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Habitat [From Encyclopedia Britanica] :

A place where an organism or a
community of organisms lives, including all
living and nonliving factors or conditions of
the surrounding environment. Focus on:

* Engineered environments (e.g. cities, villages,
ant hills, termite nests, bee-hives]

* Largely on humans but also on animal, virus
and other species (e.g. microbiota in human
and animal gut, termite colonies]

* Community as opposed to a single individual

o AMetrt;polis-of:2\<0vO Million Termite
‘& &% Mounds Was Hidden in Plain Sight

" What amount to garbage piles — some are 4,000 years old

The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, & Honeybee Ecology: A Study of 2
Adaptation in Social Life, Thomas D. Seeley. Wilson, Edward O. (1971). The Insect Societies. Cambridge.


https://www.nytimes.com/2018/11/20/science/termite-mounds-brazil.html
https://www.pbs.org/wgbh/nova/bees/hive.html
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The challenge of developing and using
computer models to understand and control
the diffusion of disease through populations.

| BY MADHAV MARATHE AND ANIL KUMAR S. VULLIKANTI

Computational
Epidemiology

AN EPIDEMIC Is said to arise in a community or region
when cases of an illness or other health-related events
occur in excess of normal expectancy. Epidemics are
considered to have influenced significant historical
events, including the plagues in Roman times and
Middle Ages, the fall of the Han empire in the 3
century in China, and the defeat of the Aztecs in
the 1500s, due to a smallpox outbreak.’ The 1918
flu pandemic in the U.S. was responsible for more
deaths than those due to World War I. The last 50 years
have seen epidemics caused by HIV/AIDS, SARS, and
influenza-like illnesses. Despite significant medical
advances, according to the World Health Organization
(WHO), infectious diseases account for more than 13
million deaths ayear.*

Societal interest in controlling outbreaks is probably
just as old as the diseases themselves. Interestingly,
it appears the Indians and Chinese knew the idea
of variolation to control smallpox as early as the 8
century A.D. Epidemiology is a formal branch of science
focusing on the study of space-time patterns of illness
in a population and the factors that contribute to these
patterns. It plays an essential role in public health by
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key insights

B Controlling and responding to future
pandemics will be challenging due to
a number of emerging global trends
including increased and denser
urbanization, increased local as well as
global travel, and a generally older and
immuno-compromised population.

Public health epidemiology is a complex
system problem. Epidemics, social-contact
networks, individual and collective behavior,
and public policies coevolve during a

-a syst level under i
must represent these components and
their coevolution.

[ ] and models
of social networks and epidemic spread
and methods to analyze them are critical
in public health epidemiology.

B Advances in computing, big data, and
computational thinking have created
entirely new opportunities to support
real-time epidemiology.


http://ndssl.vbi.vt.edu/supplementary-info/vskumar/cacm2012/

Pervasive, Personalized and Precision [P3) analytics for

social-habitats
Pervasive: E£nable decision maker to make decisions at any, place,
anytime and any device
Personalized: £nable decision maker to get personalized
Information that reflects her context
Precise: 7he decision maker should have precise informatiorn in
space, time and context.




A few real-world applications: 1992-Present

* HPC-based decision support environments since
1992
* TRANSIMS Program (13392-2001)
* DHS NISAC Program (2002-present]
* DoD CNIMS program (2005-present)

* Central focus: rigorous data-driven causal modeling

* Ensuring models were contextualized and used diverse
data sets

* Over two dozen user defined case studies to support
policy analysis and model refinement



Synthetic Population, Network
& Information



A Tutorial on Generating Synthetic Populations for Social
Modeling

IJCAI 2016, New York City, July 10, 2016 & AAMAS 2016,
Singapore, May 9, 2016 and AAMAS 2017/, Brazil.

Contains references on the topic as well.

http://people.virginia.edu/ " ss7rs/synthetic_population_tutorial /IJCAI_2016_generating_synthe
tic_populations_for_social_modeling_tutorial.pdf


http://ijcai-16.org/
http://sis.smu.edu.sg/aamas2016

What is a synthetic agent ?

* A representation of elements’ and states that is not
Intended to precisely match any snapshot of the
system, but to provide a statistically accurate overall
picture:

ORANISM
OMICS DATA
IMMUNOLOGICAL DATA
MICROBIAL DATA
FUNGAL DATA

RESPIRATORY SYSTEM

CIRCULATORY SYSTEM
ENTRAL NERVOUS SYSTEM

ENDROCRINE SYSTEM
REPRODUCTIVE SYSTEMS

LYMPHOID SYSTEM
MUSCULOSCKELETAL SYSTEM
URINARY SYSTEM '
DIGESTIVE SYSTEM
SPECIAL SENSE ORGANS
MUSCLE TISSUE
NERVE TISSUE

* A synthesis of Incommensurate data e T

= people, places, things

= cells, cytokines, organs

= E.g.. A synthetic human agent

= (Can have demographic, social, health, cognitive, cultural
attributes

= These attributes need to be statistically accurate to
attributes of humans



Synthetic Populations and Networks

* Synthetic population.
* set of synthetic agents [e.g. people] that share a common
geographic, social or biological characteristic

* Sharing can be done at a desired spatial, temporal and
soclal scale.

* Synthetic network:

* synthetic population with links that capture interactions
among the agents

* Links either physical or a matter of convention

* Multiple networks are possible over the same synthetic
agent collection



Synthesizing realistic synthetic contact networks

* First principles approach for synthesizing social contact networks
* For individuals in a population (representation of individuals):

* Their demographics (VWho]
* The sequences of activities they do  [What)
* The times they do them (VWhen])
* The places they do them (Where]
* The reasons they do them (VWhy]

* No explicit data sets available for such networks
* Synthesizing public and commercial data sets and expert knowledge
* Can explicitly model impact of behavioral changes

* [nput data: Noisy, time lagged, diverse

Data sets, documentation at: ndssl.vbi.vt.edu



Constructing synthetic multi-scale synthetic networks
at scale
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Yields multi-scale dynamic & relational networks

r~ ~
SYNTHETIC NETWORK )\é @
_ Gueckedou
eone Koidu = N1
PEOPLEVERTEX LOCATIONVERTEX o o
- age _ (zw=z) - ;“{ g S
- household size land use - vy Tanges
- gender business type - SRR, :
- Ncome : B
& - T
— — —— -
o~ _-" -
L™ i —— -
o - __e
—- - — '_,_f-*{’i -—
.-i: = = — R - — .
- - T~ = -— - -_'1-..
T T e - B T “
— S
— == === ~@
PR T —‘-""-—"-_.._.
. >
Edge attributes:

* activity type: shop, work, school
* (start time 1, end time 1)

* (start time 2, end time 2) 4M nodes, 150M edges
* mode taken



_—a

Global SynthetiC information 1

! - | \\
T

S S~

:
8
*
4
S

\

7
7
:"mmr,«' ‘

N A o A= 0

7

e\
N

JL&

. b
- \ %A % m_ﬁgv/,f;rv
)




Pervasive webapps
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https://www.youtube.com/watch?v=8vdo8sX19 |

Reference: Waldrop M (2018) Free Agents: Monumentally
complex models are gaming out disaster scenarios with
millions of simulated people. Science, 360(6385):144-147.
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Monumentally complex models are gaming out disaster
scenarios with millions of simulated people sy m. Mitehen watarop

t 11:15 on a Monday morning in May, an ordinary
looking delivery van rolls into the intersection of
16th and K streets NW in downtown Washington,
D.C,, just a few blocks north of the White House.
Inside, suicide bombers trip a switch.

Instantly, most of a city block vanishes in a nu-
clear fireball two-thirds the size of the one that engulfed
Hiroshima, Japan. Powered by 5 kilograms of highly en-
riched uranium that terrorists had hijacked weeks ear-
lier, the blast smashes buildings for at least a kilometer

144 13 APRIL 2018 « VOL 360 ISSUE 6385

in every direction and leaves hundreds of thousands of
people dead or dying in the ruins. An electromagnetic
pulse fries cellphones within 5 kilometers, and the
power grid across much of the city goes dark. Winds
shear the bomb’s mushroom cloud into a plume of
radioactive fallout that drifts eastward into the Mary-
land suburbs. Roads quickly become jammed with
people on the move—some trying to flee the area, but
many more looking for missing family members or
seeking medical help.

sciencemag.org SCIENCE

Published by AAAS
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CREDITS: (IMAGE) DANE WEBSTER, UNIVERSITY OF COLORADO IN DENVER;
(DATA) NETWORK DYNAMICS AND SIMULATION SCIENCE LABORATORY (NDSSL)
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https://www.youtube.com/watch?v=8vdo8sX19_I
http://science.sciencemag.org/content/360/6385/144.full
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