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Storage-Class Memory (SCM)
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Storage-Class Memory (SCM)

* Persistent
e Short access time

* Byte addressable [RAS I [ERVERICET LAl (=E

Me nory
Cont -oller




Accessing SCM today

 Direct user-mode access d
for fast access to data

— Moneta-D, PMFS, Quill,
NV-Heaps, Mnhemosyne

+

* File system for sharing
— Shared namespace
— Protection

— Integrity



Does SCM need a kernel FS?

Virtual File System

Disk FS
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Library file systems

p 2 [Exokernel (MIT),
APP Nemesis (Cambridge)]

* Enable implementation flexibility
— Optimize file-system interface semantics
— Optimize operations regarding metadata
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POSIX File: Expensive abstraction

* Universal abstraction: Everything is a file

— Has generic-overhead cost
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POSIX File: Expensive abstraction

* Rigid interface and policies
— Has fixed components and costs
— Hinders application-specific customization

Application J
Hierarchical — (D Permissions
names P i V)
A y,
Byte / \ UNIX concurrency
streams

semantics



POSIX File: Expensive abstraction

* Generic-overhead costs
* Rigid interface and policies

J — ~2.5 ps = 25x SCM latency




Customizing the file system today

* Modify the kernel
* Add a layer over existing kernel file system

e Use a user-mode framework such as FUSE

Need flexible interfaces
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e Aerie: In-memory library file systems (libFS)
e Evaluation
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Kernel safely multiplexes SCM

* Allocation: Allocates SCM regions
* Addressing: Memory-maps SCM regions

* Protection: Keeps track of region access rights

MH I ELEE)

allocation, protection, addressing
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Library implements functionality
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Shared namespace
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Hardware-enforced permissions
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Memory protection

prevents Bob from
accessing Alice’s files




Hardware protection cannot
guarantee integrity
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Integrity via Trusted File Service
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Decentralized architecture
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File Systems

Functionality: PXFS

 POSIX interface:
open/read/write/unlink

e Hierarchical namespace

* POSIX concurrency
semantics

* File byte streams
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File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams

Optimization: FlatFS

Key-value interface:
put/get/erase

Flat namespace

KV-store concurrency
semantics

Short, immutable files
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Application-workload performance

Latency per op
(ps)
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* PXFS performs better than kernel-mode FS

* FlatFS exploits app semantics to improve performance
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Scalability: Webproxy
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* FlatFS retains its benefits over kernel-mode file systems



Conclusion

* Software interface overheads handicap fast SCM

* Flexible interface is a must for fast SCM

* Aerie: Library file systems help remove generic
overheads for higher performance

— FlatFS improves performance by up to 110%

Thank you! Questions?
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