wheneverasebt encouraging people to participate.

« And | listened to my beta-testers, polling them about desigcisions and stroking them whenever they sent
in patches and feedback.

12



The payoff from these simple measures was immediate. Frerbelginning of the project, | got bug reports of a
quality most developers would kill for, often with good fixagached. | got thoughtful criticism, | got fan mail, |
got intelligent feature suggestions. Which leads to:

10. If you treat your
beta-testers as if
they're your most
valuable resource,
they will respond by
becoming your most
valuable resource.

One interesting measure of fetchmail’s success is the sieeof the project beta list, fetchmail-friends. At the
time of latest revision of this paper (November 2000) it h&g thembers and is adding two or three a week.

Actually, when | revised in late May 1997 | found the list wasgimning to lose members from its high of close
to 300 for an interesting reason. Several people have asked omsubscribe them because fetchmail is working
so well for them that they no longer need to see the list tlaffierhaps this is part of the normal life-cycle of a
mature bazaar-style project.

Popclient becomes Fetchmail

The real turning point in the project was when Harry Hochblesent me his scratch code for forwarding mail
to the client machine’s SMTP port. | realized almost imméaliathat a reliable implementation of this feature
would make all the other mail delivery modes next to obsolete

For many weeks | had been tweaking fetchmail rather increatigrwhile feeling like the interface design was
serviceable but grubby—inelegant and with too many exiguaptions hanging out all over. The options to dump
fetched mail to a mailbox file or standard output particyléadthered me, but | couldn’t figure out why.

(If you don't care about the technicalia of Internet maik tiext two paragraphs can be safely skipped.)

What | saw when | thought about SMTP forwarding was that pepthad been trying to do too many things.
It had been designed to be both a mail transport agent (MTA)aalocal delivery agent (MDA). With SMTP
forwarding, it could get out of the MDA business and be a pufi@yhanding off mail to other programs for local
delivery just as sendmail does.

Why mess with all the complexity of configuring a mail deliyagent or setting up lock-and-append on a mailbox
when port 25 is almost guaranteed to be there on any platfatm™CP/IP support in the first place? Especially
when this means retrieved mail is guaranteed to look likenadsender-initiated SMTP mail, which is really what
we want anyway.

(Back to a higher level....)

Even if you didn'tfollow the preceding technical jargoneth are several important lessons here. First, this SMTP-
forwarding concept was the biggest single payoff | got fransciously trying to emulate Linus’s methods. A
user gave me this terrific idea—all | had to do was understhadhbplications.

13



11. The next best thing
to having good ideas
is recognizing good
ideas from your users.
Sometimes the latter is
better.

Interestingly enough, you will quickly find that if you areropletely and self-deprecatingly truthful about how
much you owe other people, the world at large will treat yothasigh you did every bit of the invention yourself
and are just being becomingly modest about your innate gekivie can all see how well this worked for Linus!

(When | gave my talk at the first Perl Conference in August 1%&cker extraordinaire Larry Wall was in the
front row. As | got to the last line above he called out, radigs-revival style, “Tell it, tell it, brother!”. The whole
audience laughed, because they knew this had worked fontieator of Perl, too.)

After a very few weeks of running the project in the same §plifbegan to get similar praise not just from my
users but from other people to whom the word leaked out. hshaway some of that email; I'll look at it again
sometime if | ever start wondering whether my life has beerthkwehile :-).

But there are two more fundamental, non-political lessaare that are general to all kinds of design.

12. Often, the most
striking and innovative
solutions come from
realizing that your
concept of the problem
was wrong.

| had been trying to solve the wrong problem by continuingewedop popclient as a combined MTA/MDA with
all kinds of funky local delivery modes. Fetchmail's desiggeded to be rethought from the ground up as a pure
MTA, a part of the normal SMTP-speaking Internet mail path.

When you hit a wall in development—when you find yourself hautito think past the next patch—it’s often time
to ask not whether you've got the right answer, but whetherngaasking the right question. Perhaps the problem
needs to be reframed.

Well, | had reframed my problem. Clearly, the right thing @ as (1) hack SMTP forwarding support into the
generic driver, (2) make it the default mode, and (3) evdhttiarow out all the other delivery modes, especially
the deliver-to-file and deliver-to-standard-output optio

| hesitated over step 3 for some time, fearing to upset lamg-popclient users dependent on the alternate delivery
mechanisms. In theory, they could immediately switch t@r war d files or their non-sendmail equivalents to
get the same effects. In practice the transition might haenlmessy.

But when | did it, the benefits proved huge. The cruftiestsaftthe driver code vanished. Configuration got
radically simpler—no more grovelling around for the systefDA and user’'s mailbox, no more worries about
whether the underlying OS supports file locking.

14



Also, the only way to lose mail vanished. If you specified wkly to a file and the disk got full, your mail got
lost. This can’t happen with SMTP forwarding because youiT®Mistener won't return OK unless the message
can be delivered or at least spooled for later delivery.

Also, performance improved (though not so you'd notice iisingle run). Another not insignificant benefit of
this change was that the manual page got a lot simpler.

Later, | had to bring delivery via a user-specified local MDAck in order to allow handling of some obscure
situations involving dynamic SLIP. But | found a much simplay to do it.

The moral? Don't hesitate to throw away superannuatedifestuhen you can do it without loss of effectiveness.
Antoine de Saint-Exupéry (who was an aviator and aircrasigteer when he wasn’t authoring classic children’s
books) said:

13. “Perfection (in de-
sign) is achieved not
when there is nothing
more to add, but rather
when there is nothing
more to take away.”

When your code is getting both better and simpler, that iswfreaiknowknowit’s right. And in the process, the
fetchmail design acquired an identity of its own, differéom the ancestral popclient.

It was time for the name change. The new design looked muck likkera dual of sendmail than the old popclient
had; both are MTAs, but where sendmail pushes then delitteesnew popclient pulls then delivers. So, two
months off the blocks, | renamed it fetchmail.

There is a more general lesson in this story about how SMTiRatglcame to fetchmail. It is not only debugging
that is parallelizable; development and (to a perhaps mimgr extent) exploration of design space is, too.
When your development mode is rapidly iterative, developived enhancement may become special cases
of debugging—fixing ‘bugs of omission’ in the original cajiléles or concept of the software.

Even at a higher level of design, it can be very valuable teehats of co-developers random-walking through the
design space near your product. Consider the way a puddlateffinds a drain, or better yet how ants find food:
exploration essentially by diffusion, followed by exphtibn mediated by a scalable communication mechanism.
This works very well; as with Harry Hochheiser and me, oneadryoutriders may well find a huge win nearby
that you were just a little too close-focused to see.

Fetchmail Grows Up

There | was with a neat and innovative design, code that | kmevked well because | used it every day, and a
burgeoning beta list. It gradually dawned on me that | wasongér engaged in a trivial personal hack that might
happen to be useful to few other people. | had my hands on agrothat every hacker with a Unix box and a
SLIP/PPP mail connection really needs.

15



With the SMTP forwarding feature, it pulled far enough inrftoof the competition to potentially become a
“category killer”, one of those classic programs that fitlsiiche so competently that the alternatives are not just
discarded but almost forgotten.

I think you can’t really aim or plan for a result like this. Ydwave to get pulled into it by design ideas so powerful

that afterward the results just seem inevitable, natuvaln éoreordained. The only way to try for ideas like that is

by having lots of ideas—or by having the engineering judgntemake other peoples’ good ideas beyond where
the originators thought they could go.

Andy Tanenbaum had the original idea to build a simple ndtimé for IBM PCs, for use as a teaching tool (he
called it Minix). Linus Torvalds pushed the Minix conceptther than Andrew probably thought it could go—and
it grew into something wonderful. In the same way (though emaller scale), | took some ideas by Carl Harris
and Harry Hochheiser and pushed them hard. Neither of us evagrial’ in the romantic way people think is
genius. But then, most science and engineering and softlemelopment isn't done by original genius, hacker
mythology to the contrary.

The results were pretty heady stuff all the same—in fact,thsskind of success every hacker lives for! And they

meant | would have to set my standards even higher. To maderfetil as good as | now saw it could be, I'd have

to write not just for my own needs, but also include and supfeatures necessary to others but outside my orbit.
And do that while keeping the program simple and robust.

The first and overwhelmingly most important feature | wrdterrealizing this was multidrop support—the ability
to fetch mail from mailboxes that had accumulated all maikfgroup of users, and then route each piece of mail
to its individual recipients.

| decided to add the multidrop support partly because soreesusere clamoring for it, but mostly because |
thought it would shake bugs out of the single-drop code byifigr me to deal with addressing in full generality.
And so it proved. Getting RFC 822 [http://info.interndtaslu:80/in-notes/rfc/files/rfc822.txt] address pagsin

right took me a remarkably long time, not because any indi@ighiece of it is hard but because it involved a pile
of interdependent and fussy detalils.

But multidrop addressing turned out to be an excellent ced@rision as well. Here’s how | knew:

14. Any tool should be
useful in the expected
way, but a truly great
tool lends itself to uses
you never expected.

The unexpected use for multidrop fetchmail is to run mailiats with the list kept, and alias expansion done, on
theclientclientside of the Internet connection. This means someone rurapegsonal machine through an ISP
account can manage a mailing list without continuing actetise ISP’s alias files.

Another important change demanded by my beta-testers vpg®#ifor 8-bit MIME (Multipurpose Internet Mail
Extensions) operation. This was pretty easy to do, becaliaé been careful to keep the code 8-bit clean (that is,
to not press the 8th bit, unused in the ASCII character stt,5@rvice to carry information within the program).
Not because | anticipated the demand for this feature, Ibuéran obedience to another rule:

16



15. When writing
gateway software
of any kind, take
pains to disturb the
data stream as little

as possible—and
nevernever  throw
away information

unless the recipient
forces you to!

Had | not obeyed this rule, 8-bit MIME support would have bdé#ficult and buggy. As it was, all | had to do is
read the MIME standard (RFC 1652 [http://info.internéieidu:80/in-notes/rfc/files/rfc1652.txt]) and add aitiv
bit of header-generation logic.

Some European users bugged me into adding an option to @ihtimber of messages retrieved per session
(so they can control costs from their expensive phone nddsyolt resisted this for a long time, and I'm still not
entirely happy about it. But if you're writing for the worlgjou have to listen to your customers—this doesn’t
change just because they’re not paying you in money.

A Few More Lessons from Fetchmall

Before we go back to general software-engineering issiiesgtare a couple more specific lessons from the
fetchmail experience to ponder. Nontechnical readers afalysskip this section.

The rc (control) file syntax includes optional ‘noise’ keynds that are entirely ignored by the parser. The English-
like syntax they allow is considerably more readable thantthditional terse keyword-value pairs you get when
you strip them all out.

These started out as a late-night experiment when | notioedrhuch the rc file declarations were beginning to
resemble an imperative minilanguage. (This is also why hglea the original popclient “server” keyword to

“poll™).

It seemed to me that trying to make that imperative minilaggumore like English might make it easier to use.
Now, although I’'m a convinced partisan of the “make it a laage’ school of design as exemplified by Emacs
and HTML and many database engines, | am not normally a bigffanglish-like” syntaxes.

Traditionally programmers have tended to favor controltayas that are very precise and compact and have no
redundancy at all. This is a cultural legacy from when cormautesources were expensive, so parsing stages
had to be as cheap and simple as possible. English, with @étiredundancy, looked like a very inappropriate
model then.

This is not my reason for normally avoiding English-like sgxes; | mention it here only to demolish it. With
cheap cycles and core, terseness should not be an end inNseladays it's more important for a language to be
convenient for humans than to be cheap for the computer.

17



There remain, however, good reasons to be wary. One is thplegity cost of the parsing stage—you don’t want
to raise that to the point where it's a significant source afsand user confusion in itself. Another is that trying
to make a language syntax English-like often demands tedBhglish” it speaks be bent seriously out of shape,
so much so that the superficial resemblance to natural layggisaas confusing as a traditional syntax would have
been. (You see this bad effect in a lot of so-called “fourtheyation” and commercial database-query languages.)

The fetchmail control syntax seems to avoid these problesnalse the language domain is extremely restricted.
It's nowhere near a general-purpose language; the thirggy& simply are not very complicated, so there’s little
potential for confusion in moving mentally between a tinypset of English and the actual control language. |
think there may be a broader lesson here:

16. When your
language is nowhere
near Turing-complete,
syntactic sugar can be
your friend.

Another lesson is about security by obscurity. Some fetéhusers asked me to change the software to store
passwords encrypted in the rc file, so snoopers wouldn't betalcasually see them.

| didn’t do it, because this doesn’t actually add protectiéimyone who's acquired permissions to read your rc
file will be able to run fetchmail as you anyway—and if it's yqaassword they're after, they'd be able to rip the
necessary decoder out of the fetchmail code itself to get it.

All . f et chmai | r ¢ password encryption would have done is give a false sensecafisy to people who don't
think very hard. The general rule here is:

17. A security sys-
tem is only as secure
as its secret. Beware of
pseudo-secrets.

Necessary Preconditions for the Bazaar Style

Early reviewers and test audiences for this essay conflisteaised questions about the preconditions for
successful bazaar-style development, including both tiadifications of the project leader and the state of code
at the time one goes public and starts to try to build a cold@es community.

It's fairly clear that one cannot code from the ground up iads style [IN]. One can test, debug and improve in
bazaar style, but it would be very hardddginateoriginatea project in bazaar mode. Linus didn't try it. | didn’t
either. Your nascent developer community needs to havethamgerunnable and testable to play with.

When you start community-building, what you need to be ablarésent is @lausible promiseplausible promise
Your program doesn’t have to work particularly well. It ca@ trude, buggy, incomplete, and poorly documented.
What it must not fail to do is (a) run, and (b) convince potaltd-developers that it can be evolved into something
really neat in the foreseeable future.

18



Linux and fetchmail both went public with strong, attraetivasic designs. Many people thinking about the bazaar
model as | have presented it have correctly considered tiiisad, then jumped from that to the conclusion that a
high degree of design intuition and cleverness in the ptdgacier is indispensable.

But Linus got his design from Unix. | got mine initially frorhé ancestral popclient (though it would later change
a great deal, much more proportionately speaking than hasx)i So does the leader/coordinator for a bazaar-
style effort really have to have exceptional design talentan he get by through leveraging the design talent of
others?

I think it is not critical that the coordinator be able to drigte designs of exceptional brilliance, but it is absdiute
critical that the coordinator be able tecognize good design ideas from othersrecognize goodmlé&itas from
others

Both the Linux and fetchmail projects show evidence of thidnus, while not (as previously discussed) a
spectacularly original designer, has displayed a powddrfialck for recognizing good design and integrating it
into the Linux kernel. And | have already described how timgls most powerful design idea in fetchmail (SMTP
forwarding) came from somebody else.

Early audiences of this essay complimented me by suggestitd am prone to undervalue design originality in
bazaar projects because | have a lot of it myself, and thexédde it for granted. There may be some truth to this;
design (as opposed to coding or debugging) is certainly napgest skKill.

But the problem with being clever and original in softwarsida is that it gets to be a habit—you start reflexively
making things cute and complicated when you should be kgehiem robust and simple. | have had projects
crash on me because | made this mistake, but | managed tothimiglith fetchmail.

So | believe the fetchmail project succeeded partly bechtesstrained my tendency to be clever; this argues (at
least) against design originality being essential for ssstul bazaar projects. And consider Linux. Suppose Linus
Torvalds had been trying to pull off fundamental innovasiagmoperating system design during the development;
does it seem at all likely that the resulting kernel would bestable and successful as what we have?

A certain base level of design and coding skill is requiredcaurse, but | expect almost anybody seriously
thinking of launching a bazaar effort will already be abdvattminimum. The open-source community’s internal
market in reputation exerts subtle pressure on people natutach development efforts they’re not competent to
follow through on. So far this seems to have worked pretty.wel

There is another kind of skill not normally associated wibiftware development which | think is as important as
design cleverness to bazaar projects—and it may be moreriengoA bazaar project coordinator or leader must
have good people and communications skills.

This should be obvious. In order to build a development comityuyou need to attract people, interest them in
what you're doing, and keep them happy about the amount df thay're doing. Technical sizzle will go a long
way towards accomplishing this, but it's far from the whaierg. The personality you project matters, too.

It is not a coincidence that Linus is a nice guy who makes pebtké him and want to help him. It's not a
coincidence that I'm an energetic extrovert who enjoys Wwugla crowd and has some of the delivery and instincts
of a stand-up comic. To make the bazaar model work, it helpsneously if you have at least a little skill at
charming people.

19



The Social Context of Open-Source Software

It is truly written: the best hacks start out as personal timhg to the author’'s everyday problems, and spread
because the problem turns out to be typical for a large claasars. This takes us back to the matter of rule 1,
restated in a perhaps more useful way:

18. To solve an
interesting  problem,
start by finding
a problem that is
interesting to you.

So it was with Carl Harris and the ancestral popclient, andglifto me and fetchmail. But this has been understood
for a long time. The interesting point, the point that thetdmigs of Linux and fetchmail seem to demand we
focus on, is the next stage—the evolution of software in tles@nce of a large and active community of users and
co-developers.

In The Mythical Man-MonthFred Brooks observed that programmer time is not fungéodeting developers to a
late software project makes it later. As we've seen previohe argued that the complexity and communication
costs of a project rise with the square of the number of dgerk while work done only rises linearly. Brooks’s
Law has been widely regarded as a truism. But we've examinedis essay an number of ways in which the
process of open-source development falsifies the assumpgibehind it—and, empirically, if Brooks’s Law were
the whole picture Linux would be impossible.

Gerald Weinberg’s classithe Psychology of Computer Programmisigpplied what, in hindsight, we can see
as a vital correction to Brooks. In his discussion of “egslpsogramming”, Weinberg observed that in shops
where developers are not territorial about their code, armberage other people to look for bugs and potential
improvements in it, improvement happens dramaticallyefatitan elsewhere. (Recently, Kent Beck’s ‘extreme
programming’ technique of deploying coders in pairs logkover one anothers’ shoulders might be seen as an
attempt to force this effect.)

Weinberg's choice of terminology has perhaps preventedahialysis from gaining the acceptance it de-
served—one has to smile at the thought of describing Intdraekers as “egoless”. But | think his argument
looks more compelling today than ever.

The bazaar method, by harnessing the full power of the “agofgrogramming” effect, strongly mitigates the
effect of Brooks’s Law. The principle behind Brooks'’s Lawnist repealed, but given a large developer population
and cheap communications its effects can be swamped by ¢y penlinearities that are not otherwise visible.
This resembles the relationship between Newtonian andetitian physics—the older system is still valid at low
energies, but if you push mass and velocity high enough yoawgerises like nuclear explosions or Linux.

The history of Unix should have prepared us for what we'reréay from Linux (and what I've verified
experimentally on a smaller scale by deliberately copyimyk’s methods [EGCS]). That s, while coding remains
an essentially solitary activity, the really great hackmedrom harnessing the attention and brainpower of entire
communities. The developer who uses only his or her own braia closed project is going to fall behind
the developer who knows how to create an open, evolutionamyegt in which feedback exploring the design

20



space, code contributions, bug-spotting, and other ingor®nts come from from hundreds (perhaps thousands)
of people.

But the traditional Unix world was prevented from pushing thpproach to the ultimate by several factors. One
was the legal contraints of various licenses, trade seaats commercial interests. Another (in hindsight) was
that the Internet wasn'’t yet good enough.

Before cheap Internet, there were some geographically astgommunities where the culture encouraged
Weinberg's “egoless” programming, and a developer coulsileattract a lot of skilled kibitzers and co-
developers. Bell Labs, the MIT Al and LCS labs, UC Berkelefrese became the home of innovations that
are legendary and still potent.

Linux was the first project for which a conscious and sucegsffort to use the entirevorldworld as its talent
pool was made. | don't think it's a coincidence that the géstaperiod of Linux coincided with the birth of the
World Wide Web, and that Linux left its infancy during the saperiod in 1993-1994 that saw the takeoff of the
ISP industry and the explosion of mainstream interest ifiriternet. Linus was the first person who learned how
to play by the new rules that pervasive Internet access mashde.

While cheap Internet was a necessary condition for the Limadel to evolve, | think it was not by itself a
sufficient condition. Another vital factor was the develaggmhof a leadership style and set of cooperative customs
that could allow developers to attract co-developers andnggimum leverage out of the medium.

But what is this leadership style and what are these custdieg cannot be based on power relationships—and
even if they could be, leadership by coercion would not poedthe results we see. Weinberg quotes the
autobiography of the 19th-century Russian anarchist PAdatxeyvich Kropotkin'sMemoirs of a Revolutionist

to good effect on this subject:

Having been brought
up in a serf-owner’s
family, | entered

active life, like all

young men of my
time, with a great
deal of confidence
in the  necessity
of commanding,
ordering, scolding,
punishing and the
like. But when, at

an early stage, | had
to manage serious
enterprises and to deal
with [free] men, and

when each mistake
would lead at once to
heavy consequences,
| began to appreciate

21



the difference between
acting on the principle
of command and
discipline and

acting on the

principle of common

understanding.

The former works

admirably in a military

parade, but it is worth
nothing where real life
is concerned, and the
aim can be achieved
only through the

severe effort of many
converging wills.

The “severe effort of many converging wills” is precisely aita project like Linux requires—and the “principle of
command” is effectively impossible to apply among volungde the anarchist’s paradise we call the Internet. To
operate and compete effectively, hackers who want to le#ldbmrative projects have to learn how to recruit
and energize effective communities of interest in the modguely suggested by Kropotkin's “principle of
understanding”. They must learn to use Linus’s Law.[SP]

Earlier | referred to the “Delphi effect” as a possible exydtion for Linus’s Law. But more powerful analogies
to adaptive systems in biology and economics also irrddistsuggest themselves. The Linux world behaves
in many respects like a free market or an ecology, a collaatibselfish agents attempting to maximize utility
which in the process produces a self-correcting spontaealer more elaborate and efficient than any amount
of central planning could have achieved. Here, then, is thespo seek the “principle of understanding”.

The “utility function” Linux hackers are maximizing is nolassically economic, but is the intangible of their own
ego satisfaction and reputation among other hackers. (Gryecadl their motivation “altruistic”, but this ignores
the fact that altruism is itself a form of ego satisfaction fiee altruist). Voluntary cultures that work this way
are not actually uncommon; one other in which | have longigigdted is science fiction fandom, which unlike
hackerdom has long explicitly recognized “egoboo” (egadimng, or the enhancement of one’s reputation among
other fans) as the basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeay a project in which the development is mostly
done by others, and nurturing interest in the project uhblkeicame self-sustaining, has shown an acute grasp of
Kropotkin’s “principle of shared understanding”. This gir@conomic view of the Linux world enables us to see
how that understanding is applied.

We may view Linus’s method as a way to create an efficient ntank&egoboo”—to connect the selfishness of
individual hackers as firmly as possible to difficult endg tten only be achieved by sustained cooperation. With
the fetchmail project | have shown (albeit on a smaller 9dhlat his methods can be duplicated with good results.
Perhaps | have even done it a bit more consciously and systathathan he.

22



Many people (especially those who politically distrustfrearkets) would expect a culture of self-directed egoists
to be fragmented, territorial, wasteful, secretive, andtif® But this expectation is clearly falsified by (to
give just one example) the stunning variety, quality, angtdef Linux documentation. It is a hallowed given
that programmerbkatehatedocumenting; how is it, then, that Linux hackers generatenach documentation?
Evidently Linux’s free market in egoboo works better to puod virtuous, other-directed behavior than the
massively-funded documentation shops of commercial soéyeroducers.

Both the fetchmail and Linux kernel projects show that bypendy rewarding the egos of many other hackers, a
strong developer/coordinator can use the Internet to caphe benefits of having lots of co-developers without
having a project collapse into a chaotic mess. So to Brodkss| counter-propose the following:

19: Provided
the development
coordinator has a
communications
medium at least as
good as the Internet,
and knows how to
lead without coercion,
many heads are
inevitably better than
one.

| think the future of open-source software will increasingelong to people who know how to play Linus’s game,
people who leave behind the cathedral and embrace the baZhar is not to say that individual vision and
brilliance will no longer matter; rather, | think that thetting edge of open-source software will belong to people
who start from individual vision and brilliance, then anfplit through the effective construction of voluntary
communities of interest.

Perhaps this is not only the future open-sourceopen-sourseftware. No closed-source developer can match
the pool of talent the Linux community can bring to bear on abjem. Very few could afford even to hire the
more than 200 (1999: 600, 2000: 800) people who have comgdko fetchmail!

Perhaps in the end the open-source culture will triumph mabse cooperation is morally right or software
“hoarding” is morally wrong (assuming you believe the lgttghich neither Linus nor | do), but simply because
the closed-source world cannot win an evolutionary arme with open-source communities that can put orders
of magnitude more skilled time into a problem.

On Management and the Maginot Line

The originalCathedral and Bazagvaper of 1997 ended with the vision above—that of happy negebhordes of
programmer/anarchists outcompeting and overwhelmingiga@rchical world of conventional closed software.

A good many skeptics weren’t convinced, however; and thetipes they raise deserve a fair engagement. Most
of the objections to the bazaar argument come down to thendlaat its proponents have underestimated the
productivity-multiplying effect of conventional managent.

23



Traditionally-minded software-development managersrofibject that the casualness with which project groups
form and change and dissolve in the open-source world negaségnificant part of the apparent advantage of
numbers that the open-source community has over any sifgged:source developer. They would observe that
in software development it is really sustained effort overet and the degree to which customers can expect
continuing investment in the product that matters, notfest many people have thrown a bone in the pot and left
it to simmer.

There is something to this argument, to be sure; in fact, ¢ligaweloped the idea that expected future service value
is the key to the economics of software production in theyesshe Magic Cauldrorjhttp://www.tuxedo.org/-
~esr/writings/magic-cauldron/].

But this argument also has a major hidden problem; its int@E&sumption that open-source development cannot
deliver such sustained effort. In fact, there have been -@peince projects that maintained a coherent direction
and an effective maintainer community over quite long pasiof time without the kinds of incentive structures
or institutional controls that conventional managementdiessential. The development of the GNU Emacs
editor is an extreme and instructive example; it has absbitioe efforts of hundreds of contributors over 15 years
into a unified architectural vision, despite high turnoveddhe fact that only one person (its author) has been
continuously active during all that time. No closed-sowrdédor has ever matched this longevity record.

This suggests a reason for questioning the advantages eéwcbonally-managed software development that is
independent of the rest of the arguments over cathedral agaar mode. If it's possible for GNU Emacs to
express a consistent architectural vision over 15 yeaifer@n operating system like Linux to do the same over 8
years of rapidly changing hardware and platform technolagyl if (as is indeed the case) there have been many
well-architected open-source projects of more than 5 ydaration -- then we are entitled to wonder what, if
anything, the tremendous overhead of conventionally-medaevelopment is actually buying us.

Whatever it is certainly doesn't include reliable execntlny deadline, or on budget, or to all features of the
specification; it's a rare ‘managed’ project that meets ewes of these goals, let alone all three. It also does not
appear to be ability to adapt to changes in technology andaniz context during the project lifetime, either; the
open-source community has provianfar more effective on that score (as one can readily verify, kaneple, by
comparing the 30-year history of the Internet with the shatt-lives of proprietary networking technologies—or
the cost of the 16-bit to 32-bit transition in Microsoft Wimds with the nearly effortless upward migration of
Linux during the same period, not only along the Intel linele¥elopment but to more than a dozen other hardware
platforms, including the 64-bit Alpha as well).

One thing many people think the traditional mode buys yowisebody to hold legally liable and potentially
recover compensation from if the project goes wrong. Bug ihian illusion; most software licenses are written to
disclaim even warranty of merchantability, let alone parfance—and cases of successful recovery for software
nonperformance are vanishingly rare. Even if they were commfeeling comforted by having somebody to sue
would be missing the point. You didn’t want to be in a lawsydu wanted working software.

So what is all that management overhead buying?

In order to understand that, we need to understand what adtalevelopment managers believe they do. A
woman | know who seems to be very good at this job says softpraject management has five functions:

« To define goalsdefine goadsd keep everybody pointed in the same direction

24



» To monitormonitorand make sure crucial details don’t get skipped
» To motivatemotivat@eople to do boring but necessary drudgework
* To organizeorganizéhe deployment of people for best productivity

» To marshal resourcesmarshal resourceseded to sustain the project

Apparently worthy goals, all of these; but under the opears® model, and in its surrounding social context, they
can begin to seem strangely irrelevant. We'll take them werge order.

My friend reports that a lot ofesource marshallingresource marshallilgybasically defensive; once you have
your people and machines and office space, you have to ddfendftom peer managers competing for the same
resources, and from higher-ups trying to allocate the mifisient use of a limited pool.

But open-source developers are volunteers, self-seléotdabth interest and ability to contribute to the projects
they work on (and this remains generally true even when theyaing paid a salary to hack open source.) The
volunteer ethos tends to take care of the ‘attack’ side adusse-marshalling automatically; people bring their
own resources to the table. And there is little or no need foeaager to ‘play defense’ in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we finetty consistently that the only really limiting
resource is skilled attention. Open-source projects, wihey founder, essentially never do so for want of
machines or links or office space; they die only when the apark themselves lose interest.

That being the case, it's doubly important that open-sobeszkersorganize themselvesorganize themsefees
maximum productivity by self-selection—and the socialieuil selects ruthlessly for competence. My friend,
familiar with both the open-source world and large closemjgmts, believes that open source has been successful
partly because its culture only accepts the most talente@®b586 of the programming population. She spends
most of her time organizing the deployment of the other 9564, laas thus observed first-hand the well-known
variance of a factor of one hundred in productivity betwdenrost able programmers and the merely competent.

The size of that variance has always raised an awkward guestiould individual projects, and the field as a
whole, be better off without more than 50% of the least ablgAnThoughtful managers have understood for a
long time that if conventional software management’s onlyction were to convert the least able from a net loss
to a marginal win, the game might not be worth the candle.

The success of the open-source community sharpens thiiauesnsiderably, by providing hard evidence that
it is often cheaper and more effective to recruit self-seldo/olunteers from the Internet than it is to manage
buildings full of people who would rather be doing somethétge.

Which brings us neatly to the question wiotivationmotivation An equivalent and often-heard way to state
my friend’s point is that traditional development manageanis a necessary compensation for poorly motivated
programmers who would not otherwise turn out good work.

This answer usually travels with a claim that the open-seacenmunity can only be relied on only to do work that
is ‘sexy’ or technically sweet; anything else will be leftdone (or done only poorly) unless it's churned out by
money-motivated cubicle peons with managers cracking svbyer them. | address the psychological and social

25



reasons for being skeptical of this claim Homesteading the Noosphditp://www.tuxedo.org/~esr/magic-
cauldron/]. For present purposes, however, | think it's enioteresting to point out the implications of accepting
it as true.

If the conventional, closed-source, heavily-managedestylsoftware development is really defended only by
a sort of Maginot Line of problems conducive to boredom, thisngoing to remain viable in each individual
application area for only so long as nobody finds those probleally interesting and nobody else finds any way
to route around them. Because the moment there is openesoarapetition for a ‘boring’ piece of software,
customers are going to know that it was finally tackled by someewho chose that problem to solve because of a
fascination with the problem itself—which, in software asother kinds of creative work, is a far more effective
motivator than money alone.

Having a conventional management structure solely in ai@enotivate, then, is probably good tactics but bad
strategy; a short-term win, but in the longer term a sures.los

So far, conventional development management looks likecalded now against open source on two points
(resource marshalling, organization), and like it’s liyion borrowed time with respect to a third (motivation).
And the poor beleaguered conventional manager is not goiggt any succour from th@onitoringmonitoring
issue; the strongest argument the open-source commurstyshthat decentralized peer review trumps all the
conventional methods for trying to ensure that details tiget slipped.

Can we savalefining goalsdefining goalas a justification for the overhead of conventional softwangject
management? Perhaps; but to do so, we’ll need good reasetig¢adthat management committees and corporate
roadmaps are more successful at defining worthy and wid@lsestgoals than the project leaders and tribal elders
who fill the analogous role in the open-source world.

That is on the face of it a pretty hard case to make. And it'ssoatuch the open-source side of the balance (the
longevity of Emacs, or Linus Torvalds’s ability to mobilinerdes of developers with talk of “world domination”)
that makes it tough. Rather, it's the demonstrated awfsloésonventional mechanisms for defining the goals of
software projects.

One of the best-known folk theorems of software engineésitigat 60% to 75% of conventional software projects
either are never completed or are rejected by their intendeds. If that range is anywhere near true (and I've
never met a manager of any experience who disputes it) thea projects than not are being aimed at goals that
are either (a) not realistically attainable, or (b) justiplarong.

This, more than any other problem, is the reason that in tedsftware engineering world the very phrase
“management committee” is likely to send chills down therkea spine—even (or perhaps especially) if the
hearer is a manager. The days when only programmers gripma #tis pattern are long past; Dilbert cartoons
hang ovelexecutives’executivedesks now.

Our reply, then, to the traditional software developmenhagger, is simple—if the open-source community has
really underestimated the value of conventional managémdry do so many of you display contempt for your
own process?why do so many of you display contempt for yonpoocess?

Once again the example of the open-source community shaithenquestion considerably—because we have
funfundoing what we do. Our creative play has been racking up teahmharket-share, and mind-share successes
at an astounding rate. We're proving not only that we can debsoftware, but thgby is an assetjoy is an asset

26



Two and a half years after the first version of this essay, thetmadical thought | can offer to close with is no
longer a vision of an open-source—dominated software wiirht, after all, looks plausible to a lot of sober people
in suits these days.

Rather, | want to suggest what may be a wider lesson abowta@ft (and probably about every kind of creative
or professional work). Human beings generally take pleasara task when it falls in a sort of optimal-
challenge zone; not so easy as to be boring, not too hard tev&chA happy programmer is one who is neither
underutilized nor weighed down with ill-formulated goalsdastressful process frictionEnjoyment predicts
efficiency.Enjoyment predicts efficiency.

Relating to your own work process with fear and loathing (ewvethe displaced, ironic way suggested by hanging
up Dilbert cartoons) should therefore be regarded in itagelf sign that the process has failed. Joy, humor, and
playfulness are indeed assets; it was not mainly for theeadliion that | wrote of "happy hordes" above, and it is
no mere joke that the Linux mascot is a cuddly, neotenousyeng

It may well turn out that one of the most important effects péo source’s success will be to teach us that play is
the most economically efficient mode of creative work.

Epilog: Netscape Embraces the Bazaar

It's a strange feeling to realize you're helping make higtor

On January 22 1998, approximately seven months after | fioktighed The Cathedral and the Bazaar
Netscape Communications, Inc. announced plans to give #veagource for Netscape Communicator [http://-
www.netscape.com/newsref/pr/newsrelease558.htmAdIitad no clue this was going to happen before the day
of the announcement.

Eric Hahn, executive vice president and chief technolodigef at Netscape, emailed me shortly afterwards as
follows: “On behalf of everyone at Netscape, | want to thaol Jor helping us get to this point in the first place.
Your thinking and writings were fundamental inspiratioaour decision.”

The following week | flew out to Silicon Valley at Netscapawitation for a day-long strategy conference (on 4
Feb 1998) with some of their top executives and technicgblge&Ve designed Netscape’s source-release strategy
and license together.

A few days later | wrote the following:

Netscape is about
to provide us with
a large-scale, real-
world test of the
bazaar model in the
commercial world.
The open-source
culture now faces a
danger; if Netscape’s
execution doesn'’t

27



work, the open-source
concept may be so
discredited that the
commercial world
won't touch it again
for another decade.

On the other hand, this
is also a spectacular
opportunity. Initial
reaction to the move
on Wall Street and
elsewhere has been
cautiously  positive.
We're being given
a chance to prove

ourselves, too. If
Netscape regains
substantial market

share through this
move, it just may set
off a long-overdue
revolution in  the
software industry.

The next year should
be a very instructive
and interesting time.

And indeed it was. As | write in mid-2000, the development dfavwas later named Mozilla has been only
a qualified success. It achieved Netscape’s original gdaictwwas to deny Microsoft a monopoly lock on the
browser market. It has also achieved some dramatic succéssibly the release of the next-generation Gecko
rendering engine).

However, it has not yet garnered the massive development &fHm outside Netscape that the Mozilla founders
had originally hoped for. The problem here seems to be thia fong time the Mozilla distribution actually broke
one of the basic rules of the bazaar model; it didn’t ship witmething potential contributors could easily run
and see working. (Until more than a year after release, mglt¥ozilla from source required a license for the
proprietary Motif library.)

Most negatively (from the point of view of the outside wortte Mozilla group didn’t ship a production-quality
browser for two and a half years after the project launch—ant®99 one of the project’s principals caused a
bit of a sensation by resigning, complaining of poor managr@mand missed opportunities. “Open source,” he
correctly observed, “is not magic pixie dust.”

And indeed it is not. The long-term prognosis for Mozilla ksadramatically better now (in November 2000) than
it did at the time of Jamie Zawinski’s resignation letter—tire last few weeks the nightly releases have finally

28



passed the critical threshold to production usability. Bamnie was right to point out that going open will not
necessarily save an existing project that suffers frondelined goals or spaghetti code or any of the software
engineering’s other chronic ills. Mozilla has managed tovite an example simultaneously of how open source
can succeed and how it could fail.

In the mean time, however, the open-source idea has scocedsaes and found backers elsewhere. Since the
Netscape release we've seen a tremendous explosion aéshiarthe open-source development model, a trend
both driven by and driving the continuing success of the kinperating system. The trend Mozilla touched off
is continuing at an accelerating rate.

Notes

[JB] In Programing Pearlsthe noted computer-science aphorist Jon Bentley comnoeriBsooks’s observation
with “If you plan to throw one away, you will throw away two."He is almost certainly right. The point of
Brooks’s observation, and Bentley’s, isn't merely that yhwuld expect first attempt to be wrong, it's that starting
over with the right idea is usually more effective than tyto salvage a mess.

[QR][QR] Examples of successful open-source, bazaar developmeatiirg the Internet explosion and unre-
lated to the Unix and Internet traditions have existed. Téaetbpment of the info-Zip [http://www.cdrom.com/-
pub/infozip/] compression utility during 1990-x1992, mparily for DOS machines, was one such example.
Another was the RBBS bulletin board system (again for DOS)jcivbegan in 1983 and developed a sufficiently
strong community that there have been fairly regular redeagp to the present (mid-1999) despite the huge
technical advantages of Internet mail and file-sharing dveasl BBSs. While the info-Zip community relied
to some extent on Internet mail, the RBBS developer cultuas actually able to base a substantial on-line
community on RBBS that was completely independent of the/TRCiRfrastructure.

[CV][CV] Thattransparency and peer review are valuable for tamiegdmplexity of OS development turns out,
after all, not to be a new concept. In 1965, very early in thetdmy of time-sharing operating systems, Corbat6
and Vyssotsky, co-designers of the Multics operating systerote [http://www.multicians.org/fjcc1l.html]

It is expected that
the Multics system
will  be published
when it is operating
substantially...  Such
publication is desirable
for two reasons:
First, the system
should withstand
public scrutiny and
criticism  volunteered
by interested readers;
second, in an age of
increasing complexity,
it is an obligation to
present and future

29



system designers
to make the inner
operating system as
lucid as possible so
as to reveal the basic
system issues.

[JH][JH] John Hasler has suggested an interesting explanationddath that duplication of effort doesn’t seem
to be a net drag on open-source development. He proposed’ivbiab “Hasler’s Law”: the costs of duplicated
work tend to scale sub-gadratically with team size—thatnisre slowly than the planning and management
overhead that would be needed to eliminate them.

This claim actually does not contradict Brooks's Law. It ntagy the case that total complexity overhead and
vulnerability to bugs scales with the square of team sizéfhmt the costs fronduplicatedduplicatedvork are
nevertheless a special case that scales more slowly. ttisand to develop plausible reasons for this, starting with
the undoubted fact that it is much easier to agree on funatiooundaries between different developers’ code that
will prevent duplication of effort than it is to prevent thénkls of unplanned bad interactions across the whole
system that underly most bugs.

The combination of Linus’s Law and Hasler's Law suggests tihere are actually three critical size regimes in
software projects. On small projects (I would say one to astrittree developers) no management structure more
elaborate than picking a lead programmer is needed. And thesome intermediate range above that in which the
cost of traditional management is relatively low, so its &fiés from avoiding duplication of effort, bug-tracking,
and pushing to see that details are not overlooked actuetlgut positive.

Above that, however, the combination of Linus’s Law and lddslLaw suggests there is a large-project range in
which the costs and problems of traditional managementmiseh faster than the expected cost from duplication
of effort. Not the least of these costs is a structural ingbtb harness the many-eyeballs effect, which (as
we've seen) seems to do a much better job than traditionabhgement at making sure bugs and details are not
overlooked. Thus, in the large-project case, the comlonatif these laws effectively drives the net payoff of
traditional management to zero.

[HBS][HBS] The split between Linux’s experimental and stable versioas another function related to, but
distinct from, hedging risk. The split attacks another peoln the deadliness of deadlines. When programmers
are held both to an immutable feature list and a fixed dromtaide, quality goes out the window and there
is likely a colossal mess in the making. | am indebted to Mdaswiti and Alan MacCormack of the Harvard
Business School for showing me me evidence that relaxitgetdne of these constraints can make scheduling
workable.

One way to do this is to fix the deadline but leave the feattefliexible, allowing features to drop off if not
completed by deadline. This is essentially the strategh®f'stable" kernel branch; Alan Cox (the stable-kernel
maintainer) puts out releases at fairly regular intervalg,makes no guarantees about when particular bugs will
be fixed or what features will beback-ported from the experital branch.

The other way to do this is to set a desired feature list andetebnly when it is done. This is essentially the
strategy of the "experimental” kernel branch. De Marco aisdelr cited research showing that this scheduling

30



policy ("wake me up when it's done") produces not only thehleist quality but, on average, shorter delivery times
than either "realistic" or "aggressive" scheduling.

| have come to suspect (as of early 2000) that in earlier @essof this essay | severely underestimated the
importance of the "wake me up when it's done" anti-deadliolecy to the open-source community’s productivity
and quality. General experience with the rushed GNOME 1dase in 1999 suggests that pressure for a premature
release can neutralize many of the quality benefits opercsoarmally confers.

It may well turn out to be that the process transparency oh@perce is one of three co-equal drivers of its quality,
along with "wake me up when it's done" scheduling and develsplf-selection.

[SU]J[SU] It's tempting, and not entirely inaccurate, to see the qaus-halo organization characteristic of
open-source projects as an Internet-enabled spin on Beooks recommendation for solving the N-squared
complexity problem, the "surgical-team" organization-t+the differences are significant. The constellation
of specialist roles such as "code librarian” that Brooksigiomed around the team leader doesn’t really exist;
those roles are executed instead by generalists aided lsetsquite a bit more powerful than those of Brooks’s
day. Also, the open-source culture leans heavily on stronig taditions of modularity, APls, and information
hiding—none of which were elements of Brooks’s prescriptio

[RJI][RJ] The respondent who pointed out to me the effect of widely wayyrace path lengths on the difficulty
of characterizing a bug speculated that trace-path diffictdr multiple symptoms of the same bug varies
"exponentially" (which | take to mean on a Gaussian or Poig#istribution, and agree seems very plausible).
If it is experimentally possible to get a handle on the shdhis distribution, that would be extremely valuable
data. Large departures from a flat equal-probability distibn of trace difficulty would suggest that even solo
developers should emulate the bazaar strategy by bourttértane they spend on tracing a given symptom before
they switch to another. Persistence may not always be avirtu

[IN][IN] An issue related to whether one can start projects from zetbe bazaar style is whether the bazaar
style is capable of supporting truly innovative work. Sonter that, lacking strong leadership, the bazaar can
only handle the cloning and improvement of ideas alreadgeareat the engineering state of the art, but is unable
to push the state of the art. This argument was perhaps mfashausly made by the Halloween Documents
[http://lwww.opensource.org/halloween/], two embariagiternal Microsoft memoranda written about the open-
source phenomenon. The authors compared Linux’'s develojpoie Unix-like operating system to “chasing
taillights”, and opined “(once a project has achieved 'fyanvith the state-of-the-art), the level of management
necessary to push towards new frontiers becomes massive.”

There are serious errors of fact implied in this argumente @rexposed when the Halloween authors themseselves
later observe that “often [...] new research ideas are fingiémented and available on Linux before they are
available / incorporated into other platforms.”

If we read “open source” for “Linux”, we see that this is faofn a new phenomenon. Historically, the open-
source community did not invent Emacs or the World Wide Webher Internet itself by chasing taillights or
being massively managed—and in the present, there is so mookative work going on in open source that
one is spoiled for choice. The GNOME project (to pick one ofas pushing the state of the art in GUIs and
object technology hard enough to have attracted consitéeraltice in the computer trade press well outside the
Linux community. Other examples are legion, as a visit teskneeat [http://freshmeat.net/] on any given day will
quickly prove.

31



But there is a more fundamental error in the implicit assuampthat thecathedral modelcathedral modgdr the
bazaar model, or any other kind of management structurecarehow make innovation happen reliably. This
is nonsense. Gangs don’t have breakthrough insights—evteimteer groups of bazaar anarchists are usually
incapable of genuine originality, let alone corporate cdtteas of people with a survival stake in some status quo
ante.Insight comes from individuals.Insight comes from indiail$. The most their surrounding social machinery
can ever hope to do is to lbesponsiveresponsive breakthrough insights—to nourish and reward and rigsiou
test them instead of squashing them.

Some will characterize this as a romantic view, a reversmoutmoded lone-inventor stereotypes. Not so; |
am not asserting that groups are incapabld@felopingdevelopinigreakthrough insights once they have been
hatched; indeed, we learn from the peer-review processstiwt development groups are essential to producing
a high-quality result. Rather | am pointing out that evergtsgroup development starts from—is necessarily
sparked by—one good idea in one person’s head. Cathedlsaaaars and other social structures can catch that
lightning and refine it, but they cannot make it on demand.

Therefore the root problem of innovation (in software, oywahere else) is indeed how not to squash it—but, even
more fundamentally, it ilow to grow lots of people who can have insights in the firstgi@w to grow lots of
people who can have insights in the first place

To suppose that cathedral-style development could mahégeitk but the low entry barriers and process fluidity
of the bazaar cannot would be absurd. If what it takes is ongopewith one good idea, then a social milieu in
which one person can rapidly attract the cooperation of heatlor thousands of others with that good idea is
going inevitably to out-innovate any in which the persontoedo a political sales job to a hierarchy before he can
work on his idea without risk of getting fired.

And, indeed, if we look at the history of software innovatioy organizations using the cathedral model, we
quickly find it is rather rare. Large corporations rely onversity research for new ideas (thus the Halloween
Documents authors’ unease about Linux’s facility at caupthat research more rapidly). Or they buy out small
companies built around some innovator’s brain. In neittesecis the innovation native to the cathedral culture;
indeed, many innovations so imported end up being quieffpsated under the "massive level of management"
the Halloween Documents’ authors so extol.

That, however, is a negative point. The reader would be begtged by a positive one. | suggest, as an experiment,
the following:

* Pick a criterion for originality that you believe you canpypconsistently. If your definition is “I know it when
| see it”, that's not a problem for purposes of this test.

* Pick any closed-source operating system competing wittux,i and a best source for accounts of current
development work on it.

* Watch that source and Freshmeat for one month. Every daytdbe number of release announcements on
Freshmeat that you consider ‘original’ work. Apply the sad&inition of ‘original’ to announcements for
that other OS and count them.

* Thirty days later, total up both figures.

32



The day | wrote this, Freshmeat carried twenty-two releas@ancements, of which three appear they might push
state of the art in some respect, This was a slow day for Freahraut | will be astonished if any reader reports
as many as three likely innovatioasmontha montin any closed-source channel.

[EGCS][EGCS]We now have history on a project that, in several ways, mayigeoa more indicative test of the
bazaar premise than fetchmail; EGCS [http://egcs.cygony], the Experimental GNU Compiler System.

This project was announced in mid-August of 1997 as a consattempt to apply the ideas in the early public
versions ofThe Cathedral and the BazaafThe project founders felt that the development of GCC, tmei G
C Compiler, had been stagnating. For about twenty montlesvedirds, GCC and EGCS continued as parallel
products—both drawing from the same Internet developeufation, both starting from the same GCC source
base, both using pretty much the same Unix toolsets anda®@wvent environment. The projects differed only in
that EGCS consciously tried to apply the bazaar tactics € lpaeviously described, while GCC retained a more
cathedral-like organization with a closed developer grang infrequent releases.

This was about as close to a controlled experiment as onel @sll for, and the results were dramatic. Within
months, the EGCS versions had pulled substantially ahedgaiures; better optimization, better support for
FORTRAN and C++. Many people found the EGCS developmentshraip to be more reliable than the most
recent stable version of GCC, and major Linux distributibegan to switch to EGCS.

In April of 1999, the Free Software Foundation (the officigbbasors of GCC) dissolved the original GCC
development group and officially handed control of the prbje the the EGCS steering team.

[SP][SP] Of course, Kropotkin's critique and Linus’s Law raise somidav issues about the cybernetics of social

organizations. Another folk theorem of software enginegsuggests one of them; Conway’s Law—commonly
stated as “If you have four groups working on a compiler, Jlaagt a 4-pass compiler”. The original statement

was more general: “Organizations which design systemsaist@ined to produce designs which are copies of
the communication structures of these organizations.” Wghtput it more succinctly as “The means determine
the ends”, or even “Process becomes product”.

It is accordingly worth noting that in the open-source comitworganizational form and function match on
many levels. The network is everything and everywhere: ost jhe Internet, but the people doing the work
form a distributed, loosely coupled, peer-to-peer netwtbek provides multiple redundancy and degrades very
gracefully. In both networks, each node is important onltheextent that other nodes want to cooperate with it.

The peer-to-peer part is essential to the community’s &shiorg productivity. The point Kropotkin was trying to
make about power relationships is developed further by SINAFU Principle’: “True communication is possible
only between equals, because inferiors are more condistentarded for telling their superiors pleasant lies
than for telling the truth.” Creative teamwork utterly deyks on true communication and is thus very seriously
hindered by the presence of power relationships. The oparce community, effectively free of such power
relationships, is teaching us by contrast how dreadfullgimtihey cost in bugs, in lowered productivity, and in
lost opportunities.

Further, the SNAFU principle predicts in authoritarian @ngzations a progressive disconnect between decision-
makers and reality, as more and more of the input to those whiald tends to become pleasant lies. The way this
plays out in conventional software development is easyédotbere are strong incentives for the inferiors to hide,
ignore, and minimize problems. When this process beconwahipt, software is a disaster.

33



Bibliography

| quoted several bits from Frederick P. Brooks's clagdie Mythical Man-Monttibecause, in many respects, his
insights have yet to be improved upon. | heartily recomméied25th Anniversary edition from Addison-Wesley
(ISBN 0-201-83595-9), which adds his 1986 “No Silver Buligaper.

The new edition is wrapped up by an invaluable 20-years-tateospective in which Brooks forthrightly admits

to the few judgements in the original text which have not dttlee test of time. 1 first read the retrospective
after the first public version of this essay was substagt@implete, and was surprised to discover that Brooks
attributed bazaar-like practices to Microsoft! (In faabwever, this attribution turned out to be mistaken. In 1998
we learned from the Halloween Documents [http://www.opemse.org/halloween/] that Microsoft’s internal
developer community is heavily balkanized, with the kindgeheral source access needed to support a bazaar
not even truly possible.)

Gerald M. Weinberg'sThe Psychology Of Computer Programmifiew York, Van Nostrand Reinhold 1971)
introduced the rather unfortunately-labeled concept gbtess programming”. While he was nowhere near the
first person to realize the futility of the “principle of conamd”, he was probably the first to recognize and argue
the point in particular connection with software developte

Richard P. Gabriel, contemplating the Unix culture of the-pmux era, reluctantly argued for the superiority of
a primitive bazaar-like model in his 1989 paper “LISP: Gooelnd, Bad News, and How To Win Big”. Though
dated in some respects, this essay is still rightly celelramong LISP fans (including me). A correspondent
reminded me that the section titled “Worse Is Better” readsoat as an anticipation of Linux. The paper is
accessible on the World Wide Web at http://www.naggum. noge-is-better.html.

De Marco and Listers?eopleware: Productive Projects and Tea(hew York; Dorset House, 1987; ISBN 0-
932633-05-6) is an underappreciated gem which | was delijta see Fred Brooks cite in his retrospective.
While little of what the authors have to say is directly appble to the Linux or open-source communities, the
authors’ insight into the conditions necessary for creatiork is acute and worthwhile for anyone attempting to
import some of the bazaar model’s virtues into a commeraatext.

Finally, | must admit that | very nearly called this essay &T@athedral and the Agora”, the latter term being
the Greek for an open market or public meeting place. Thersafagoric systems” papers by Mark Miller and
Eric Drexler, by describing the emergent properties of meitike computational ecologies, helped prepare me
to think clearly about analogous phenomena in the openesawiture when Linux rubbed my nose in them five
years later. These papers are available on the Web at Wityw/&agorics.com/agorpapers.html.

Acknowledgements

This essay was improved by conversations with a large nuoflgEople who helped debug it. Particular thanks to
Jeff Dutky<dut ky @vam und. edu>, who suggested the “debugging is parallelizable” forniatatand helped
develop the analysis that proceeds from it. Also to Nancyovith <nancyl @ini ver se. di gex. net > for

her suggestion that | emulate Weinberg by quoting KropotRigrceptive criticisms also came from Joan Eslinger
<wonbat @i | i manj ar 0. engr. sgi . con®> and Marty Franzxmar t y@et - | i nk. net > of the General
Technics list. Glen Vandenburggl v@ander bur g. or g> pointeed out the importance of self-selection in
contributor populations and suggested the fruitful ides thuch development rectifies ‘bugs of omission’; Daniel

34



Upper<upper @eak. or g> suggested the natural analogies for this. I'm grateful eorttembers of PLUG, the
Philadelphia Linux User’s group, for providing the firsttasidience for the first public version of this essay. Paula
Matuszek<mat uspO0@rh. us. sbphr d. con® enlightened me about the practice of software management.
Phil Hudson<phi | . hudson@ nane. con® reminded me that the social organization of the hacker railtu
mirrors the organization of its software, and vice-versahnlBuck<j ohnbuck@ea. ece. umassd. edu>
pointed out that MATLAB makes an instructive parallel to Easa Russell Johnstoqr ussj j @mi | . con®
brought me to consciousness about some of the mechanistnssksl in “How Many Eyeballs Tame Complexity.”
Finally, Linus Torvalds's comments were helpful and hidyandorsement very encouraging.

35



