COP 4530 / CGS 5425 (Fall 2005) Data Structures, Algorithms, and Generic Programming

Final exam: Max points: 100 (+10 bonus points), Time: 2 hours

First Name: \qquad Last Name: \qquad

This is a closed book examination.

1. (a) (5 points) Show the order in which nodes are visited in an inorder traversals of the binary tree shown below.

(b) (5 points) Assume that a Node class is defined as shown below. Also assume that a function void visit(Node *) already exists, which performs some operation on a node (such as printing its value). Using an STL stack, write a function called levelorder, which performs a level order traversal of a binary tree. You need not show code to include the STL stack header file.
```
class Node{
public:
    int key;
    Node *P, *LC, *RC; // P: parent, LC: left child,
        // RC: right child
};
void levelorder(Node *root)
```

\{
2. (30 points) In each question below, draw a figure to show the state of the data structure after the sequence of operations given below is complete.
a. Draw the BST tree that results after the following sequence of operations on a BST tree that is initially empty: $\operatorname{insert}(9), \operatorname{insert}(4), \operatorname{insert}(1), \operatorname{insert}(7), \operatorname{insert}(0), \operatorname{insert}(8), \operatorname{insert}(3), \operatorname{insert}(6), \operatorname{insert}(2)$, insert(2.5), Delete(4), Delete(3), Delete(0).
b. Draw the $A V L$ tree that results after the following sequence of operations on an AVL tree that is initially empty: $\operatorname{insert}(9), \operatorname{insert}(4), \operatorname{insert}(1), \operatorname{insert}(7), \operatorname{insert}(0), \operatorname{insert}(8), \operatorname{insert}(3), \operatorname{insert}(2)$, insert(1.5), insert(10), insert(-1), insert((3.5), Delete(7).
c. Show the max-heap that results from applying the $O(n)$ heap initialization algorithm that we discussed in class to the following array: $3,6,10,5,1,9,7,4,0,2,8$. Draw the pointer representation.
3. (a) (5 points) Give good asymptotic time complexities for each of the following operations on the data structures given below.

Av.: Average, Amort.: amortized, WC: Worst case, AvAm.: Average amortized time

	push	pop	top/ front	erase	push front	push back	pop front	pop back	search
vector	x	x	x			Amort:			
sorted vector		x	x		x	x	x	x	
deque	x	x	x	x	Amort:	Amort:			x
stack				x	x	x	x	x	x
queue				x	x	x	x	x	x
BST	$\mathrm{WC}:$ Av:	x	x	$\mathrm{WC}:$ $\mathrm{Av}:$	x	x	x	x	$\mathrm{WC}:$ Av:
AVL tree									

(b) (5 points) Consider a simple spam (junk email) filter as described below. We keep track of senders (say, the from field in the email) whose messages should be tagged as spam. Initially, no one is listed as a spammer. Each time the user marks an email as spam, we record that sender as a spammer. Each time we receive an email, if the sender has been recorded earlier as a spammer, then the message is tagged as spam. Suggest a suitable data structure to store the records of spammers. State any reasonable assumptions that you make, and justify your answer.
4. (a) (15 points) Write code to implement a Delete member function of a Binary Search Tree class named BST. A BST object contains a variable Node *Root, which points to the root of the tree (it is NULL if the tree is empty), where a Node is as defined in question $l b$. You may assume that functions Node *GetPredecessor(Node *) and Node *GetSuccessor(Node *) are available for your use.
void BST: : Delete (Node *n)
\{ // Delete the node n. Assume n is a valid node.
(b) (15 points) Write a member function of the above class, called LeftRotate, which performs a left rotation on a node, which you can assume is a valid node that is not the root.

```
void BST::LeftRotate(Node *n)
{ // Rotate n up. Assume n is the right child of its parent.
}
```

5. (a) (10 points) Consider a strange type of tree, where the root can have at most 2 children, nodes in the root's left subtree can have at most l children each, and nodes in the root's right subtree can have at most r children each. Derive a formula for the maximum number of nodes in such a tree of height h, where h, l, and r are greater than 1 .
b. (10 points) Disprove the following statement with a counterexample: In an AVL tree, if the balance factor for a node is 0 , then the balance factors for all its descendents too are 0 .

Bonus points:

6. (10 points) Prove that if a node in a BST has a successor, but has no right child, then its successor must be an ancestor. (We will consider only BSTs with distinct elements.)
