COP4530 Recitation Fall 2012
Week 2

*If you have the Monday recitation (Labor Day) and struggle with the concepts
covered in this recitation handout, please attend office hours or schedule an
appointment.

Objective
1. g++ Optimization flags
2. Assignment 1 Discussion

g++ Optimization flags

A. Introduction

g++ offers various optimization options when compiling. It is important to note,
optimization does not always mean faster. Optimizations can involve improvements
in runtime, space (executable size), or memory usage.

B. Flags
What does -0 mean?

What does -02 mean?

What does -03 mean?

What does -0Os mean?

What does -00 mean?

C. Benefits at a cost

“Without any optimization option, the compiler's goal is to reduce the cost of
compilation and to make debugging produce the expected results. Statements are
independent: if you stop the program with a breakpoint between statements, you
can then assign a new value to any variable or change the program counter to any
other statement in the function and get exactly the results you would expect from
the source code.

Turning on optimization flags makes the compiler attempt to improve the
performance and/or code size at the expense of compilation time and possibly the
ability to debug the program.”!

Programming Assignment 1 Discussion

A. Toy example of similar concepts

We will discuss some concepts in Assignment 1 through a toy example. Suppose we
are tasked to develop a system to find the percent of cars at three dealerships with a
particular color. The expected usage is:

> searchCars <color>

Furthermore, we have to output the name of the dealer and the query result to the
screen:

> searchCars blue
Toyota: 14.2857%
Honda: 15.3846%
Ford: 15.3846%

B. Interface
We are provided an interface for a class CarDealer we need to implement.

HEHHAHHHAHH A HH R H R H R H R R R R H R
class CarDealer

{
public:
// Set inventory to contents of filename and set name
CarDealer(string filename, string dealerName);
int search(string color); // return # of color at dealer
float percentMatching(int count); // return % at a dealer
string dealerName(); // return name
private:
vector<string> cars; // color inventory
string name; // dealer name
s

HHHHHHHHHHHHHHHHHHHH R R R R R R R R R R R R R R R R

L http://gcc.gnu.org/onlinedocs/gcc-4.3.2 /gcc/Optimize-Options.html

C. Implementation
Can you fill in the missing code (....)?

HHHHHHHHHHHHHHHHHHH AR R AR R 8844
// filename is a text file with a list of colors on a single line
// separated by a single-space (Ex/ black blue orange ...)
CarDealer: :CarDealer(string filename, string dealerName)

{
hame = dealerName;
// set the ifstream pointer to a new ifstream object
// using filename
ifstream* infile = ...
string car;
// read the colors from infile and add the read color
// into the cars vector
// deallocate memory
delete infile;
ks
int CarDealer::search(string color)
{
vector<string>::iterator itr;
int count = 0;
// use itr to loop through the vector cars (vector of colors)
// and increment color each time a match is found
for (. T T) {
if o)
++count;
ks
return count;
ks
float CarDealer: :percentMatching(int count)
{
// the percent matching is the value of count divided
// by the total number of cars at a dealer times 100
ks
string CarDealer: :dealerName()
{
return name;
ks

HH A A A A A A A A A A AR A

D. Driver program
Can you fill in the missing code (....)?

HAEHHAHHHHBHE A HEHHHE R AR AR H AR H AR AR H AR H R H AR H
#include<iostream>
#include<fstream>
#include<string>
#include<vector>
using namespace std;
#include “car_dealer.h”

int main(int argc, char* argv[])
{
if Cargc '= 2) {
cout << “Usage: search <color>” << endl;
exit(1l);
3

string color = argv[1l],

input;
vector<CarDealer> dealerships;
vector<CarDealer>: :iterator itr;

// add three CarDealer objects to dealerships
// you can make up the dealer name

// search each dealership and display the result
// use itr to loop through dealerships

for (. T T) {

cout << <<

<< << “%” << endl;

€. <

}

return 0;

¥
HHHHHHHHHHHHHHHHHHHHH R R R R R R R R R R R R R R R

D. Improvements
How can we improve on this code?

References:

1. Vector: http://www.cplusplus.com/reference/stl/vector/
2. Dynamic memory: http://www.cplusplus.com/doc/tutorial/dynamic/

