Anonymous RPC:
Low-Latency Protection in a 64-Bit Address Space

Curtis Yarvin, Richard Bukowski, and Thomas Anderson

Computer Science Division
University of California at Berkeley

Abstract

In this paper, we propose a method of reducing the latency of cross-domain remote procedure
call (RPC). Traditional systems use separate address spaces to provide memory protection
between separate processes, but even with a highly optimized RPC system, the cost of switching
between address spaces can make cross-domain RPC’s prohibitively expensive.

Our approach is to use anonymity instead of hardware page tables for protection. Logically
independent memory segments are placed at random locations in the same address space and
protection domain. With 64-bit virtual addresses, it is unlikely that a process will be able to
locate any other segment by accidental or malicious memory probes; it impossible to corrupt
a segment without knowing its location. The benefit is that a cross-domain RPC need not
involve a hardware context switch. Measurements of our prototype implementation show that
a round-trip null RPC takes only 7.7us on an Intel 486-33.

1 Introduction

A traditional function of operating systems is providing protection domains, or areas of memory
accessible only by the process which owns them. UNIX, for example, keeps every process in an entirely
separate address space; other systems use a shared address space, but have a different page protection map
for each process. Either way, keeping separate processes in separate protection domains provides safety
and security: protection from buggy processes which accidentally touch memory locations they don’t own,
and protection from malicious processes trying to read or alter the memory of other processes. Safety and
security are necessary in any modern operating system.

Using virtual memory hardware to enforce protection is flexible and powerful. However, it is also
expensive. Giving each process its own address space increases the amount of context-specific state, and
thus the cost of context switches. Context-switch cost contributes little to system overhead on normal
UNIX systems; but it sets a strong lower bound on the cost of IPC. At a minimum, two context switches
are required for each round-trip interprocess communication. This can limit the feasibility of splitting
logically independent, but closely cooperating, modules into separate protection domains.

Software overhead in context switching once dominated the hardware cost. But, as Anderson et al.
[1991] discuss, the former has decreased with processor improvements while the latter has not. The result
is that context-switch times for conventionally protected systems have remained static and large, and now
pose a significant impediment to extremely fine-grained IPC.

One solution is lightweight threads which share a single protection domain. Thread switching and
communication is fast, but threads are not safe or secure, and even when used in a trusted environment
are vulnerable to byzantine memory-corruption bugs.

This work was supported in part by the National Science Foundation (CDA-8722788), the Digital Equipment Corporation
(the Systems Research Center and the External Research Program), and the AT&T Foundation. Yarvin was supported by a
California MICRO Fellowship, Bukowski by an NSF Graduate Fellowship, and Anderson by a National Science Foundation
Young Investigator Award.

Our goal is to build a system that combines the protection of UNIX processes and the speed of
threads, to make IPC cheap enough to for heavy use. This could allow application interactions of a much
finer grain than are now feasible, and large software systems could be structured as groups of cooperating
processes instead of single monolithic entities.

The key to our approach is Druschel and Peterson’s observation [Druschel & Peterson 1992] that, in a
very large, sparse address space, virtual address mappings can act as capabilities [Dennis & Van Horn 1966].
If a process knows a segment’s position in its address space, accessing it 1s trivial; without this knowledge,
access 1s impossible. Protection can be accomplished by restricting the knowledge of segment mappings.
We refer to this approach as anonymaty.

Anonymity was not feasible before the advent of 64-bit architectures. A 32-bit address space 1s small
enough that every valid page in the address space can be easily found through exhaustive search. But
searching a 64-bit address space in this way is nontrivial. Thus, on a 64-bit machine, 1t 1s possible to
randomly map unprotected pages in a shared region and use their virtual addresses as capabilities. This
provides a fast and flexible way of sharing memory.

Druschel and Peterson use their approach to pass buffers between user-level protocol layers in their
x-kernel system. We believe that anonymity can be used as a general-purpose protection mechanism,
providing reasonable safety and security to independent processes sharing the same address space. The
protection this provides is probabilistic, but effective. Between processes in the same address space, a
context switch i1s a simple matter of swapping registers and stacks, and can be performed with the same
efficiency as with lightweight threads.

We have developed a simple prototype of anonymous protection; our implementation can perform a
round-trip null procedure call between two protected domains in only 7.7us on an Intel 486-33.

The rest of this paper discusses these topics in more detail. Section 2 shows how we can use a
large address space to implement probabilistic protection; Section 3 shows how we preserve anonymity
during cross-domain communication. Section 4 outlines some potential uses of anonymous protection,
while Section 5 outlines some limitations of our approach. Section 6 presents performance results; Section 7
considers related work. Section 8 summarizes our experiences.

2 Implementing Anonymous Protection
Safe and secure anonymity is not difficult to implement, but requires some care.

First we need a way to assign addresses. When a segment (any piece of memory that must be mapped
contiguously) is loaded, it needs a virtual address. If the segment is to remain anonymous, no process that
is not explicitly given this address may be allowed to discover or derive it.

So we must select the address randomly. If the address is truly random, than no better algorithm
exists to discover it than brute-force search. Unfortunately, there 1s no such thing as a truly random
number generator. The best we can do is a cryptosystem, such as DES [Nat 1977]; if the key is a secure
password or code; and the plaintext an allocation sequence number, then the resulting encrypted text will
be securely random. We transform the encrypted text into a virtual address and map the segment at that
position (unless it would overlap another segment, in which case we compute another address).

This ensures that the most efficient algorithm for finding other processes’ data will be brute-force
search: iterating through virtual space and dereferencing every page (or every segment width, if segments
are larger than pages), intentionally ignoring segmentation faults until a valid page is found. (The UNIX
signal handling machinery, for example, allows processes to catch and ignore segmentation fault signals; for
some applications this is necessary semantics.) If a process is allowed to indefinitely ignore segmentation
faults, this procedure will eventually find all segments in the address space. Security is compromised when
it finds the first one; we analyze how long this will take.

Memory Size 1s Delay 1lms Delay | 1lus Delay
16MB 24162 years 24 years 1.25 weeks
256MB 1510 years 1.5 years 13.2 hours
2GB 188 years 2.3 months | 1.7 hours
16GB 23 years 8.5 days 12 minutes

Table 1: Time To Breach Anonymous Security Through Brute-Force Search

The analysis has the following parameters: V', the size of the virtual address space, M, the amount
of physical memory !, and D, the delay a process incurs on a segmentation fault. To simplify the formula,
both V and M are in units of the maximum segment size. The result of the analysis is 7', the expected
time for a malicious process to find a segment for which it does not have the capability.

We first define P(n), the probability that n memory probes will not find a mapped segment in n tries,
or in other words, after nD seconds. P(n) is equal to the probability that, in a sequence of V references,
all of the references to the M mapped segments are after the first n references:

To find T, we set P(n) = 0.50 and solve for nD. Table 1 presents some numerically calculated values
for T', as a function of the delay and the amount of mapped memory, assuming a 64-bit address space and
8KByte segments. The segment size has little effect on the results presented in Table 1.

So the processor’s natural fault-handling delay is unlikely to suffice, and the system must impose an
additional delay penalty. The penalty should not only put the faulting process to sleep; to keep a malicious
user from using multiple processes to search the address space, the penalty must also apply to all processes
forked by the process’s owner. However, this would still allow groups of users to divide the penalty.

The penalty time is best set as local policy. Constraints are the desired level of security, the number
of users, and the added difficulty of working with faulty programs. For an currently average system, a
constant delay of 1 second would seem acceptable on all fronts. As the memory size or user base of a
system increases, it may be necessary to switch to adaptive delay functions which examine recent fault
history. Fault history can also be examined to report suspicious patterns to the administrator.

Thus, the security we provide is not perfect; it is only probabilistic. However, we believe that the
probabilities involved are low enough to make them of little concern when compared to external security
issues.

Faulty software is also a threat; a faulty program may accidentally reference data it does not own.
Normally, though, a failing program will stop once i1t causes a segmentation fault, and the likelihood that
any individual accidental misreference will be to an otherwise unknown segment is quite small. The safety
we provide 1s again probabilistic, not guaranteed, but the probabilities involved are minimal next to the
chances of damage from external sources.

1Note that M is the amount of physical memory, not the amount of the virtual address space that is in use. When faulting
in a page not in primary memory, the operating system can explicitly check the segment permissions at the time of the page
fault.

3 Anonymous RPC

Running separate processes in the same protection domain will provide fast context switching; to take
advantage of this, we must devise an interprocess communication mechanism that preserves anonymity.

Traditional UNIX paradigms like pipes and sockets are not easy to use for fine-grained communication;
they involve considerable system and application overhead. A better scheme for our purposes is remote
procedure call (RPC) [Birrell & Nelson 1984]. In RPC, a server process exports an interface to one of its
procedures; any client process can then bind to the procedure as if it was linked directly into the client. Local
RPC has been extensively studied [Bershad et al. 1990, Bershad et al. 1991, Schroeder & Burrows 1990],
and seems to be the most convenient communication paradigm for integrating software systems across
domains.

Druschel and Peterson optimized their RPC system mainly for data throughput; we feel that this
goal has been achieved, and optimize our anonymous RPC system — ‘ARPC’ — for round-trip latency.

3.1 Maintaining Anonymity During Communication

In principle, there is nothing to stop two processes running in the same address space from commu-
nicating directly via procedure calls. Unfortunately, this cannot be used as a protected communication
protocol. In a normal procedure call, the caller must know the procedure’s address in the callee’s code
segment; and must tell the callee its own address, to allow return. This is incompatible with anonymity.
Even if code segments are write-protected and all data segregated, a malicious process can trace through
code to find data.

To preserve anonymity, the path of control must flow through some intermediary: an entity which is
itself protected, aware of the RPC binding, and able to manage control and data flow without revealing
either party’s address to the other.

The most obvious intermediary is the kernel. Once a process traps to the kernel, it loses control of its
execution, and can be shifted to any domain without having learned where that domain is. This is simple;
unfortunately, it is slow. Kernel traps are typically an order of magnitude more expensive than procedure
calls.

A better system can be devised if the host architecture supports execute-only page protection.
Execute-only code lends itself well to anonymity; jumping to an execute-only entry point is anonymous
for both sides. The caller knows the address of the callee’s text, but cannot damage that text or discover
where the data might be. We cannot give the caller the actual entry point in the callee’s code, however; a
jump into an arbitrary point in callee code might compromise data. Instead, we use an execute-only jump
table, synthesized to contain the entry point as an immediate operand. The cost of anonymity is an extra
jump. 2

The data transfer protocol must also be modified to preserve anonymity. In a normal procedure call,
the “server” uses the same stack as the “client” for local storage. It is therefore easy for either to corrupt
the other by accidentally or maliciously writing into the wrong stack frame. Thus our RPC protocol must
include a stack switch on call and on return. We must also clear registers which may contain data that
can compromise anonymity.

Otherwise, anonymous RPC bears a close resemblance to ordinary procedure call, and can in some
cases be performed with comparable efficiency.
3.2 ARPC Protocols

In this section we describe our ARPC protocols in considerable detail. A local RPC protocol can be
constructed using either intermediary scheme. As an optimization, we design not one protocol but several,
dividing RPC into several cases based on the level of trust between the client and server processes.

2Execute-only anonymity also requires an architecture on which branches are atomic; that is, they fully commit the
processor to execution at the branch point. Some RISC architectures allow the processor to take a branch, execute an
instruction, and then have the branch nullified by another branch in the delay slot.

If process A trusts that it is communicating with a non-malicious, but possibly buggy, process B,
then process A can rely on the compiler and the RPC stub generator, instead of the kernel, to preserve
its anonymity. This allows a more efficient implementation of cross-domain RPC. Malicious users can
circumvent these utilities, but benign users are unlikely to do so accidentally.

3.2.1 Binding

Before any RPC calls can be performed, the client must bind to the server procedure. Binding is only
performed once for each client, server, and procedure; thus it it need not be optimized as heavily as the
call sequence itself.

The server initiates the binding sequence, by registering an entry point; it gives the RPC manager
the name and address of the procedure. Once the entry point is present, the client can connect, telling the
RPC manager the name of the procedure it wants to access. A permission check may be imposed on the
connection; if it succeeds, the RPC manager generates the binding.

At bind time, the RPC manager creates any necessary intermediaries, and reports the RPC entry (be
it an execute-only jump table, a kernel trap, or a direct entry into the server) to the client. The manager
also creates an execution stack for use in executing calls through the new binding. All our ARPC protocols
statically allocate one stack per procedure binding. This may seem wasteful of memory, but stacks can be
cached and unmapped when not in frequent use. The static approach eliminates the need for a dynamic
stack allocation on every call.

3.2.2 ARPC, Mutual-Distrust

Our first protocol is for the most general case, when neither client nor server trusts the other. In this
case we cannot jump directly from client to server, even anonymously; we also have to save the client’s
stack and return address. This must be done in the intermediary. > The protocol is outlined in Figure 1.

push arguments and return address on client stack
enter intermediary

save return address

save registers

clear registers

save address of client stack

copy arguments to server stack

switch to server stack

leave intermediary to server procedure

execute server procedure

enter intermediary

copy return data to client stack
switch to client stack

restore saved registers

clear unsaved registers

leave intermediary to client return

Figure 1: ARPC Protocol, Mutual Distrust Between Client and Server

3If execute-only page protection is providing the anonymity, we jump to the intermediary through through an execute-only
jump table.

For cross-domain procedure calls with few arguments, the dominant cost is saving, clearing, and
restoring the registers. This is particularly true on modern processors with large register sets. For instance,
on machines with register windows, the entire register set, not only the current window, must be saved,
cleared, and restored on each call and return.

Marshaling of indirect parameters may not be necessary if the client organizes its memory properly.
Since all addresses in the client are valid in the server, the client can keep data structures to be exported in
a segment mapped separately from its private data, and pass pointers. Only if this is infeasible will explicit
marshaling be needed. Direct parameters are marshaled on the client stack by the ordinary procedure-call
protocol.

Note that in the absence of marshaling and the presence of execute-only code, no client stub is
required. The client’s view of the remote call can simply be a function pointer whose target address is the
jump instruction in the anonymity table, and a generator-supplied header file can define its dereference as
the function call. The ordinary argument-pushing semantics of a function call are exactly what we want.

3.2.3 ARPC, Server Not Malicious

The second protocol applies to a much more common case, when the server is trusted but the client is
not. This might be the case, for example, in a small-kernel operating system. The protocol is in Figure 2.

save live registers
push arguments and return address on stack
call through intermediary to server

push address of client stack

switch to server stack

execute body of server procedure

pop address of client stack

push return data onto client stack

clear sensitive registers

return through intermediary to client procedure

restore live registers

Figure 2: ARPC Protocol, Server Not Malicious

Trusting the server not to be malicious has a considerable performance advantage. The client can
anonymously jump (through the kernel or a jump table) directly to the server. In the simple case, the
jump would be to a stub which would then marshal the client arguments onto the server stack. But we
can achieve better performance by using an RPC generator to do a simple source code transformation of
the server procedure so that it reads its arguments directly off the client stack; in this case, no copying
is required. The RPC generator parses the server procedure, converts all argument references into client
stack references, adds the instruction to save the client stack, and replaces ordinary returns with RPC
returns.

This protocol 1s considerably more efficient than the mutual-distrust version. However, some addi-
tional work is required to make it protocol safe and secure.

Safety could be compromised if a register containing a client pointer became the initial value of a
server variable. The solution is to ensure that all automatic server variables are initialized before use. A
program which relies on a the value of an uninitialized variable is unlikely to be correct, and most modern
compilers can at least warn of such errors.

Likewise, security could be compromised by server data passing through registers back to the client.
This is a more serious problem. The server must clear all sensitive registers before returning; if compiler
analysis cannot identify which registers are sensitive, all registers must be cleared.

Another safety hole is the client stack. Although we allow the server to access its arguments on the
client stack (to eliminate copying), we do not want the server to be able to inadvertently ‘smash’ the client
stack. The solution is to prevent the server procedure from taking the address of any of its arguments; this
can be enforced in the RPC generator.

3.2.4 ARPC, Neither Side Malicious

Finally, our third case: a protocol for cases in which both client and server are trusted to be non-
malicious, in Figure 3.

save live registers
push arguments and return address on stack
call directly to server procedure

push address of client stack

switch to server stack

execute body of server procedure
pop address of client stack

push return data onto client stack
return directly to client procedure

restore live registers

Figure 3: ARPC Protocol, Neither Side Malicious

The only operation being performed here which is not part of a normal procedure call (assuming the
caller-save register protocol) is the stack switch. And the protocol is safe; data may cross in registers, but
a correctly-compiled program will never allow it to be addressed by a variable.

3.2.5 Service Management

Like LRPC [Bershad et al. 1990], ARPC is implemented by running the server procedure in the client
thread. Any alternative would involve a slow interaction with operating system data structures. The logical
semantics of RPC, however, imply a sleeping service thread which awakes to run the procedure and returns
to sleep when it finishes. Reconciling these models requires some juggling.

One problem comes when the server crashes. We do not want the client thread to die with the server,
because 1t was not the client who caused the error. Instead, the RPC call should return with an error
condition.

Our solution is expensive, but not inappropriate given that such faults should be a rare condition. We
check all the server’s incoming intermediaries for saved stacks, and restore the client threads from those;
if the server has any outgoing calls, we zero the stack in the intermediary so that the call faults when it
returns.

This does not work for the mutual-trust protocol, which has no intermediary and saves the client
stack address on the server stack. If separate crash recovery is required, a separate word must be reserved
for the client stack. The separate-recovery model, in any case, is often not the preferred semantics for
mutual-trust uses.

Synchronizing stack allocation is another problem. All of these routines assume one proviso: that
only one thread of control, including past levels of recursion, is using the same RPC binding at any time.
The assumption i1s convenient because 1t allows stacks to be statically allocated. If multiple threads must

use the same RPC binding, however, they will have to synchronize externally, as they would for any
single-consumer resource.

Also, in systems which support threads, a simple lock is necessary at the beginning of untrusted-
client entry points, to prevent malicious clients from sending multiple threads through the same binding
and causing a stack collision.

4 Uses of Anonymous RPC

ARPC can perform many functions within a system. It can be installed at the user level, to provide
additional safety within large applications that are externally protected by traditional protection domains;
or it can be installed at the system level, as the main interprocess protection system; or it can be used
only for some specialized tasks which require especially low latency. We consider each.

4.1 User-Level ARPC

Many large programs are written in languages, such as C, which do not guarantee the internal safety
of memory. That is, code in one module may inadvertently corrupt the unrelated data of another, creating
a bug which is hard to find in single-threaded code, and almost intractable in a multithreaded program.

This is an unpleasant possibility, but software designers accept it because of the high performance
penalty a safe implementation would incur. In conventional systems, safety can only be ensured by actively
checking each pointer dereference, or by placing separate modules in separate hardware protection domains.
Either solution incurs a substantial performance penalty and neither is widely used.

ARPC offers a convenient medium. When neither side is malicious, the cost of an ARPC call is little
greater than the cost of an ordinary procedure call. In most cases, replacing procedure calls with ARPC
calls will have little impact on performance.

We can use this principle to increase internal safety in large software systems. Logically separate
modules, and their heaps, can be placed in separate ARPC domains, providing strong probabilistic safety
at minimal cost.

Such a transformation can be installed transparently in a C compiler and linker, providing increased
safety invisibly to the programmer. It can also be used in compilers for languages that do guarantee
memory safety, allowing them to maintain their safe semantics while providing performance competitive
with C. Protecting small objects can waste memory: an anonymous object smaller than a page must still
take take up an entire page of physical memory.

4.2 ARPC as an Operating System Base

With some care, ARPC can be used as the sole process protection system in a traditional UNIX-
style operating system. This would accelerate communication between user-level processes; it might, for
example, allow fast, fine-grained drawing interaction between imaging software and a display manager.

It can also be used, in a more radical design, to improve the internal structure of the operat-
ing system. ARPC allows considerable kernel decomposition, even beyond the usual microkernel level
of [Young et al. 1987]; all traditional system services — filesystem, communication, scheduling, memory
management, and device drivers — can be performed at user level.

This is possible because, in an ARPC system, all common operating systems primitives can be
executed without supervisor privilege. Context switches do not require manipulation of the virtual memory
hardware, and process authentication can be performed by giving system servers separate ARPC entry
points for each process. Even page tables and other hardware-accessed data structures can be mapped into
the user address space and used directly by user-level servers. Memory-mapped devices can be treated the
same way. The only functions that must be performed at supervisor level are system initialization and
execution of privileged instructions. A very small kernel can handle the latter, verifying that requests come
from genuine system servers by checking the source address of the trap.

This model has some practical deficiencies. UNIX semantics require separate address spaces for sibling
processes after a fork(); although the extra space can be discarded upon the first exec(), handling it may
prove a considerable design nuisance.

We also caution against using ARPC as the sole protection device in applications where local se-
curity is mission-critical. In an ARPC-based system, it seems too easy for small software errors in
implementation — the accidental release of capabilities — to leave obscure security holes that could be
exploited by dedicated intruders. This is true in any system that uses cryptographic capabilities — e.g.
Amoeba [Mullender et al. 1990] — but especially so in ARPC, where every pointer is a capability.

4.3 Limited Uses of ARPC

To be useful, ARPC need not be the main protection device in a system. Its use can be restricted to
special circumstances where speed is important, with traditional hardware domains used in all other places
where protection is needed.

One such use might be network communications. Some new networks [Anderson et al. 1992] offer
latency on the order of microseconds, a useful feature which traditional software architectures have difficulty
exporting to the user. An ARPC solution would be to map the network device anonymously and give its
address to a user-level device manager, which would in turn accept ARPC calls. Network-critical processes
would have to share an address space with the device manager and the device; all other tasks could have
their own spaces.

5 Some Problems and Disadvantages of ARPC

One potential problem with an ARPC-based environment is that image initialization is slower; since
programs must be remapped randomly every time they are instantiated, they must be relocated on execu-
tion. This is a concern, but the latency of initialization is already great and relocation can be performed
as part of copying the program into memory.

An anonymous address space may be very sparse and difficult to manage. If logical domains become
as small as one page, a traditional multilevel page-table scheme will be prohibitively expensive. However,
inverted page tables [IBM 1990] will work; as will a software-loaded TLB [Kane 1987] backed by a simple
search scheme such as binary tree or hash table.

Tagging TLBs and virtual caches with process identifiers would decrease the cost of context switches
and makes conventional protection more competitive with ARPC. Tagged TLBs and caches eliminate the
need to flush state on context switch, one of the most expensive components of a traditional domain switch.
However, not many architectures support tagged TLB’s; even if they do, the switch must still be performed
in supervisor mode.

It is also uncertain whether the imbalance of virtual and physical memory will continue. One cannot
predict whether or not the industry will move to a 128-bit bus before available physical memory approaches
64 bits. It is worth noting, however, than in the past bus size has increased faster than physical memory
size.

Also, ARPC precludes other uses for the 64-bit address space which may be superior. Large databases
[Stonebraker & Dozier 1991] or distributed systems [Carter et al. 1992] can use most of a 64-bit space.

6 Performance Results

We implemented a test prototype of anonymity on an Intel 486-33 machine, capable of about 15
SPECint. The base operating system was Linux 0.98.4, a copylefted POSIX clone for the 386 architec-
ture [Torvalds 1992]. The 486 is a 32-bit machine, and as such a truly functional implementation was
impossible; however, we did our best to assure that practical concerns were treated as realistically as
possible.

We did not convert the entire system to use a shared virtual address space; only specially-flagged
relocatable executables were run in the same address space. Even on the 32-bit 486, it would have been

Protocol | Time (pus) | Processor | MIPS | us/MIP
SRC RPC 454 C-VAX 2.7 1226
Mach RPC 95 R2000 10 950
LRPC 157 C-VAX 2.7 424
URPC 93 C-VAX 2.7 251
ARPC 7.7 1486-33 15 116

Table 2: Null RPC Performance Results

feasible to run all processes in the same space, but Linux is distributed largely in binary form, and finding
and rebuilding source for all our utilities to make them relocatable would have been a task not worth the
benefit.

Under this system we chose to test the slowest possible version of RPC; the protocol for two mutually
untrusted processes, implemented without the use of execute-only code. Although the intermediary was
accessed by traps, it ran in user mode.

Our time for a user-to-user round-trip null RPC in C was 7.7 microseconds. Of this, 3.4us were due
to the user-level traps; 2.4us to segment peculiarities associated with the Linux implementation; 0.5us to
save, clear, and restore registers; and 1.8y for overhead in the intermediate region. That overhead was 29
instructions; of them, 15 were involved in loading static parameters, and could be eliminated were we to
synthesize the intermediary for each bind [Massalin & Pu 1989]. This is somewhat more overhead than we
had hoped for, but we consider it acceptable.

It is difficult to find comparable performance figures for other RPC systems, since we do not know of
any other optimized local RPC results on the same architecture. Instead, Table 2 compares our performance
to that of four other RPC implementations running on other hardware: Mach RPC [Bershad et al. 1992],
SRC RPC [Schroeder & Burrows 1990], LRPC [Bershad et al. 1990], and URPC [Bershad et al. 1991].
These are all optimized RPC implementations; commercial RPC implementations are frequently another
order of magnitude slower.

7 Related Work

The most closely related work to ours is Druschel and Peterson’s fbufs, packet buffers mapped in a
shared anonymous space [Druschel & Peterson 1992]. User-level protocols communicate via fbufs to ex-
change packets at very high speed. Fbufs are a much more robust and conservative use of anonymity; the
user-level protocol layers which use fbufs to communicate each have their own protection domain. Perfor-
mance improvements are achieved by increased flexibility and efficiency in buffer management. Buffers do
not need to be remapped in the middle of a transfer, nor must they be assigned to specific protocol pairs
beforehand. Fbufs achieve data transfer rates near the theoretical limits of memory.

Other systems, like Pilot [Redell et al. 1980], use a single address space without separate hardware
domains, and rely for protection on languages which restrict the use of pointers. Pilot was designed for
installations which do not need security, like some personal computers, and thus benefits from the ability
to optimize its protection mechanisms only for safety.

Wahbe et al. [1993] propose a different approach to enforcing protection. Instead of relying on hard-
ware, or on anonymity, they enforce protection in software by installing extra instructions into the object
code to prevent out-of-bounds pointer dereferences. Unlike Pilot, Wahbe et al.’s approach is language-
independent because the protection is enforced at runtime, not in the compiler. The benefit 1s that
separate processes can run in the same address space and communicate efficiently, at the expense of a
slight slowdown in memory operations.

The Opal system [Chase et al. 1992] also uses a 64-bit shared address space, but each Opal task has
its own protection domain; the goal is uniformity of naming. Using identical addresses to reference the same
objects in all domains allows increased flexibility in sharing complex data structures. A context switch,
however, still involves switching page tables. Other systems also follow this pattern [Carter et al. 1992].

8 Conclusion

Anonymous RPC exploits a simple property of memory systems: that it is impossible to address data
whose address is unknown. With the advent of 64-bit machines, it is now possible to take advantage of
this property, by placing segments at random locations in a very large, sparse address space. This allows
efficient interprocess communication without expensive hardware domains.

We believe that ARPC is a useful technique for high-speed communication between closely coupled
domains. Even if it is not used to organize an entire operating system, it can be used as to protect individual
subsystems which use especially fine-grained communication. We suggest that software designers consider it
as an option, and that hardware designers consider including features, such as execute-only page protection,
which help its implementation.

9 Acknowledgements

We would like to thank Peter Druschel, Dave Keppel, and Ed Lazowska for their helpful comments
on this paper.

References

[Anderson et al. 1991] Anderson, T., Levy, H., Bershad, B., and Lazowska, E. The Interaction of Archi-
tecture and Operating System Design. In Proceedings of the 4th International Conference on

Architectural Support for Programmang Languages and Operating Systems, pp. 108-120, April
1991.

[Anderson et al. 1992] Anderson, T., Owicki, S., Saxe, J., and Thacker, C. High Speed Switch Scheduling
for Local Area Networks. In Proceedings of the 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 98-110, October 1992.

[Bershad et al. 1990] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. Lightweight Remote Proce-
dure Call. ACM Transactions on Computer Systems, 8(1), February 1990.

[Bershad et al. 1991] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. User-Level Interprocess
Communication for Shared-Memory Multiprocessors. ACM Transactions on Computer Systems,

9(2), May 1991.

[Bershad et al. 1992] Bershad, B., Draves, R., and Forin, A. Using Microbenchmarks to Evaluate System
Performance. In Proceedings of the Third Workshop on Workstation Operating Systems, April
1992.

[Birrell & Nelson 1984] Birrell, A. and Nelson, B. Implementing Remote Procedure Calls. ACM Transac-
tions on Computer Systems, 2(1):39-59, February 1984.

[Carter et al. 1992] Carter, J. B., Cox, A. L., Johnson, D. B., and Zwaenepoel, W. Distributed Operating
Systems Based on a Protected Global Address Space. In Proceedings of the Third Workshop on
Workstation Operating Systems, April 1992.

[Chase et al. 1992] Chase, J., Levy, H., Baker-Harvey, M., and Lazowska, E. Opal: A Single Address
Space System for 64-bit Architectures. In Proceedings of the Third Workshop on Workstation
Operating Systems, April 1992.

ennis an Horn ennis, J. B. and Van Horn, E. C. Programming Semantics for Multipro-
Dennis & Van H 1966] Dennis, J. B d Van H E. C. Prog ing S ics for Multi
grammed Computations. Communications of the ACM, 9(3):143-155, March 1966.

[Druschel & Peterson 1992] Druschel, P. and Peterson, L. L. High Performance Cross-Domain Data Trans-
fer. Technical report, Department of Computer Science, University of Arizona, 1992. Technical
Report 92-11.

[IBM 1990] IBM Corporation. POWER Processor Architecture, 1990.
[Kane 1987] Kane, G. MIPS R2000 RISC Architecture. Prentice Hall, 1987.

[Massalin & Pu 1989] Massalin, H. and Pu, C. Threads and Input/Output in the Synthesis Kernel. In Pro-
ceedings of the 12th ACM Symposium on Operating Systems Principles, pp. 191-201, December
1989.

[Mullender et al. 1990] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and van
Staveren, H. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer Maga-
zine, 23(5):44-54, May 1990.

[Nat 1977] National Bureau of Standards. The Data Encryption System, 1977. Federal Information Pro-
cessing Standards Publication 46.

[Redell et al. 1980] Redell, D. D., Dalal, Y. K., Horsley, T. R., Lauer, H. C.; Lynch, W. C., McJones,
P. R., Murray, H. G., and Purcell, S. C. Pilot: An Operating System for a Personal Computer.
Commaunications of the ACM, 23(2):81-92, February 1980.

[Schroeder & Burrows 1990] Schroeder, M. and Burrows, M. Performance of Firefly RPC. ACM Transac-
tions on Computer Systems, 8(1):1-17, February 1990.

[Stonebraker & Dozier 1991] Stonebraker, M. and Dozier, J. Sequoia 2000: Large Capacity Object Servers
to Support Global Change Research. Technical report, Computer Science Division, University
of California, Berkeley, July 1991.

[Torvalds 1992] Torvalds, L. Free Uniz for the 386, 1992. finger torvalds@kruuna.helsinki.fi.
[Wahbe et al. 1993] Wahbe, R., Lucco, S., Anderson, T., and Graham, S. Low Latency RPC Via Software-

Enforced Protection Domains. Technical report, Computer Science Division, University of Cal-
ifornia, Berkeley, April 1993.

[Young et al. 1987] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W,
Black, D., and Baron, R. The Duality of Memory and Communication in the Implementation of
a Multiprocessor Operating System. In Proceedings of the 11th ACM Symposium on Operating
Systems Principles, pp. 63-76, November 1987.

10 Author Information

Curtis Yarvin is a first-year graduate student in the Computer Science Division at the University
of California at Berkeley. He graduated from Brown University in 1992. His e-mail address is “cur-
tis@cs.berkeley.edu”.

Richard Bukowski is a first-year graduate student in Computer Science Division at the Univer-
sity of California at Berkeley. He graduated from Cornell University in 1992. His e-mail address is
“bukowski@cs.berkeley.edu”.

Thomas Anderson is an Assistant Professor in the Computer Science Division at the University of
California at Berkeley. He received his A.B. in philosophy from Harvard University in 1983 and his M.S.
and Ph.D. in computer science from the University of Washington in 1989 and 1991, respectively. He won
an NSF Young Investigator Award in 1992, and he co-authored award papers at the 1989 SIGMETRICS
Conference, the 1989 and 1991 Symposia on Operating Systems Principles, the 1992 ASPLOS Conference,
and the 1993 Winter USENIX Conference. His interests include operating systems, computer architecture,
multiprocessors, high speed networks, massive storage systems, and computer science education. His e-mail
address is “tea@cs.berkeley.edu”.

