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ABSTRACT
Power-proportional cluster-based storage is an important
component of an overall cloud computing infrastructure.
With it, substantial subsets of nodes in the storage clus-
ter can be turned off to save power during periods of low
utilization. Rabbit is a distributed file system that arranges
its data-layout to provide ideal power-proportionality down
to very low minimum number of powered-up nodes (enough
to store a primary replica of available datasets). Rabbit
addresses the node failure rates of large-scale clusters with
data layouts that minimize the number of nodes that must
be powered-up if a primary fails. Rabbit also allows different
datasets to use different subsets of nodes as a building block
for interference avoidance when the infrastructure is shared
by multiple tenants. Experiments with a Rabbit prototype
demonstrate its power-proportionality, and simulation ex-
periments demonstrate its properties at scale.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems; D.4.5 [Operating Systems]: Re-
liability—Fault tolerance

General Terms
Design, Performance

Keywords
Cluster Computing, Power-proportionality, Data-layout

1. INTRODUCTION
Energy concerns have moved front-and-center for data

centers. Much research and development is focused on re-
ducing energy consumption, both by increasing efficiency
and by using lower power modes (including “off”) for un-
derutilized resources. For the latter, an ideal is power-
proportionality—the energy consumed should be propor-
tional to the work completed. As cloud computing is used
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to aggregate many workloads on shared data center infras-
tructures, power proportionality is desired over a wide range
of non-idle workload levels (i.e., system utilizations), down
to a single operating tenant.

Our focus is on large-scale cluster-based storage (e.g.,
Google FS [9] or HDFS [1]) and data-intensive computing
frameworks that are increasingly built on and co-mingled
with such storage. Traditionally, such storage randomly
places replicas of each block on a number (e.g., three) of
the nodes comprising the storage system. This approach
provides robust load balancing, fault tolerance, and scala-
bility properties. But, it prevents powering-down of subsets
of nodes—the primary tool for power proportional cluster-
based storage—without disrupting data availability. Nearly
all nodes must be kept powered-up.

This paper describes a power-proportional distributed file
system (PPDFS), called Rabbit, that uses new cluster-based
storage data layout to provide three key properties. First,
Rabbit provides a wide range of power-performance settings,
from a low minimum power to a high maximum perfor-
mance, while maintaining the efficiency of a non-PPDFS
design and fine gradation of settings. Second, for each set-
ting, Rabbit provides ideal power-proportionality, meaning
that the performance-to-power ratio at all performance lev-
els is equivalent to that at the maximum performance level
(i.e., all nodes powered-up). Third, Rabbit maintains near-
ideal power proportionality in the face of node failures. In
addition to its power-related properties, Rabbit provides a
mechanism for mitigating contention among multiple work-
loads using distinct datasets.

Rabbit uses the equal-work data-layout policy, explained
in detail in Section 3.1, which stores replicas of data on
non-overlapping subsets of nodes. One replica, termed the
primary replica, is stored on p nodes in the cluster, where p
is arbitrarily small (but big enough to contain the replica).
This allows the equal-work policy to have a low minimum
power setting that only requires the p nodes to be kept on
to guarantee availability of all data. The remaining repli-
cas are stored on additional and increasingly-large subsets
of nodes. This is done by fixing the order in which the nodes
are turned on by creating an expansion-chain and storing a
number of blocks on a node that is inversely related to where
the node figures in the expansion-chain. This results in an
even division of a workload across whatever subset of nodes
is powered-on. Thus, performance can be scaled up in an
ideally power-proportional manner, at the fine granularity
of the throughput of one node at a time, to a maximum of
roughly er−1p nodes, where r is the number of replicas stored
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for that data. Scaling up performance is fast because it re-
quires no data movement. Experiments show that Rabbit
can provide ideal power-proportionality and full data avail-
ability across a range of settings going as low as 5% of the
nodes if 4 replicas of the data are stored.

In very large-scale cluster-based storage, faults are viewed
as a common occurrence rather than an uncommon one [8,
19]. Rabbit’s equal-work data-layout policy carefully ar-
ranges secondary replicas of blocks to minimize disruption of
power-proportionality when nodes fail. In particular, at the
minimum-power setting, only the p nodes storing the pri-
mary replica are powered-up, and a failure of one of those
p nodes necessarily requires turning on a number of sec-
ondaries to provide availability for the corresponding data.
Rabbit’s data-layout policy enables one to keep that number
small and also addresses scalability of re-replication of the
data that was stored on failed nodes. For example, by trad-
ing a small amount of flexibility regarding the granularity of
power settings, one can keep the number below 10% of p.

Rabbit’s mechanisms for providing power-proportionality
can also be used for controlled sharing of I/O resources be-
tween applications. This is particularly useful in support of
cloud computing, where there may be multiple, concurrent
tenants that rely on the underlying distributed file system
(DFS) for storage of independent datasets. For example,
the DFS might be shared by various services in addition to
a framework for execution of MapReduce [8], Hadoop [1],
BigTable [6], or Pig [2] jobs. While such frameworks offer
capabilities to schedule resources between their jobs, neither
they nor the typical DFS provides mechanisms to allocate
specific proportions of the DFS’s I/O bandwidth among ser-
vices and such frameworks (or even among jobs in a frame-
work). A modified instance of Rabbit’s equal-work data
layout provides a building block for fair sharing or priority-
based policies to be defined for access to different datasets.
The capability to enforce fair-sharing of I/O resources be-
tween different datasets comes at the cost of a small loss of
ideal power-proportionality, but experiments show that this
cost is below 10% in the average case.

The three primary contributions of this paper are:

• The introduction and evaluation of the equal-
work data-layout policy, and its realization in a
PPDFS called Rabbit, capable of providing ideal
power-proportionality for storage at arbitrarily low
minimum-power settings.

• The introduction and evaluation of modified equal-
work data-layout policies that enable recovery from
disk/server failures in a power-proportional manner.

• The introduction and evaluation of modified equal-
work data-layout policies that enable different appli-
cations to use non-overlapping subsets of nodes con-
currently to avoid interference.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates our work in more detail. Section 3 describes
the design of Rabbit and its data-layout policies. Section 4
evaluates their power-proportionality and other properties.
Section 5 discusses additional related work.

2. NEED FOR NEW DATA LAYOUTS
The cluster-based storage systems commonly used in sup-

port of cloud and data-intensive computing environments,

such as the Google File System(GFS) [9] or the Hadoop
Distributed Filesystem [1], use data layouts that are not
amenable to powering down nodes. The Hadoop Distributed
File System(HDFS), for example, uses a replication and
data-layout policy wherein the first replica is placed on the
writer node (if it contributes to DFS storage), the second
on a random node on the same rack as the writer, and
the third on a random node in a remote rack. In addition
to load balancing, this policy provides excellent availability
properties—if the node with the primary replica fails, the
second replica on the same rack maintains data availability;
if an entire rack fails (e.g., through the failure of a commu-
nication link), data availability is maintained via the second
or third replica, respectively. Unfortunately, this policy also
prevents power proportionality by imposing a strong con-
straint on how many nodes can be turned off. In the case
of default HDFS, no more than one node per rack can be
turned off without the risk of making some data unavailable.

Alternate data layout policies are needed to accommodate
power proportionality. This section discusses a basic power
proportional data layout and issues involved with tolerating
faults and managing I/O resource sharing. Section 3 builds
on this background in describing the data-layout policies
used in Rabbit.

2.1 A Simple PPDFS Data-layout Policy
Suppose that we wish to store r replicas of B blocks of

a dataset on the DFS that is running on a cluster of N
nodes. We first try a simple and intuitive policy: we store
one replica of B blocks evenly on p nodes, called the pri-
mary nodes, where p ≪ N . The remaining r−1 replicas are
distributed evenly over the remaining N −p nodes. To show
why this policy might work, consider an application that
reads the entire dataset and therefore makes requests for
each of the B blocks. If the cluster operates in the minimum
power setting, then only p nodes will be kept on since turn-
ing off any more nodes makes some data unavailable. This
corresponds to a low minimum power setting since p ≪ N
and minimum performance since each node has to service
B/p blocks. Additional nodes can be turned on for better
performance. At the maximum performance setting, all N
nodes in the cluster are on, and each of them services only
B/N blocks. This “simple” PPDFS policy, used in some re-
lated work discussed in Section 5, is shown in Figure 1(a)
for N = 100, B = 104, p = 5 and r = 4.

The key problem with this approach is that it is not ide-
ally power-proportional, because there are cases where all
the nodes that are ’on’ cannot perform equal work. In Fig-
ure 1(a), with n = 20 nodes ’on’ and the rest turned off,
ideally each of the nodes would service B/n = 500 blocks.
But each of nodes i ∈ [10, 20] only stores about 316 blocks
and of course, a node can service a request for a block only
if it stores that block. Therefore, each of the primary nodes
needs to service more than 500 blocks leading to an increase
in the overall read completion time and hence a drop in
overall throughput. The percentage increase in read time
for such a policy is shown in Figure 1(b).

Therefore, while the goals of a low minimum-power, a
high maximum-performance, and fast, fine-grained scaling
are met, the policy described above is not ideally power-
proportional. Ideal power-proportionality can be attained
by storing the same number of blocks on a primary node
as a non-primary node, which will allow all the nodes to
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(a) Simple data layout arrangement

(b) Increase in read time for simple policy

Figure 1: Problems with a simple PPDFS data lay-
out policy. For numbers of active nodes between
p and approximately one-third of all nodes, power
efficiency is low as the non-primaries contain too lit-
tle data to contribute equally to providing service.
Most requests must go to the primaries, resulting in
significant load imbalance and performance reduc-
tion (relative to ideal) for reading the entire dataset.

perform an equal amount of work. However, doing so com-
promises on the goal of a low minimum power setting, be-
cause it necessitates p = N/r. But, it is preferable to keep
the number of replicas r as low as possible. For example,
a high value of r implies increased use of disk capacity and
decreased write performance, since any changes have to be
propagated to all the replicas. We show in Section 3.1 how
the equal-work data-layout policy used with Rabbit achieves
all of these desired properties for a PPDFS.

2.2 Power-Proportional Fault Tolerance
In addition to power-proportionality in failure-free peri-

ods, it is desirable for large-scale PPDFSs to provide power-
proportional failure and recovery modes. As distributed file
systems (DFS) are deployed across larger clusters, server
failures become more and more common, and the amount of
time the DFS spends in failure and recovery states increases.
This has led users of some of the largest distributed file sys-
tems to comment that failure recovery states are now the
norm, not the exception [8, 19]. To efficiently support such
large file systems, a PPDFS must remain power proportional
even when it is recovering from a failure. The simple policy

fails in this regard: if a primary server fails, almost all of
the non-primary nodes will have to be activated to restore
availability of the data from that primary. This is because
the data from each primary is spread evenly over all nodes,
making it difficult to find a small set of nodes containing
replicas of all of the blocks from the failed primary. In sec-
tion 3.5, we explain this problem in more detail and describe
modifications to the base Rabbit file system to allow it to
restore availability with little effect on the power consumed
by the system.

2.3 I/O Resource Management
The ability to allocate I/O bandwidth available through

the DFS to specific applications that run on it would have
significant benefits. Recent results [11] show that almost
5% of the jobs observed in a large-scale data center run for
more than 5 hours and some jobs run for more than a day.
In the presence of such long-running jobs, it is imperative
to be able to guarantee some notion of fair sharing of the
resources of the cluster. There should be capabilities, for ex-
ample, to temporarily decrease the performance of long jobs
during times of high load or when there are higher priority,
shorter running jobs to be processed. Although Hadoop or
an equivalent implementation of the map-reduce paradigm
has its own scheduler, the underlying DFS will most likely
support multiple kinds of applications in the data center.
For example, Google’s BigTable [6] and Hadoop’s HBase
are designed to work directly on top of the DFS. It is not
possible, with current solutions, to guarantee I/O perfor-
mance for each of these jobs. In other words, there is no
check on a single job monopolizing the I/O resources of the
cluster. This problem is often exacerbated by the fact that
jobs are increasingly data-intensive, such that their over-
all performance depends significantly on the amount of I/O
bandwidth that they receive.

The DFS is an ideal location for the implementation of
mechanisms to control the amount of bandwidth provisioned
to applications. Rabbit manages I/O resources between
datasets stored in the cluster. It is possible to allocate I/O
bandwidth to a particular dataset that would then be shared
by the applications using that dataset. We describe the
method in Section 3.4 and show benefits in Section 4.3.

3. DESIGN OF RABBIT
In addition to power proportionality, Rabbit, was designed

to provide high bandwidth data I/O using commodity com-
pute servers in a cluster environment, and to tolerate hard-
ware failures. Consequently, Rabbit shares some properties
with other recent cluster file systems, such as the filesystems
of Google [9] and Hadoop [1]. In particular, files are divided
into large blocks and a user-selectable number of replicas, r,
of each data block is distributed among the nodes of the clus-
ter. The typical modern cluster for which these file systems
were designed may consist of thousands of servers, where
each server stores data blocks on a small number of disks,
generally less than 10. The mapping of file names to block
identifiers is also maintained by a separate meta-data ser-
vice.

Rabbit differs significantly from these other systems in
providing power-proportionality. This property, which is es-
pecially attractive as cluster file systems are increasingly be-
ing employed for general cluster computing where significant
power savings may be possible, induces changes to the data
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Figure 2: Equal-work data layout

layout policy, load balancing algorithms, and fault-tolerance
techniques.

3.1 Equal-work Data Layout Policy
This section describes the equal-work data layout policy

used in Rabbit. Consider a cluster with N nodes, where
tputn is the I/O throughput obtained and pown the power
consumed when n nodes are active (powered on). We state
the requirements of a PPDFS formally:

1. A low minimum throughput, tputp, consuming power
powp, where p nodes are kept active and p ≪ N .

2. A high maximum throughput, tputN , consuming
power powN , when N nodes are kept active.

3. Ideal power-proportionality, which means that
tputi/powi = tputN/powN for any i ∈ {p, ..., N}.

4. Fast, fine-grained scaling with no data movement re-
quired.

The equal-work policy, described next, ensures equal load-
sharing. Formally, the equal-work policy is the result of an
optimization problem that minimizes p with the constraints,
tputi = (i/p)tputp for all i = p + 1, ..., N for a given repli-
cation factor r. The following subsections offer an intuitive
explanation of the equal-work policy. An example is shown
in Figure 2 for the case of N = 100, B = 104, p = 5 and
r = 4 as before.

3.1.1 Definitions
A dataset is an arbitrary user-defined set of files stored in

the DFS. For each dataset, we define an ordered list of nodes,
called the expansion-chain, which denotes the order in which
nodes must be turned on or off to scale performance up or
down, respectively. The nodes of the expansion-chain that
are powered on are called the active nodes, A(d), for dataset
d. For the rest of Section 3.1, we do not consider multiple
datasets, which will be discussed further in Section 3.4.

3.1.2 Low Minimum Power
In the equal-work data-layout policy, the first p nodes

of the expansion-chain are called the primary nodes. One

replica of the dataset, called the primary replica, is dis-
tributed evenly over the primary nodes as shown in Figure 2.
Keeping only these p nodes on is sufficient for guaranteeing
the availability of all data. Because p ≪ N , this gives Rab-
bit a low minimum power setting.

3.1.3 Ideal Power-proportionality
To ensure ideal power-proportionality, bi = B/i blocks

are stored on the i-th node of the expansion-chain, where
i > p. This satisfies a necessary condition for ideal power-
proportionality that is violated by the näıve policy, which
is that bi, the number of blocks stored by i-th node in the
expansion-chain, must not be less than B/n for all i ≤ n,
when n nodes are active. Obeying this constraint makes it
possible for the load to be shared equally among the nodes
that are active. To illustrate, consider the situation when an
entire dataset of B blocks has to be read from the DFS with
n ≥ p nodes active. For ideal power-proportionality, each
of the nodes should service B/n blocks. This is made pos-
sible by the equal-work layout because the n-th node stores
B/n blocks, and each of the nodes i with i ∈ [p, n) stores
B/i > B/n blocks. To scale performance up, the number of
active nodes is increased by turning on nodes according to
the order specified by the expansion-chain for the dataset.
Scaling requires no data movement and can be done at the
granularity of a single node.

3.1.4 High Maximum Performance Setting
Each node stores no more than the minimum required

number of blocks, which allows the blocks to be distributed
across a larger number of nodes while holding the number
of replicas fixed so energy is not wasted writing an unnec-
essarily high number of data copies. We define a dataset’s
spread to be the number of nodes over which the blocks of
that dataset are stored. A dataset’s spread is equal to the
length of its expansion-chain. For the equal-work policy, the
spread depends on the number of replicas used.

We can derive a lower-bound on the spread based on the
observation that the number of blocks stored on the servers
in the range [p + 1, s] must correspond to (r − 1) replicas of
the dataset. Hence,

s
X

i=p+1

B/i = B(r − 1) (1)

Because 1/i is a monotonically-decreasing function, we also

have convenient lower and upper bounds on
s

X

i=p+1

1/i as,

Z s+1

p+1

(1/x) dx ≤
s

X

i=p+1

1/i ≤

Z s

p

(1/x) dx (2)

From Equations 1 and 2, we get:

s ≥ per−1 (3)

Note that the spread increases exponentially with
the number of replicas while maintaining ideal power-
proportionality. Since the maximum throughput obtainable
depends on the spread, this allows the equal-work policy
to obtain a high value for the same. We note that, since
the spread also depends on p, a spread spanning the entire
cluster can be obtained with any number of replicas r by
adjusting the value of p.
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3.2 Load Balancer
The equal-work layout policy is complemented by a load

balancer, whose function is to ensure that each active node
services almost the same number of blocks.

When a request is received from a client for a block, the
DFS has a choice of which node will service the request,
because each data block is stored on r different nodes. Since
a typical data layout policy, like the default HDFS policy
that is not power-proportional, stores data blocks evenly on
all nodes, this decision can be made easily. In our case, some
nodes store significantly more data than others, but the work
should still be shared equally among all the active nodes.
Therefore, when n nodes are active, although the n-th node
has only bn = B/n blocks from a dataset with B blocks, it
must service the requests for the same number of blocks as
a primary node which stores B/p blocks. While a solution
to an optimization problem formulated as a mixed integer
program(MIP) can be used to optimally assign blocks to
specific nodes for service, we find that the following heuristic
works well in practice. We define a desired hit-ratio, equal

to B/n
bi

for each node i ≤ n. When a dataset is being read,

the actual hit-ratio at a given time t, denotes the ratio of
the blocks serviced by node i to the number of blocks that
could have been serviced by node i till time t. Of the r
possible nodes that a requested block is stored on, some
may be turned off so the choice is made from the nodes that
remain on. The load-balancer greedily chooses the node for
which the actual hit-ratio is the farthest from the desired
hit-ratio. For example, if n nodes are active, the n-th node
stores B/n blocks. Therefore, it has a desired hit-ratio of
1, which means any time the node appears as a candidate,
it is very likely to be chosen. Similarly, a primary node
has a desired hit-ratio of p/n. As one example evaluation
of this approach, we performed complete reads of a 100GB
dataset with 900 blocks on a cluster of 24 nodes, stored
using the equal-work layout policy with our load balancer.
For each run, we measured the maximum number of blocks
serviced by any given node, as the overall throughput is
inversely proportional to the maximum number of blocks
serviced by a node. With our load balancer, the mean of
the maximum number of blocks serviced by a node was 41.86
blocks compared to an ideal of 37.5 with a variance of 0.42.

3.3 Write Offloading
To this point, we have focused on read performance. How-

ever, a power-proportional DFS, and the design of the equal
work layout, present two problems for write performance.
First, a copy of every block must be written to a primary
server. If the primary set is very small, as one would like it
to be, then these nodes will become a bottleneck for writes.
This becomes especially at high performance levels when
most, if not all, of the nodes are on. In a system with 3-way
replication, a perfectly power proportional DFS would get
the write bandwidth of 1

3
of the servers. However, if the

primary set is small, for instance only 10% of the cluster,
then the system will only achieve a write bandwidth of 1

10
of the nodes.

The second problem occurs only when operating at re-
duced power modes. In these cases, it is impossible to write
a block to an inactive node. If the layout policy requires
that some data be placed on inactive nodes, the file system
would have to activate them to do so. This layout require-
ment does not depend on the rate of write or read requests;

there could be very little file system activity, but the lay-
out still requires writing to a node that is currently inactive.
Activating these servers will violate power proportionality,
because the throughput achieved by the file system will re-
main quite low, while the power used by the system will
increases.

We use a solution from other research to solve these prob-
lems: write offloading which writes to any available server,
and corrects the layout later. Write offloading was used
by Everest [15] to avoid bottlenecks caused by overloaded
storage volumes in an enterprise storage setting. The prob-
lem of overloaded storage volumes is conceptually similar to
our first problem (i.e. overloaded primary servers). Write
offloading solves the bottleneck problem by allowing the pri-
mary replica of a block to be temporarily written to a non-
primary server. Before that non-primary server can be de-
activated, all primary copies of blocks must be written to
their appropriate places. At first glance this is not solving
the problem of overloaded primaries, but simply delaying
it, since all blocks must reach a primary server eventually.
However, the only reason the file system would deactivate
a non-primary is when there is idle disk bandwidth. When
this is the case, it can use that idle bandwidth to migrate
the primary replica. The only disadvantage is that the file
system will not be able to switch power modes instantly.

Write offloading also solves the second problem (i.e. writ-
ing to deactivated servers). This was demonstrated by
PARAID [22] for writing to deactivated disks in a power
aware RAID setting. It was also used by Sierra [20] in a
setting very similar to our own: a large-scale distributed
file system. The major challenge in these cases is that data
written while in a low power mode will reside on a smaller-
than-normal set of servers. This lowers the effective maxi-
mum performance for that data, until they can be migrated
to the target layout. Thereska et al. [20] explore this in de-
tail and show that this is not a problem for many real-world
workloads.

3.4 I/O Scheduling
This section describes how we use the mechanisms used

to provide power-proportionality to perform I/O scheduling
for datasets in Rabbit. Recall that a dataset is defined to
be an arbitrary set of files stored in Rabbit. We assume
that all data entering the system is tagged with meta-data
specifying the dataset that the data belongs to. One way to
do this is to define datasets based on file system hierarchy,
with subtrees explicitly associated with datasets, as with
volumes in AFS [23].

Our focus is on data-intensive jobs whose performance
significantly depends on I/O bandwidth, such as most jobs
run on Hadoop. Hadoop has its own fair scheduler that in-
directly manages I/O resources by controlling the compute
scheduling, but this approach only guarantees fairness for
map-reduce jobs using the particular instance of the Hadoop
library. In a data center environment, there can exist mul-
tiple different applications, such as BigTable [6], that use
the services offered by the DFS. In such scenarios, indirectly
managing the I/O resources through compute scheduling be-
comes impossible. Our solution enables scheduling of I/O
resources at the level of the DFS and allows the I/O band-
width of the cluster to be shared among the datasets in an
explicit manner.

Section 3.1 explains Rabbit’s equal-work data layout pol-

221



(a) Data layout for multiple datasets (b) Fair sharing with 3 live datasets.
Shaded regions represent the active
nodes.

(c) Fair sharing with 2 live datasets.
Shaded regions represent the active
nodes.

Figure 3: Example multi-dataset layout involving three datasets

icy. To handle multiple datasets, we use the same policy but
overlay the datasets over one another using a greedy strategy
to choose the nodes. We define a score, si for a node i that
depends on where that node figures in the expansion-chains
of the different datasets. Let Di be the set of datasets that
have blocks stored on node i, let si(d) be the contribution
of dataset d ∈ Di to the score si, and let li(d) be the index
of node i in the expansion-chain of dataset d where node i
appears. Then:

si =
X

d∈Di

si(d) (4)

si(d) =

(

1 if li(d) ≤ p ,
1

li(d)
otherwise .

(5)

When a new dataset is to be written into the DFS, nodes
are chosen greedily starting with the node with the minimum
score, si. The score’s are updated once the blocks of the new
dataset are stored. Figure 3(a) shows the layout policy for
three datasets. Each of the datasets has a spread that is
equal to the size of the entire cluster, but the order of nodes
in the expansion-chains of the datasets is unique for each
dataset.

To maintain control over the I/O bandwidth allocated to
a dataset, a given node is assigned to exactly one dataset,
which means that the I/O bandwidth of that node is allo-
cated solely to that dataset. We choose this approach for
two reasons. First, in a large cluster, the node will often
be an acceptable level of granularity. Second, performance
insulation in storage clusters remains an open problem, and
sharing nodes relies on it to be solved.

We define a dataset to be live at a given time if an ap-
plication is reading or writing data of that dataset. The set
of active nodes, A(d), is the set of nodes that have been
allocated to dataset d and remain ’on’. The goal of I/O
scheduling is, therefore, to allocate A(d), for each of the
datasets d ∈ DL where DL is the set of live datasets. Since
a node can only be allocated to one dataset, an arbitration
algorithm is required if multiple, live datasets store blocks
on a particular node i. We make this choice, with one ex-
ception, by picking the dataset d0 where si(d0) = max si(d),
with d ∈ Di ∩DL. That is we pick the live dataset that con-
tributes the most to the score of the node. Compensation
scores, in proportion to si(d), are added to to all datasets
d ∈ Di ∩ DL that were not chosen. The exception to this

rule is when the dataset d0 has the least compensation score
among the datasets in Di ∩ DL, in which case the dataset
with the maximum compensation score is chosen. For in-
stance, if all three datasets shown in Figure 3(a) are live,
fair-sharing would set the active nodes of the datasets as
shown in Figure 3(b).

Rabbit controls the I/O bandwidth available to a dataset
d by controlling the size of the set A(d). Since all requests for
blocks belonging to that dataset are serviced by the nodes
in the set A(d), and no others, this sets the total amount of
bandwidth available to the dataset.

A side-effect of providing resource guarantees to datasets
is that ideal power-proportionality does not hold in all cases.
Consider, for example, if datasets 1 and 3 from Figure 3(a)
are live. In this case, each of these should get the I/O band-
width of 50 nodes. But, the first 50 nodes from A(1) and
A(3) have many nodes in common. Since each node can
only be allocated to one live dataset, each of the datasets
has to settle for some nodes that are lower in their respec-
tive expansion-chains. The resulting sets of allocated active
nodes are shown in Figure 3(c). The active nodes for dataset
1 that are lower in the expansion-chain cannot perform an
equal share of work to that of the nodes higher in the chain.
For instance, in Figure 3(c), in a read of the entire dataset
each of the 50 active nodes is expected to service B/50
blocks. But the active nodes of dataset A that fall below
the 50th node in the expansion chain have fewer than B/50
blocks, causing the higher-numbered nodes to perform ex-
tra work. This leads to a loss of ideal power-proportionality.
We quantify this loss in power-proportionality by defining a
degree of power-proportionality.

Consider a dataset of B blocks. Let n nodes from the
expansion-chain be active. Ideally, each of the n nodes
would service B/n blocks. But due to the overlapping of
multiple datasets, a situation such as the one pictured in
Figure 3(c) may result in the n-th node not storing the req-
uisite B/n blocks. In this case, the “extra work” consisting
of blocks that cannot be serviced by nodes lower down in
the expansion-chain has to be distributed among the nodes
with more blocks stored. If be is the number of extra blocks
that each of the these nodes has to service, then the degree

of power-proportionality is defined as B/n
B/n+be

.

To understand the extent of this loss in power propor-
tionality, we built a data layout simulator that allows us to
understand the factors on which the degree of power propor-
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tionality depends. In particular, we investigate the depen-
dence on the total number of datasets stored in the cluster
and the number of live datasets. We show in Section 4.3.1
that the loss in efficiency is not more than an average of
10%.

3.5 Fault Tolerance
This section we will describes modifications to the equal

work layout that allow the file system to remain power pro-
portional when a primary server fails. We will only be con-
sidering crash failures, and not arbitrary Byzantine failures.
The failure recovery process is composed of three parts,
though they are not necessarily separate activities. Each
involves restoring some property of the file system:

• Availability: all data may be accessed immediately.
In the case of a PPDFS this means ensuring that every
block is replicated on at least one active node.

• Durability: The file system’s fault tolerance configu-
ration is met. For Rabbit, this means that each block
is replicated r times.

• Layout: The file system’s target layout is achieved.
For the equal-work layout policy, non-primary node i
has approximately B/i blocks on it.

Most of this discussion focuses on availability. Restoring
durability and layout after a primary failure uses the same
mechanisms as writing new data to the file system, described
in Section 3.3.

As it has been described, the equal-work data layout can-
not remain power proportional in the event that a primary
server fails, because blocks from each primary server are
scattered across all secondary servers. When a primary
server fails, all secondary servers must be activated to re-
store availability. Therefore, the non-fault-tolerant version
of the equal-work layout cannot achieve its target minimum
power setting of p when there is a primary server failure.
Instead, it has a minimum power setting of ep − 1.

To avoid this outcome, we impose further constraints on
the secondary replicas of each block. The secondary servers
are grouped into gear groups and recovery groups, with each
server belonging to exactly 1 gear group and 1 recovery
group. To visualize this, imagine arranging the secondary
servers in a grid configuration depicted in Figure 4. The
rows of this rectangle are the gear groups, and the columns
are the recovery groups. The number of servers in these
groups, i.e. length of the rows and columns of the grid, are
respectively known as the gear group size and recovery group

size.
Each primary server is mapped to exactly 1 recovery

group. All data hosted by that primary server is replicated
across its corresponding recovery group. This leads to a
simple failure recovery strategy: if a primary server fails,
the file system activates the corresponding recovery group.
Because all of the server’s secondary replicas reside in that
recovery group, this is sufficient to restore availability to the
data stored on the failed primary.

In this layout scheme, gear groups are the basic unit of
power scaling. It is not helpful to turn on extra replicas for
some primary server’s data and not others: work can never
be shared equally if some primaries have to read all of their
blocks and others have to read only some of their blocks.
Therefore, when turning on servers to increase the power
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Figure 4: Gear groups and recovery groups. All data
from a single primary exists on a single recovery
group, such as the grey box. When increasing the
power setting, the file system turns on gear groups
in an all-or-nothing fashion.

mode, the file system must turn on a set of servers that will
contain data from all primaries, i.e. a gear group.

To share work equally each gear group should contain ap-
proximately the same amount of data from each primary.
The amount of data stored on each server in a gear group
depends on where that gear group falls in the expansion
chain. Servers belonging to low-numbered gear groups must
store more data than those in high numbered gear groups,
because they may be activated at lower power modes. If the
last server in a gear group is server number i, then every
server in the gear group stores B

j
blocks. Equivalently, with

a group size of g, each server in gear group j stores B
(p+gj)

blocks.

Figure 5: Simulated performance of fault-tolerant
layout with 10 primary servers and a gear size of 5.
The geared layout achieves very nearly ideal perfor-
mance when a full gear is turned on, but less than
ideal when a gear is only partially enabled.

Figure 5 shows the results of a simulation of the fault
tolerant layout in a failure free case and with a single pri-
mary server failure. The performance is measured relative
to the performance of a single server. The steps in the solid
line show the effect of gearing: increasing the power setting
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Gear size Recovery group size
1 174
5 37
10 20
20 11
50 6
100 4

Table 1: Some example gear sizes and the corre-
sponding size of the recovery group. This example
assumes that the file system is configured with 100
primary servers. Even with a gear size of 5, allowing
very fine grained scaling, the difference in minimum
power setting is only 37%.

causes no improvement in performance until a gear is com-
pletely activated, at which point the performance jumps up
to the next level. The dotted line represents the power and
performance curve in the case of a single primary failure.
The file system can achieve the same performance with only
a moderate increase in power.

This data layout creates a trade off between gear size and
recovery group size. A smaller gear size implies a larger
recovery group size. By setting the gear size very small,
we can achieve the goal of fine grained power settings, but
the large recovery group size means that in the event of a
failure the minimum power setting will be high. On the
other hand, a large gear size does not allow fine-grained
power adjustments, but can run at very low power even when
recovering from a failure. This relationship is complicated
by the fact that the number of secondary servers depends
on the gear size. Recall that the amount of data on each
secondary server in gear j is B

(p+gj)
, meaning that choosing

a larger gear group size causes less data to be stored on each
server, thus requiring more secondary servers overall.

Table 1 shows the relationship between the gear size and
recovery group for an example file system with 100 primary
servers. The size of the recovery group, as a function of the

number of primaries p and the gear size g, is e(p−g)−p
g

. As an

example from this table, if the gear size is 10% of the number
of primary servers, the recovery group size will be about 20%
of the primary size. This means that the minimum power
setting during failure recovery is only 20% higher than the
minimum power setting with no failures. The ideal setting of
these parameters depends on the workload of the file system
and the rate of failure, but these results show that there is
a wide range of reasonable settings for these parameters.

4. EVALUATION
This section evaluates the different contributions made in

this paper, including the power-proportionality of the equal-
work data-layout policy, the improvements due to the intro-
duction of gearing for fault tolerance and the feasibility and
benefits of the added capabilities to perform I/O resource
management at the DFS level. Our testbed for the exper-
iments consists of a rack of 25 servers, each consisting of
dual Intel Xeon E5430 processors and 16GB of RAM. For
the experiments, we use two SATA disks connected to each
node. The interconnect is a Force10 S50 Gigabit Ethernet
switch. For the experiments on power-proportionality, the
inactive servers are hibernated. For our servers, the power
consumed in the hibernated state is approximately 5W and

Figure 6: Read only performance of Rabbit at var-
ious power settings. HDFS cannot scale dynami-
cally, and had to be re-configured before each run,
while the power setting of rabbit can be set without
restarting the file system.

time to wake up from hibernate is around 40s. Since servers
are not usually expected to be hibernated often, the latency
represents an unoptimized value. As hibernation of servers
becomes more popular, we expect the wake-up times to de-
crease.

4.1 Implementation
We have implemented a prototype PPDFS called Rabbit.

Rabbit is based on the Hadoop DFS [1], with modifications
to the layout and load balancing. We converted the exist-
ing Java class for choosing block locations into an interface
with which different data layout policies can be used. We
implemented the equal-work policy and its corresponding
load balancer so as to minimize the role of the meta-data
server. The concept of datasets, which are arbitrary sets
of user-defined files, was added to HDFS. Rabbit allows the
number of active nodes for each dataset to be specified from
the command line, so that an I/O scheduling policy can eas-
ily be written in user-space. We have not yet implemented
the write offloading policy that is used to improve the perfor-
mance of writes, but expect that it would behave as reported
by Thereska et al. [20].

4.2 Power-proportional Operation
To evaluate the performance of the equal-work data-layout

policy, we first test the peak I/O bandwidth available from
Rabbit and compare it with that available from default
HDFS on the same hardware, using a microbenchmark that
uses the HDFS shell to perform I/O in a distributed man-
ner. We then run a larger scale experiment using the Hadoop
Terasort benchmark to evaluate power-proportionality. For
Rabbit, the dataset is written into the DFS and the number
of active nodes is set using a command-line utility. The re-
maining nodes can be hibernated to save power. For default
HDFS, the data is written onto a number of nodes equal to
the number of active nodes in the Rabbit case being com-
pared with. The Linux buffer cache is cleared between runs.

4.2.1 Microbenchmarks
We test read performance on a 40GB sized dataset with
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a replication factor of 3. Figure 6 shows that Rabbit of-
fers read performance equal to default HDFS while offering
the benefit of power proportionality. The write performance
of Rabbit is, however, not equal to the default case, ow-
ing to the imbalance in the amount of data written to the
nodes. As discussed in Section 3.3, techniques developed for
Everest [15] can be used to temporarily offload writes from
primaries to the non-primaries and transfer the data lazily
during times of low system load.

4.2.2 Terasort
We also evaluate Rabbit with the Hadoop Terasort bench-

mark, which, given the size of our testbed, adjusted to sort
100GB. For default HDFS, as before, we reload the dataset
for each run, since HDFS cannot be dynamically scaled. We
perform each run 3 times and report the median value. Fig-
ure 7 shows the results. The default HDFS sort performance
is better than Rabbit due to the large write involved when
the sorted dataset is written back to the DFS. For compari-
son, we also include times for the map phase of the compu-
tation both cases. The map phase involves reading the input
files and generating intermediate data that is typically writ-
ten by the node locally. Figure 7 shows that the times for
the map phase in the two cases are comparable.

Figure 7: Time to sort a 100GB file using Hadoop.
Map time (hatched) depends only on read per-
formance, and is comparable between Rabbit and
HDFS. Reduce time involves writing results back to
the file system. Since we have not yet implemented
write offloading in our prototype, the reduce phase
is much slower on Rabbit.

4.3 I/O Scheduling
This section demonstrates the benefits of the capability to

schedule I/O resources explicitly between datasets. By pro-
viding the mechanisms to do so, Rabbit provides the freedom
to use an arbitrary scheduling policy to allocate resources.
We implemented and evaluated two simple policies: fair-
sharing and priority- scheduling.

4.3.1 Factors affecting power-proportionality
The ability to schedule I/O resources to specific datasets

is gained at the cost of ideal power-proportionality. The de-
sirability of the mechanism, therefore, depends on the sensi-
tivity of the degree of power-proportionality to factors such

as the total number of datasets stored in the cluster and the
number of live datasets. With this in mind, we built a cluster
simulator that stores datasets according to the equal-work
data layout policy. Any combination of the stored datasets
may then be chosen to be live, after which the sets of active
nodes for each of the live datasets are assigned according
to the policy explained in Section 3.4. The degree of power-
proportionality is then evaluated for each of the live datasets
by simulating an entire read of the dataset and calculating
the amount of extra work that its primaries must perform to
compensate for the unequal sharing. For a given setting of
the total number of datasets and the number of live datasets,
the simulator tests all combinations of datasets and calcu-
lates the average and worst case values for the degree of
power-proportionality.

To validate the simulator, we replicated a subset these ex-
periments on a cluster running Rabbit. Figure 8(a) shows
predicted and experimental values for the dependence on
the total number of datasets. Figure 8(b) shows them for
the number of live datasets for a 14-node cluster. The ex-
perimental values are each within 5% of the predicted values
which validates our simulator. In both cases, the average de-
gree of power-proportionality is more than 90%. With our
simulator validated, we also show that the average value of
the degree of power-proportionality remains above 90% for
larger clusters. Figure 9(a) shows the predicted values.

Having shown the feasibility of I/O resource management
from the DFS, we evaluate two example I/O scheduling poli-
cies implemented on top of the allocation mechanism.

Instances of appB
appA Throughput(MB/s)
Rabbit Default HDFS

1 180.3 137
2 175.3 101.2
3 173.6 82.5

Table 2: Fair I/O scheduling provides isolation for
appA from appB. As the number of instances of
appB increases, appA running on default HDFS does
worse, but appA running with Rabbit based IO iso-
lation is hardly affected. Each run was performed 3
times and the median value is reported.

4.3.2 Fair I/O Scheduling
The first policy that we discuss is a fair I/O scheduler.

The scheduler guarantees equal sharing of I/O bandwidth
among the datasets that are live. The I/O scheduler is
not concerned with the applications that use the datasets.
To demonstrate the effectiveness of the fair scheduler, two
datasets A and B, with sizes 100GB and 40GB respectively,
are stored in Rabbit with a replication factor of 3. The
fair I/O scheduler is used to enforce fair sharing on the
I/O bandwidth for the two datasets. Dataset A is used
by a map-reduce application(appA) using the Hadoop li-
brary, and dataset B is used by a distributed grep applica-
tion (appB) that directly reads data from the DFS. To test
the fair I/O sharing, we increase the number of instances
of the grep application. As can be seen from Table 2, the
performance of the Hadoop application remains unaffected
in the case of Rabbit but drops steadily as the number of
instances of the grep application increases in the case of de-
fault HDFS. Thus, fair sharing can be used in the case of
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(a) Total nodes:14; Primary nodes per dataset, p:2 (b) Total nodes:14; Total datasets:7

Figure 8: Multiple data set power proportionality, varying the total number of data sets and the number of
active data sets. Both simulation and real-world experiments show very little interference, and the simulator
is able to track the experimental results very closely.

a cluster where multiple users run their jobs on their own
data, to provide a degree of performance isolation to each
user.

ID Entry
time

Prio. HDFS
time t0(s)

Rabbit
time tr(s)

Speedup
(t0/tr)

1 1 1 393 558 0.704
2 20 3 182 98.4 1.85
3 200 5 152 94 1.61

Table 3: Priority scheduling allocates different num-
bers of servers to different jobs so that I/O band-
width is allocated proportionally to priority. As be-
fore, reported values represent median of 3 runs.

4.3.3 Priority Scheduling
The second policy implements a priority-based schedul-

ing policy, wherein jobs can be allocated different amounts
of I/O resources. Consider the scenario shown in Table 3.
We have 3 jobs with different arrival times and priorities.
Job 1 is a Hadoop job that operates on a 100GB dataset,
whereas Jobs 2 and 3 operate on 40GB and 20GB datasets,
respectively. In the default HDFS case, there is no explicit
allocation of I/O resources to each job/dataset. In the case
of Rabbit, however, an allocation scheme divides the I/O
bandwidth between the live datasets in a manner weighted
by the priorities. For example, in the case shown, at t = 25,
jobs 1 and 2 are running. The I/O bandwidth is therefore
divided between those jobs in the ratio 1:3. This allows the
priority-based scheduler to provide faster completion times
for higher priority jobs. As shown in Table 3, jobs 2 and
3 obtain significant speedups at the expense of the longer-
running, lower priority job 1. This scheduler would be useful
in cases discussed by Isard et al. [11] where they note that
almost 5% of the jobs in their data center ran for over 5
hours, but more than 50% of the jobs ran for less than 30
minutes. It would now be possible to decrease the comple-

tion time of shorter jobs at the expense of long-running jobs,
if so defined by assigning priorities appropriately.

4.4 Fault Tolerance
We evaluate the effects of the geared fault-tolerant data

layout with an experiment that mirrors the simulation re-
sults from Section 3.5. This experiment sorts a 100 GB file
on a 27 node cluster. This cluster is configured to have
6 primary, 15 secondary, and 6 tertiary servers. The sec-
ondary servers are configured in 5 gear groups, each with 3
servers. This means that, in the event of a primary failure,
5 secondaries will need to be activated.

The results of this experiment are shown in Figure 10.
Only the time for the map phase of the job was measured,
as this is the phase where all of the data is read from the
storage servers. The remainder of the job is spent sorting,
and writing the sorted results back.

5. RELATED WORK
Power-proportionality was expressed as a desirable prop-

erty for systems by Barroso and Hölzle [4]. There exists a
large body of work on CPU power management techniques
such as dynamic voltage and frequency scaling (DVFS). Ow-
ing to the increasing proportion of non-CPU power, there
has also been significant research in the area of power man-
agement by turning off servers [7, 17] and consolidating load.
Meisner et al. [13] discuss techniques to reduce server idle
power through a variety of techniques. Guerra et al. [10]
show the potential effectiveness of power proportionality in
the data center. They describe the potential power sav-
ings of an ideally power proportional storage system using
workload data collected from production systems. They also
outline a number of techniques that may be used to achieve
power proportionality.

A number of recent projects have attempted to bring
power proportionality to the data center in general, and
large scale file systems specifically. Leverich et al. [12] in-
troduce the idea of a “covering set” of servers, analogous to
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(a) Total nodes: 500; Primary nodes per dataset, p:20 (b) Total nodes: 500; Total datasets: 10

Figure 9: Simulation results showing interference between data sets for larger numbers of data sets. The
interference is very low, though it does get worse as more data sets are added.

Figure 10: Performance of fault-tolerant layout with
6 primary servers and a gear size of 3. The number
of active servers when a primary fails is 10: 5 pri-
maries remain active, and 5 servers from the failed
primary’s recovery group are activated.

what we have been calling the “primary set”. These servers
satisfy the property that, if they are functioning, all data is
available. We build on this work by exploring the effects of
power scaling on efficiency.

Vasic et al. [21] also describe the problem of power scaling
in HDFS and talk about an architecture to allow cluster
services to collaboratively make power decisions. They use
a data layout policy introduced for FAB [18] to maintain
data availability when turning off up to two-thirds of the
machines.

Weddle et al. [22] introduce the design of a power-aware
RAID, using a geared scheme for managing different power
settings. The block layout used by PARAID allows the array
to be run in a variety of power modes and to efficiently
migrate data as disks are activated. We adapt the technique

of gearing to distributed file systems for providing power
proportional fault tolerance.

Narayanan et al. [14] introduce the concept of write of-
floading for power management. When an application issues
a write to a currently idle volume, the write may be redi-
rected to an active volume. This technique increases the idle
periods, allowing the system to save more power by spinning
down idle disks. Everest [15] uses write offloading to avoid
unusually high peaks in activity, allowing a system to be
provisioned for less than the maximum request rate. Data
is migrated to its target volume during periods of low ac-
tivity to restore the desired data layout. In Section 3.3, we
describe how these techniques can be used to offload write
traffic from the primary servers onto others.

Thereska et al. [20] explore a power aware storage sys-
tem using trace data collected from large-scale production
services. In addition, Sierra introduces a technique for writ-
ing data while the system is in a low-power mode and mi-
grating to the target layout in the background when the
power mode is increased. Rabbit’s data layouts comple-
ment Sierra’s techniques for handling writes, providing for
lower minimum-power settings, more fault-tolerant power-
proportionality, and a mechanism for controlled sharing.

Rather than building on clusters of commodity servers,
some researchers are exploring system designs specifically
designed for particular classes of data-intensive comput-
ing. The FAWN [3] and Gordon [5] architectures use many
nodes with low-power processors and flash storage to pro-
vide data-intensive computing and key-value indexing much
more energy-efficiently, measured for example as queries per
joule [3]. This is an interesting approach, which may also
benefit from Rabbit’s data-layout policies, but there is also
value in exploring energy efficiency in commodity cluster-
based storage.

6. CONCLUSIONS
Rabbit is a power-proportional cluster-based storage sys-

tem. It uses novel equal-work data layout policies to sup-
port ideal power-proportionality for a wide range of power-
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performance states, power-proportional failure and recovery
modes, and a building block for controlled sharing of avail-
able I/O capabilities. Experiments with a Rabbit prototype
demonstrate its power-proportionality properties, and we
show that the additional fault-recovery and sharing features
come with minimal cost in power-proportionality. Rabbit’s
data-layout policies represent an important building block
for shared, energy-efficient storage for cloud computing en-
vironments.
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