
Aerie: Flexible File-System 

Interfaces to Storage-Class Memory 
[APSys’1ϯ, EuroSys’1ϰ] 

Haris Volos† 

Sanketh Nalli, Sankaralingam Panneerselvam, 

Venkatanathan Varadarajan, Prashant Saxena, 

Michael M. Swift 

 

HP Labs 
† 



Outline 

• Overview 

• Motivation: Interface flexibility 

• Aerie: In-memory library file systems 

• Evaluation 

2 



• Persistent 

• Short access time 

 3 

Software overhead matters 

Storage-Class Memory (SCM) 

Flash-backed DRAM 

Flash 

Phase-Change Memory 

Spin Torque MRAM Resistive RAM 

ns μs 

Latency 



4 

Memory 

Controller 

SCM DRAM 

Storage-Class Memory (SCM) 

• Persistent 

• Short access time 

• Byte addressable 

 

Accessible via loads/stores 

No software 

overhead 



• Direct user-mode access 

for fast access to data 

– Moneta-D, PMFS, Quill, 

NV-Heaps, Mnemosyne 

 

• File system for sharing 

– Shared namespace 

– Protection 

– Integrity 

 5 

OS/ 

File System 

Application 

Accessing SCM today 

+ 



Device Driver Device Driver 

Generic Block Layer 

I/O Scheduler 

SCM FS 

App 

Virtual File System 

App 

Disk FS 

I/O Bus 

Does SCM need a kernel FS?  

6 

MMU protects 

CPU access 

DMA is not 

protected  

Variable 

latency to disk 

~ Constant 

latency to SCM 

Load/store 

interface 

No standard 

interface 

SCM Disk 



• Enable implementation flexibility 

– Optimize file-system interface semantics 

– Optimize operations regarding metadata 

Library file systems 

7 

APP 

LibFS  

API 

[Exokernel (MIT), 

 Nemesis (Cambridge)] 



Outline 

• Overview 

• Motivation: Interface flexibility 

• Aerie: In-memory library file systems 

• Evaluation 

 

8 



• Universal abstraction: Everything is a file 

– Has generic-overhead cost 

 

 

 

 

9 

Application 

POSIX File 
(Virtual File System) 

Storage 

File 
IPC 

Network 

Socket 

POSIX File: Expensive abstraction 



• Rigid interface and policies 

– Has fixed components and costs 

– Hinders application-specific customization 

 

 

 

 

10 

Application 

UNIX concurrency  

semantics 

Hierarchical 

names 

Byte  

streams 

Permissions 

POSIX File: Expensive abstraction 



POSIX File: Expensive abstraction 

• Generic-overhead costs 

• Rigid interface and policies 

 

 

 

Application 

POSIX File 

(Virtual File System) 

open() 

~ 2.5 μs ≈ 25x SCM latency 



Customizing the file system today 

• Modify the kernel 

 

• Add a layer over existing kernel file system 

 

• Use a user-mode framework such as FUSE 

 

 

12 

Need flexible interfaces 



Outline 

• Overview 

• Motivation: Interface flexibility 

• Aerie: In-memory library file systems (libFS) 

• Evaluation 

 

13 



Kernel safely multiplexes SCM 

14 

allocation, protection, addressing 

K
e

rn
e

l 
H

W
 

• Allocation: Allocates SCM regions 

 

• Addressing: Memory-maps SCM regions 

 

• Protection: Keeps track of region access rights 

 



Library implements functionality 

15 

APP 

LibFS  

(layout, logic) 

allocation, protection, addressing 

U
se

r 
K

e
rn

e
l 

H
W

 

API 

APP 

LibFS  

(layout, logic) 

API 

APP 

OtherLibFS  

(layout, logic) 

API 



16 

APP 

libFS 

U
se

r 
H

W
 

APP 

/ 

common bob alice 

/ 

common bob alice 

common alice bob / 

Shared namespace 

libFS 

open 



17 

APP 

libFS 

U
se

r 
H

W
 

APP 

common alice bob / 

Hardware-enforced permissions 

libFS 

/ 

common bob alice 

/ 

common bob alice Memory protection 

prevents Bob from 

accessing Alice’s files 



18 

APP 

libFS 

U
se

r 
H

W
 

APP 

libFS 

/ 

shared alice 

alice bob / 

Hardware protection cannot 

guarantee integrity 

common 

/ 

common bob 

foo 

bar 



Trusted 

FS 

Service 

(TFS) 

19 

APP 

LibFS  

(layout, logic) 

API 

U
se

r 
K

e
rn

e
l 

H
W

 

APP 

LibFS  

(layout, logic) 

API 

Integrity via Trusted File Service 

allocation, protection, addressing 



20 

H
W

 

SCM 

APP 

LibFS  

API 

File data Metadata 

Read/ 

Write Read 

Read/

Write 

APP 

LibFS  

(layout, logic) 

API 

U
se

r 

Trusted 

FS 

Service 

(TFS) 

Metadata 

Server 
(integrity) 

Update 

Decentralized architecture 

RPC 

Lease 

Manager 
(sharing) 



Outline 

• Overview 

• Motivation: Interface flexibility 

• Aerie: In-memory library file systems (libFS) 

• Evaluation 

 

 

21 



File Systems 

Functionality: PXFS 

• POSIX interface: 

open/read/write/unlink 

• Hierarchical namespace 

• POSIX concurrency 

semantics 

• File byte streams 

22 

 



File Systems 

Functionality: PXFS 

• POSIX interface: 

open/read/write/unlink 

• Hierarchical namespace 

• POSIX concurrency 

semantics 

• File byte streams 

Optimization: FlatFS 

• Key-value interface: 

put/get/erase 

• Flat namespace 

• KV-store concurrency 

semantics 

• Short, immutable files 

23 



Application-workload performance 

0

5

10

15

20

Fileserver Webserver Webproxy

La
te

n
cy

 p
e

r 
o

p
  

 (
 μ

s 
) 

RamFS

ext4

PXFS

FlatFS

24 

• PXFS performs better than kernel-mode FS 

• FlatFS exploits app semantics to improve performance  

 

10% 

9% 
22% 

53% (2.1x) 30% 



Scalability: Webproxy 

0

200

400

600

800

1000

1200

0 5 10

T
h

ro
u

g
h

p
u

t 
(K

o
p

s/
s)

 

# Threads 

PXFS

RamFS

ext4

FlatFS

• FlatFS retains its benefits over kernel-mode file systems 

 



• Software interface overheads handicap fast SCM 

 

• Flexible interface is a must for fast SCM 

 

• Aerie: Library file systems help remove generic 

overheads for higher performance 

– FlatFS improves performance by up to 110% 

 

26 

Conclusion 

Thank you! Questions? 


