
COP4530 – Data Structures, Algorithms and Generic Programming
Recitation 2

Date: September 11, 2009

Lab objectives:
1) Quiz
2) Set up SSH to run external programs.
3) Learn how to use the DDD debuger.
4) Learn to use the list STL.

Setup tasks:

1. Under the Start menu, find the folder named X-Win32 and open the Xutils32.

2. Start the SSH client. When the shell opens, go to Edit Settings and then go to
Tunneling.

3. Check the box that says Tunnel x11 con and click OK. Now it is possible to run
text editors in separate windows from the SSH console. Fo emacs for example, just type
“xterm emacs” followed by the file name to be edited, and a separate emacs window will
appear.

4. Logon to your CS account.

5. Create a directory named cop4530.

6. Go into the cop4530 directory and create a sub-directory named recitation.

7. Go into the recitation directory. Type the command pwd. You should see
something similar to the following on the screen:

/home/majors/your_username/cop4530/recitation

8. Type the following command,

cp –r ~cop4530/fall09/recitation/rect3 .

You should see some error messages similar to the following,

cp: cannot open
`/home/courses/cop4530/spring08/recitation/rect3/lists/readstudent.cpp' for
reading: Permission denied
cp: cannot open `/home/courses/cop4530/spring08/recitation/rect3/wcount-
good.cpp' for reading: Permission denied

Note: The warnings above indicate that some files cannot be read because the
permissions have been set to non-world viewable.

1

Task 1 : Learn to use the DDD debugger.

A debugger allows us to run other program executables and examine the behavior of these
programs as they are running. Debuggers are especially helpful when there is a mysterious bug
in the program that is not apparent at first glance.

One of the more popular debuggers for UNIX would be the GDB (the GNU debugger). A
graphical front-end version of GDB is known as the DDD.

1. Open the file wcount-bad.cpp.

2. Compile the program and run the executable. The desired effect of the program should
be as follows:

i. The user is allowed to add enter 3 distinct words. If the word entered already
exists, the count for the word is incremented for each repeated entry.

ii. The program should not accept any new words if all 3 slots are full.

The desired output for the program is as follows:

Please enter word (-1 to quit)
one
Please enter word (-1 to quit)
two
Please enter word (-1 to quit)
three
Please enter word (-1 to quit)
four
Array is full. Cannot add word.
Please enter word (-1 to quit)
one
Please enter word (-1 to quit)
three
Please enter word (-1 to quit)
-1
Exiting program..
wordarray[0] = one, count = 2
wordarray[1] = two, count = 1
wordarray[2] = three, count = 2

3. This program has logic errors. Use the DDD debugger to determine the location of the
error.

4. Fix the error to produce the desired output above. Hint: An unused function in the
program will be helpful.

2

A sample solution will be provided in the file wcount-good.cpp. This file will be
made available by 3:00 p.m. today (January 23, 2008). You may obtain the file by typing
the following in your current directory:

cp ~cop4530/fall09/recitation/rect3/wcount-good.cpp .

Task 2 : Learn to use the list STL.

 1. Go into the lists directory.
 2. Open the file readname.cpp. This client program uses the list STL to store in names
 keyed in by the user. When the user is done, the program prints out all the names stored
 in the linked-list.
 3. Suppose you wish to write a similar program to print out some student information. This
 program should store the name, age and section of each student.
 i. Modify the program readname.cpp to prompt the user for the age and section
 corresponding to each name.
 ii. Store all three information about each student in a single linked-list.
 iii. Use a FOR or WHILE-loop to print out the information stored in the linked list.
 4. A sample output for such a program is shown below:
 Enter name ('exit' when done): Susana
 Enter age: 19
 Enter section: 1
 Enter name ('exit' when done): Lucas
 Enter age: 21
 Enter section: 2
 Enter name ('exit' when done): Arturo
 Enter age: 23
 Enter section: 1
 3
 Enter name ('exit' when done): Jane
 Enter age: 20
 Enter section: 2
 Enter name ('exit' when done): exit
 Name = Susan, Age = 19, Section = 1
 Name = John, Age = 21, Section = 2
 Name = Bill, Age = 23, Section = 1
 Name = Janet, Age = 20, Section = 2

3

Exercise

Log on to linprog.cs.fsu.edu and use the DDD debugger to solve a bug problem
with an executable created from the file squares-bad.cpp located in your rect3
directory.

Sample solutions will be provided in the file lists/readstudent.cpp. This file
will be made available by 3:00 p.m. today (January 23, 2008). You may obtain the files
by typing the following command in your current directory.

cp ~cop4530/fall09/recitation/rect3/lists/readstudent.cpp

Topic Links

Templates http://www.cplusplus.com/doc/tutorial/tut5-1.html

DDD Debugger http://www.gnu.org/manual/ddd/html_mono/ddd.html

4

http://www.cplusplus.com/doc/tutorial/tut5-1.html
http://www.gnu.org/manual/ddd/html_mono/ddd.html

	Exercise
	Topic

