Aerie: Flexible File-System

Interfaces to Storage-Class Memory
[APSys’13, EuroSys’14]

Haris Volos’

Sanketh Nalli, Sankaralingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena,
Michael M. Swift

Outline

Overview

Motivation: Interface flexibility
Aerie: In-memory library file systems
Evaluation

Storage-Class Memory (SCM)

Flash-backed DRAM Phase-Change Memory
- Latency
ns | | 1S |
Spin Torque MRAM Resistive RAM Flash

 Persistent

e Short access time BRIAYEIGCK R REITES

3

Storage-Class Memory (SCM)

* Persistent
e Short access time

* Byte addressable [RAS I [ERVERICET LAl (=E

Me nory
Cont -oller

Accessing SCM today

 Direct user-mode access d
for fast access to data

— Moneta-D, PMFS, Quill,
NV-Heaps, Mnhemosyne

+

* File system for sharing
— Shared namespace
— Protection

— Integrity

Does SCM need a kernel FS?

Virtual File System

Disk FS

SCM FS J :
~Constant Variable

latency to SCM rou 2 — latency to disk

Load/store iauie iauie No standard
interface ! interface

MMU protects @& === i DMA is not
CPU access protected

Library file systems

p 2 [Exokernel (MIT),
APP Nemesis (Cambridge)]

* Enable implementation flexibility
— Optimize file-system interface semantics
— Optimize operations regarding metadata

Outline

* Motivation: Interface flexibility
* Aerie: In-memory library file systems
* Evaluation

POSIX File: Expensive abstraction

* Universal abstraction: Everything is a file

— Has generic-overhead cost

Application

POSIX File
(Virtual File System)

Storage PC Network

File | Socket

POSIX File: Expensive abstraction

* Rigid interface and policies
— Has fixed components and costs
— Hinders application-specific customization

Application J
Hierarchical — (D Permissions
names P i V)
A y,
Byte / \ UNIX concurrency
streams

semantics

POSIX File: Expensive abstraction

* Generic-overhead costs
* Rigid interface and policies

J — ~2.5 ps = 25x SCM latency

Customizing the file system today

* Modify the kernel
* Add a layer over existing kernel file system

e Use a user-mode framework such as FUSE

Need flexible interfaces

12

Outline

e Aerie: In-memory library file systems (libFS)
e Evaluation

13

Kernel safely multiplexes SCM

* Allocation: Allocates SCM regions
* Addressing: Memory-maps SCM regions

* Protection: Keeps track of region access rights

MH I ELEE)

allocation, protection, addressing

14

195

L

Library implements functionality

~

APP

) 4) 4

APP

LibFS

(layout, logic)

APP

LibFS OtherLibFS
(layout, logic) (layout, logic)

MH ||au19x

allocation, protection, addressing

MH

Shared namespace

APP
bob |l alice Il common
Ak B EEE

o BAEBEE

Hardware-enforced permissions

195

Memory protection

prevents Bob from
accessing Alice’s files

Hardware protection cannot
guarantee integrity

195

Integrity via Trusted File Service

4) 4)
APP APP

LibFS LibFS
(layout, logic) (layout, logic)

Trusted
FS

Service

MH ||au13x

allocation, protection, addressing

Decentralized architecture

i APP A AP
Lease
= =
Manager LibFS
% (sharing)
® < 4
:m: Update [Metadata
LibFS Server
(layout, logic) (integrity)

Read/
Write

File data Metadata

MH

 Evaluation

Outline

21

File Systems

Functionality: PXFS

 POSIX interface:
open/read/write/unlink

e Hierarchical namespace

* POSIX concurrency
semantics

* File byte streams

22

File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams

Optimization: FlatFS

Key-value interface:
put/get/erase

Flat namespace

KV-store concurrency
semantics

Short, immutable files

23

Application-workload performance

Latency per op
(ps)

20

=
92

=
o
|

92}
|

$10% RamFS
ext4

PXFS
W FlatFS

2%

7

2
$9% 30%3 ¥ Lsz;% (2.1x)

Fileserver Webserver Webproxy

* PXFS performs better than kernel-mode FS

* FlatFS exploits app semantics to improve performance

24

Scalability: Webproxy

— 1200

~

2 1000

(@)

= 0 PXFS

‘g’_ 600

® 400 RamFS

= 0 #-FlatFS
0 5 10

Threads
* FlatFS retains its benefits over kernel-mode file systems

Conclusion

* Software interface overheads handicap fast SCM

* Flexible interface is a must for fast SCM

* Aerie: Library file systems help remove generic
overheads for higher performance

— FlatFS improves performance by up to 110%

Thank you! Questions?

26

