COT 5405: Advanced Algorithms
 Fall 2011

Assignment 1

Due: 5pm, 25 Oct 2011

1. (20 points) Give the dual of the following linear program.

Minimize $2 \mathrm{x}_{1}-4 \mathrm{x}_{2}$
Subject to:

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \geq 4 \\
& 2 x_{1}-x_{2} \geq 6 \\
& 4 x_{1}-2 x_{2} \geq-2 \\
& -3 x_{1}-5 x_{2} \geq-3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Answer:
maximize $4 y_{1}+6 y_{2}-2 y_{3}-3 y_{4}$
Subject to:
$3 \mathrm{y}_{1}+2 \mathrm{y}_{2}+4 \mathrm{y}_{3}-3 \mathrm{y}_{4} \leq 2$
$2 \mathrm{y}_{1}-\mathrm{y}_{2}-2 \mathrm{y}_{3}-5 \mathrm{y}_{4} \leq-4$
$\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4} \geq 0$
2. (20 points) Given the following instance of Knapsack: profits (4, 20, 12, 12, 2), sizes (2 , $7,4,4,1$), and capacity 9 , find a factor $1 / 2$ approximation yielded by the FTPAS we discussed in class. Show all the steps in the algorithm.

Answer:

$$
\begin{aligned}
& \mathrm{K}=0.5 * 20 / 5=2 \\
& \mathrm{p}^{\prime}=(2,10,6,6,1)
\end{aligned}
$$

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$
$\mathbf{1}$	0	∞	2	∞																						
$\mathbf{2}$	0	∞	2	∞	7	∞	9	∞																		
$\mathbf{3}$	0	∞	2	∞	∞	∞	4	∞	6	∞	7	∞	9	∞	∞	∞	11	∞	13	∞						
$\mathbf{4}$	0	∞	2	∞	∞	∞	4	∞	6	∞	7	∞	8	∞	10	∞	11	∞	13	∞	∞	∞	15	∞	17	∞
$\mathbf{5}$	0	1	2	3	∞	∞	4	5	6	7	7	8	8	$\mathbf{9}$	10	11	11	12	13	14	∞	∞	15	16	17	18

The solution corresponds to profit' $=14$ with elements $\{3,4,5\}$ with actual profit 26.
3. (20 points) Given the following instance of set cover: sets $\{a, b\},\{a, c, d\},\{b, d e\}$, and $\{\mathrm{a}, \mathrm{b}, \mathrm{e}\}$, with costs $2,4,3$, and 3 respectively, find the solution using the primal-dual
algorithm discussed in class. Pick the y s in alphabetical order. Show all the steps in the algorithm.

Answer:

$$
S^{\prime}=\{ \}, C^{\prime}=\{ \}
$$

Step 1:
$\mathrm{x}_{1}=0$ or $\mathrm{y}_{\mathrm{a}}+\mathrm{y}_{\mathrm{b}}=2$
$\mathrm{x}_{2}=0$ or $\mathrm{y}_{\mathrm{a}}+\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{d}}=4$
$\mathrm{x}_{3}=0$ or $\mathrm{y}_{\mathrm{b}}+\mathrm{y}_{\mathrm{d}}+\mathrm{y}_{\mathrm{e}}=3$
$x_{4}=0$ or $y_{a}+y_{b}+y_{e}=3$
$y_{a}=2 . S^{\prime}=\left\{s_{1}\right\}, C^{\prime}=\{a, b\}$
Step 2:
$\mathrm{x}_{2}=0$ or $\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{d}}=2$
$x_{3}=0$ or $y_{d}+y_{e}=3$
$x_{4}=0$ or $y_{e}=1$
$y_{c}=2 . S^{\prime}=\left\{s_{1}, s_{2}\right\}, C^{\prime}=\{a, b, c, d\}$
Step 3:
$\mathrm{x}_{3}=0$ or $\mathrm{y}_{\mathrm{e}}=3$
$x_{4}=0$ or $y_{e}=1$
$\mathrm{y}_{\mathrm{e}}=1 . \mathrm{S}^{\prime}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{4}\right\}, \mathrm{C}^{\prime}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
Cost $=9$
4. (20 points) Formulate the following Minimum Edge Dominating Set problem as an integer linear program, and also give its relaxation. Minimum Edge Dominating Set: Given a graph $G=(V, E)$, find a subset of edges, E^{\prime}, of smallest cardinality, such that if $e_{1} \in E-E^{\prime}$, then there is an $\mathrm{e}_{2} \in E^{\prime}$ such that e_{1} and e_{2} are adjacent.

Answer:

ILP

Minimize $\sum_{\text {e } \in E} \mathrm{X}_{\mathrm{e}}$
Subject to:
$\sum_{\mathrm{e}^{\prime} \in E: \text { ene } \mathrm{e}^{\prime} \neq \varnothing} \mathrm{X}_{\mathrm{e}^{\prime}} \geq 1 \forall \mathrm{Ee} \in \mathrm{E}$
$\mathrm{x}_{\mathrm{e}} \in\{0,1\} \forall \mathrm{e} \in \mathrm{E}$

Relaxation

Minimize $\sum_{\text {e } \in E} \mathrm{X}_{\mathrm{e}}$
Subject to:
$\sum_{\text {e' }^{\prime} \in E: \text { ene }} \neq \varnothing \mathrm{X}_{\mathrm{e}^{\prime}} \geq 1 \forall \mathrm{e} \in \mathrm{E}$
$\mathrm{x}_{\mathrm{e}} \geq 0 \forall \mathrm{e} \in \mathrm{E}$
5. (20 points) Show that the following approximation algorithm for set cover has an approximation factor of $|U|$, and show that this bound is tight. Note: In this problem, we define the cost of a set as the sum of the cost of each of its elements.

$$
\begin{aligned}
& C:=\{ \} \\
& \text { while } C \neq U \\
& \quad \text { Let } s \text { be a set of smallest cost which contains some uncovered element } \\
& \quad C:=C \cup s
\end{aligned}
$$

Output the sets picked

Answer:
OPT $\geq \sum_{e \in U} c_{e}$, where c_{e} is the cost of element e.
The approximation algorithm picks at most IUI sets and each has cost at most $\sum_{\mathrm{e} \in \mathrm{U}} \mathrm{c}_{\mathrm{e}}$. Therefore APPROX $\leq \operatorname{IUI}$ OPT

Tightness: Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}\}$ with costs $\{\mathrm{K}, 1\}$ and the sets be $\{\mathrm{a}\}$, and $\{\mathrm{a}, \mathrm{b}\}$. The algorithm will first choose the first set and then the second, with total cost $2 \mathrm{~K}+1$, while the optimum is to choose the second set with total cost K. As K approaches infinity, APPROX/OPT approaches 2 , which is IUI.

