
COP 4530 / CGS 5425 (Fall 2005)
Data Structures, Algorithms, and Generic Programming

Final exam: Max points: 100 (+10 bonus points), Time: 2 hours

First Name: _______________ Last Name: _______________

This is a closed book examination.

1. (a) (5 points) Show the order in which nodes are visited in an inorder traversals of the binary
tree shown below.

(b) (5 points) Assume that a Node class is defined as shown below. Also assume that a function
void visit(Node *) already exists, which performs some operation on a node (such as printing its value).
Using an STL stack, write a function called levelorder, which performs a level order traversal of a
binary tree. You need not show code to include the STL stack header file.

class Node{
public:
 int key;
 Node *P, *LC, *RC; // P: parent, LC: left child,
 // RC: right child
};

void levelorder(Node *root)
{

2. (30 points) In each question below, draw a figure to show the state of the data structure after the
sequence of operations given below is complete.

a. Draw the BST tree that results after the following sequence of operations on a BST tree that is
initially empty: insert(9), insert(4), insert(1), insert(7), insert(0), insert(8), insert(3), insert(6), insert(2),
insert(2.5), Delete(4), Delete(3), Delete(0).

b. Draw the AVL tree that results after the following sequence of operations on an AVL tree that is
initially empty: insert(9), insert(4), insert(1), insert(7), insert(0), insert(8), insert(3), insert(2),
insert(1.5), insert(10), insert(-1), insert((3.5), Delete(7).

8

4

3 5 9 7

2

0

c. Show the max-heap that results from applying the O(n) heap initialization algorithm that we
discussed in class to the following array: 3, 6, 10, 5, 1, 9, 7, 4, 0, 2, 8. Draw the pointer
representation.

3. (a) (5 points) Give good asymptotic time complexities for each of the following operations on the
data structures given below.

Av.: Average, Amort.: amortized, WC: Worst case, AvAm.: Average amortized time

(b) (5 points) Consider a simple spam (junk email) filter as described below. We keep track of senders
(say, the from field in the email) whose messages should be tagged as spam. Initially, no one is listed as
a spammer. Each time the user marks an email as spam, we record that sender as a spammer. Each time
we receive an email, if the sender has been recorded earlier as a spammer, then the message is tagged as
spam. Suggest a suitable data structure to store the records of spammers. State any reasonable
assumptions that you make, and justify your answer.

4. (a) (15 points) Write code to implement a Delete member function of a Binary Search Tree class named

BST. A BST object contains a variable Node *Root, which points to the root of the tree (it is NULL if
the tree is empty), where a Node is as defined in question 1b. You may assume that functions
Node *GetPredecessor(Node *) and Node *GetSuccessor(Node *) are available for your use.

void BST::Delete(Node *n)
{ // Delete the node n. Assume n is a valid node.

 push pop top/
front

erase push
front

push
back

pop
front

pop
back

search

vector x x x
Amort:

sorted
vector

 x x x x x x

deque x x x x
Amort:

Amort:

 x

stack

 x x x x x x

queue

x x x x x x

BST
WC:
Av:

x x
WC:
Av:

x x x x
WC:
Av:

AVL tree x x x x x x

heap

x x x x x x

hash
table

AvAm:
x x Av: x x x x Av:

doubly
linked
list

x x x

(b) (15 points) Write a member function of the above class, called LeftRotate, which performs a left
rotation on a node, which you can assume is a valid node that is not the root.

void BST::LeftRotate(Node *n)
{ // Rotate n up. Assume n is the right child of its parent.

}

5. (a) (10 points) Consider a strange type of tree, where the root can have at most 2 children, nodes in
the root’s left subtree can have at most l children each, and nodes in the root’s right subtree can have at
most r children each. Derive a formula for the maximum number of nodes in such a tree of height h,
where h, l, and r are greater than 1.

b. (10 points) Disprove the following statement with a counterexample: In an AVL tree, if the balance
factor for a node is 0, then the balance factors for all its descendents too are 0.

Bonus points:

6. (10 points) Prove that if a node in a BST has a successor, but has no right child, then its successor
must be an ancestor. (We will consider only BSTs with distinct elements.)

