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• Persistent 

• Short access time 
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Software overhead matters 
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Storage-Class Memory (SCM) 

• Persistent 

• Short access time 

• Byte addressable 

 

Accessible via loads/stores 

No software 

overhead 



• Direct user-mode access 

for fast access to data 

– Moneta-D, PMFS, Quill, 

NV-Heaps, Mnemosyne 

 

• File system for sharing 

– Shared namespace 

– Protection 

– Integrity 
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Accessing SCM today 
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I/O Scheduler 

SCM FS 
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Virtual File System 

App 
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Does SCM need a kernel FS?  
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• Enable implementation flexibility 

– Optimize file-system interface semantics 

– Optimize operations regarding metadata 

Library file systems 
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• Universal abstraction: Everything is a file 

– Has generic-overhead cost 
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Application 

POSIX File 
(Virtual File System) 
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POSIX File: Expensive abstraction 



• Rigid interface and policies 

– Has fixed components and costs 

– Hinders application-specific customization 
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Application 

UNIX concurrency  
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POSIX File: Expensive abstraction 

• Generic-overhead costs 

• Rigid interface and policies 

 

 

 

Application 

POSIX File 

(Virtual File System) 

open() 

~ 2.5 μs ≈ 25x SCM latency 



Customizing the file system today 

• Modify the kernel 

 

• Add a layer over existing kernel file system 

 

• Use a user-mode framework such as FUSE 
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Need flexible interfaces 
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Kernel safely multiplexes SCM 
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• Allocation: Allocates SCM regions 

 

• Addressing: Memory-maps SCM regions 

 

• Protection: Keeps track of region access rights 

 



Library implements functionality 
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APP 
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File Systems 

Functionality: PXFS 

• POSIX interface: 

open/read/write/unlink 

• Hierarchical namespace 

• POSIX concurrency 

semantics 

• File byte streams 
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File Systems 

Functionality: PXFS 

• POSIX interface: 

open/read/write/unlink 

• Hierarchical namespace 

• POSIX concurrency 

semantics 

• File byte streams 

Optimization: FlatFS 

• Key-value interface: 

put/get/erase 

• Flat namespace 

• KV-store concurrency 

semantics 

• Short, immutable files 
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Application-workload performance 
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• PXFS performs better than kernel-mode FS 

• FlatFS exploits app semantics to improve performance  

 

10% 

9% 
22% 

53% (2.1x) 30% 



Scalability: Webproxy 
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• FlatFS retains its benefits over kernel-mode file systems 

 



• Software interface overheads handicap fast SCM 

 

• Flexible interface is a must for fast SCM 

 

• Aerie: Library file systems help remove generic 

overheads for higher performance 

– FlatFS improves performance by up to 110% 
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Conclusion 

Thank you! Questions? 


