
COP4530 – Data Structures, Algorithms and Generic Programming
Recitation 4

Date: September 14/18-, 2008

Lab topic:
1) Take Quiz 4
2) Discussion on Assignment 2

Discussion on Assignment 2.

Your task is to write 2 template classes and rewrite your implementation for Assignment 1 to
use these two classes. The template classes that you are required to implement are:

1. The vector template class: Used to store the flight and number of seats combination.

2. The self-organizing linked list template class: Used to store your underlying customer

flight record data structure. This should be very similar to the linked list usage you
implemented for Assignment 1. You should be able to just switch and replace all STL
linked list calls with your own self-organizing linked-list calls.

Part 1: About the Vector Template Class

1. Your task is to build a template Vector class and name the file vector.h

2. An object of this class will be used to store words from a given file.

3. You are required to implement your own template Vector class. You CANNOT use
STL vector objects in your template class to avoid coding for the various required
implementations.

4. The class must contain the following implementations:
a. Required:

i. a default constructor that initializes an array of size 2,
ii. a destructor,

iii. a method named void push_back(const T &e),
iv. the [] operator,
v. the method int size() const

b. Optional (make private if not implemented):
i. Copy Constructor

ii. Assignment operator

c. Any additional methods or operator overloads needed.

1

5. A sample class declaration of the vector.h file in your implementation could look
similar to the one below. Notice that the class in encapsulated in the namespace blah to
more clearly distinguish the class from the STL vector class. However, using namespaces
in this manner is optional.

#ifndef MYVECTOR_H
#define MYVECTOR_H

#include <iostream>
#include <stdlib.h> // EXIT_FAILURE, size_t

namespace blah
{

template <typename T>
class Vector;

//----------------------------------
// Vector<T>
//----------------------------------

template <typename T>
class Vector
{
public:
 // constructors - specify size and an initial value
 Vector ();
 ~Vector ();

 // member operators
 T& operator [] (int) const;

 // other methods
 int size () const;
 int capacity () const;

 // Container class protocol
 int push_back (const T&);

 void dump (std::ostream& os) const;

protected:
 // data
 int size, capacity;
 T* content; // pointer to the primative array elements

};

} //end of namespace blah

#endif

2

6. Brief description of each method/operator overloads:

a. Vector ():
i. The size is initialized to 0 since we do not have any elements in a newly

declared vector.
ii. The capacity is initialized to 2 since the project requirement states that

the default constructor “initializes an array of size 2”.
iii. The array (named content in our example) is initialized to a size of 2.

b. ~Vector():
i. Deallocate the dynamically allocated memory for the array.

ii. Deallocate any other dynamically allocated memory
iii. Set size and capacity to 0.

c. T& operator [] (int ind):
i. Check the bounds for the index ind that is passed in. If the index is

invalid, print out an error message.
ii. If the index is valid, return the value of the element located at the index

ind of the array.

d. int size() const:
i. Returns the size of the array.

e. int capacity() const:
i. Returns the capacity of the array.

ii. This method is optional.

f. int push_back(const T&):
i. Check to see if there is currently enough space to add T. If there is, just

add T to the array
ii. If there isn’t enough space, reallocate memory for a larger array. You

may do so by doubling the capacity of the array. Copy the contents over
to the new larger array and then add T to the array.

g. void dump(std::ostream &os) const:
i. Prints out the contents of the array.

ii. This method is optional.

3

Part 2: About the Self-Organizing Linked-List Template Class

1. Your task is to build a non-generic template List class. This class will contain a self-
organizing doubly linked list.

2. An object of this class will be used to replace all the STL container objects that you may
have used in Assignment 1.

3. You are required implement your own template List class. You cannot use STL list
objects in your template class to avoid coding for the various required implementations.

4. It is sufficient that the class contain only the necessary implementations of the
methods/operator overloads needed by the STL object(s) used in Assignment 1.

5. In addition, you are required to add a method that will implement a self-organizing
feature of the linked-list. This method is called every time a query is ran.

6. Hint: Know the difference between a list, a link and a list iterator.

Suggested Timeline

Timeline Task completed

Thur, 09/17/09 Completed implementation of vector.h. You should write a small test program that
will test the implementations (one method or operation at a time) of your template
vector class.

Sat, 09/19/09 Completed implementation of list.h. You should write a small test program that will
test the implementations (one method or operation at a time) of your template list class.

09/21/09 Replaced all usage of STL vector and/or list objects with your own template vector and
list objects in the code of all copies of files used in Assignment 1 and save these files
as the files for Assignment 2.

Wed, 09/23/09 Completed memory test for your own template vector and list.

References

4

Topic Links

STL vector 1. http://www.sgi.com/tech/stl/Vector.html

STL list 1. http://www.sgi.com/tech/stl/List.html

5

http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Vector.html

	Discussion on Assignment 2.
	Part 1: About the Vector Template Class
	Part 2: About the Self-Organizing Linked-List Template Class
	Suggested Timeline
	Timeline
	Topic

