
 1

COP4530 – Data Structures, Algorithms and Generic Programming

Recitation 4

Date: 16
th

 September, 2011

Lab topic:

1) Discus Quiz 2

2) Discussion on Assignment 2

3) Take Quiz 3

Discussion on Assignment 2.

Your task is to write 3 template classes and exercise recursion technique and analyze runtime .

Part 1: Vector Template Class (Functionalities)

a. Vector ():

i. The size is initialized to 0 since we do not have any elements in a newly

declared vector.

ii. The capacity is initialized to 2 since the project requirement

states that the default constructor “initializes an array of size 2”.

b. ~Vector():

i. Deallocate the dynamically allocated memory for the array.

ii. Deallocate any other dynamically allocated memory

iii. Set size and capacity to 0.

c. T& operator [] (int ind):

i. Check the bounds for the index ind that is passed in. If the index is

invalid, print out an error message.

ii. If the index is valid, return the value of the element located at the

index ind of the array.

d. int size() const:

i. Returns the size of the array.

e. int capacity() const:

i. Returns the capacity of the array.

f. void push_back(const T&):

i. Add element at the end. Check to see if there is currently enough space to

add T. If there is, just add T to the array

ii. If there isn’t enough space, reallocate memory for a larger array.

You may do so by a factor of 4 the capacity of the array. Copy the

contents over to the new larger array and then add T to the array.

 2

g. void push_front(const T&):

i. Add elements in the front. Check to see if there is currently enough space

to add T. If there is, just add T to the array

ii. If there isn’t enough space, reallocate memory for a larger array.

You may do so by a factor of 4 the capacity of the array. Copy the

contents over to the new larger array and then add T to the array.

h. void pop_back():

i. Removes elements from the end of the vector.

ii. Reduce the size correspondingly.

i. void pop_front():

i. Removes elements from the front of the vector.

ii. Shift elements forward.

iii. Reduce the size correspondingly.

j. void dump(std::ostream &os) const:

i. Prints out the contents of the array.

ii. This method is optional.

If you do not implement copy constructor and assignment operator then you must declare

them private to avoid accidental misuse.

Part 2: A generic template Stack class

1. Your task is to build a generic template Stack class. This class will contain an instance

of the aforementioned Vector class for storage.

2. The stack class must have the following features (with conventional meaning):

3. The amortized time complexities for all operations should be O(1). How to do that ?

Part 3: A generic template Queue class

1. Your task is to build a generic template Queue class.

2. The queue class must have the following features (with conventional meaning):

 3

3. The amortized time complexities for all operations should be O(1). Any ideas how to do

it ?

 Hint: You can use a circular array.

Part 4:Recursion

Provide a recursive implementation to the function mentioned in the assignment.

Merge sort is a popular sorting algorithm which works as follows:

a) Say the input array is of size n

b) If the array contain a single element , then simply return that element. Otherwise divide

the array in the middle to produce two lists of size n/2

c) Recursively call Merge sort function on these two sub-arrays

d) Merge the two lists returned by merge sort (assume that merge takes cn time, where c is a

constant > 0)

e) Return the merged list.

 Basically these steps can be written as:

 f(n) = 2 * f(n/2) + c * n

Calculate the complexity of this algorithm.

References

Topic Links

STL vector 1. http://www.sgi.com/tech/stl/Vector.html

STL stack 1. http://www.cplusplus.com/reference/stl/stack/

STL queue 1. http://www.cplusplus.com/reference/stl/queue/

