COP4530 Recitation Fall 2012 Week 8

Objective

1. Binary Search Tree

Definition

A. Binary Search Tree

A binary tree is called a Binary Search Tree iff:

- There is an order relation ≤ defined for the vertices of B
- For any vertex v, and any descendant u in the subtree v.left, $u \le v$
- For any vertex v, and any descendent w in the subtree v.right, v < w

Implementation

A. Basic Methods

- Constructor
 - Create an empty binary search tree
- Destructor
 - o Deallocate memory
- Insert
 - o Create a new node in the binary search tree
- Delete
 - Remove a node from the binary search tree; rotate if necessary
- Search
 - Search the binary search tree for a node, and return its value
- Find max
 - o Return largest value in the binary search tree
- Find min
 - o Return smallest value in the binary search tree

How can we simplify the public interface by using the private interface?

B. Traversal

- 1. Inorder Traversal
- 2. Preorder Traversal
- 3. Postorder Traversal

What is important about these traversal methods?