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Habitat [From Encyclopedia Britanica] , 

A place where an organism or a 
community of organisms lives, including all 
living and nonliving factors or conditions of 
the surrounding environment. Focus on:

• Engineered environments (e.g. cities, villages, 
ant hills, termite nests, bee-hives)

• Largely on humans but also on animal, virus 
and other species (e.g. microbiota in human 
and animal gut, termite colonies)

• Community as opposed to a single individual
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https://www.nytimes.com/2018/11/20/s
cience/termite-mounds-brazil.html

The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, & Honeybee Ecology: A Study of 
Adaptation in Social Life, Thomas D. Seeley. Wilson, Edward O. (1971). The Insect Societies. Cambridge.

https://www.pbs.org/wgbh/nova/bee
s/hive.html

https://www.nytimes.com/2018/11/20/science/termite-mounds-brazil.html
https://www.pbs.org/wgbh/nova/bees/hive.html


Acknowledgements
Thanks to our collaborators, all members of 
NSSAC and grants from NIH, NSF, DoD, IARPA.



References
• Article in CACM 2014: Computational Epidemiology, 

Madhav Marathe and Anil Vullikanti. Supplementary 

information:   

http://ndssl.vbi.vt.edu/supplementary-

info/vskumar/cacm2012/

• Computational Epidemiology: Tutorial presented at KDD, 

ICSB, AAAI: Madhav Marathe, Anil Vullikanti and Naren

Ramakrishnan: 

http://ndssl.vbi.vt.edu/supplementary-

info/vskumar/kdd-slides.pdf

4

http://ndssl.vbi.vt.edu/supplementary-info/vskumar/cacm2012/


Pervasive, Personalized and Precision (P3) analytics for 
social-habitats

Pervasive:  Enable decision maker to make decisions at any, place, 
anytime and any device
Personalized: Enable decision maker to get personalized 
information that reflects her context
Precise: The decision maker should have precise  information in 
space, time and context.



A few real-world applications: 1992-Present
•HPC-based decision support environments since 
1992
• TRANSIMS Program (1992-2001)
•DHS NISAC Program (2002-present)
•DoD CNIMS program (2005-present)

•Central focus: rigorous data-driven causal modeling
• Ensuring models were contextualized and used diverse 

data sets 
• Over two dozen user defined case studies to support 

policy analysis and model refinement 



Synthetic Population, Network 
&  Information



A Tutorial on Generating Synthetic Populations for Social 
Modeling
IJCAI 2016, New York City, July 10, 2016 & AAMAS 2016, 
Singapore, May 9, 2016 and AAMAS 2017, Brazil.
Contains references on the topic as well.

http://people.virginia.edu/~ss7rs/synthetic_population_tutorial/IJCAI_2016_generating_synthe
tic_populations_for_social_modeling_tutorial.pdf

http://ijcai-16.org/
http://sis.smu.edu.sg/aamas2016


What is a synthetic agent ?
§ A representation of elements’ and states  that is not 

intended to precisely match any snapshot of the 
system, but to provide a statistically accurate overall 
picture:
§ people, places, things

§ cells, cytokines, organs

§ A synthesis of incommensurate data

§ E.g.: A synthetic human agent 
§ Can have demographic, social, health, cognitive, cultural 

attributes

§ These attributes need to be statistically accurate to 
attributes of humans



Synthetic Populations and Networks

•Synthetic population: 
• set of synthetic agents (e.g. people) that share a common 

geographic, social or biological characteristic 
• Sharing can be done at a desired spatial, temporal and 

social scale. 
•Synthetic network: 
• synthetic population with links that capture interactions 

among the agents
• Links either physical or a matter of convention
•Multiple networks are possible over the same synthetic 

agent collection



Synthesizing realistic synthetic contact networks

• First principles approach for synthesizing social contact networks

• For individuals in a population (representation of individuals):
• Their demographics                            (Who) 
• The sequences of activities they do     (What)
• The times they do them                     (When)
• The places they do them                   (Where)
• The reasons they do them                 (Why)

• No explicit data sets available for such networks

• Synthesizing  public and commercial data sets and expert knowledge

• Can explicitly model impact of behavioral changes

• Input data: Noisy, time lagged, diverse

Data sets, documentation at: ndssl.vbi.vt.edu



Constructing synthetic multi-scale synthetic networks 
at scale
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Yields multi-scale dynamic & relational networks

Edge attributes:
• activity type: shop, work, school
• (start time 1, end time 1)
• (start time 2, end time 2)
• mode taken

4M nodes, 150M edges  
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2GB/M people
Storage

50K+
Files in which data is 

stored

7 Billion
Synthetic 
individuals

28+ Billion
Interactions

5 Days 
Compute time 

220 countries 
synthetic populations 

and networks 
constructed

40+
Databases

8TB 
Storage

First data driven global synthetic populations and proximity networks

Global synthetic information 



Pervasive webapps

Design, Execute, and Analyze 
Agent-based simulations of 
Infectious disease spread
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https://www.youtube.com/watch?v=8vdo8sX19_I

Reference: Waldrop M (2018) Free Agents: Monumentally
complex models are gaming out disaster scenarios with
millions of simulated people. Science, 360(6385):144-147.

https://www.youtube.com/watch?v=8vdo8sX19_I
http://science.sciencemag.org/content/360/6385/144.full
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