
 1

COP4530 – Data Structures, Algorithms and Generic Programming

Recitation 4

Date: January 27 & 29, 2009

Lab topic:

1) Take Quiz 4

2) Discussion on Assignment 2

Discussion on Assignment 2.

Your task is to write 2 template classes and rewrite your implementation for Assignment 1 to

use these two classes. The template classes that you are required to implement are:

1. The vector template class: Used to store the flight and number of seats combination.

Part 1: About the Vector Template Class

1. Your task is to build a template Vector class and name the file vector.h

2. An object of this class will be used to store the flight and number of seats information

read in from the FLIGHTS.txt file.

3. You are required to implement your own template Vector class. You CANNOT use

STL vector objects in your template class to avoid coding for the various required

implementations.

4. The class must contain the following implementations:

a. Required:

i. a default constructor that initializes an array of size 2,

ii. a destructor,

iii. a method named void push_back(const T &e),

iv. the [] operator,

v. the method int size() const

b. Optional (make private if not implemented):

i. Copy Constructor

ii. Assignment operator

c. Any additional methods or operator overloads needed.

5. A sample class declaration of the vector.h file in your implementation could look

similar to the one below. Notice that the class in encapsulated in the namespace blah to

more clearly distinguish the class from the STL vector class. However, using namespaces

in this manner is optional.

 2

#ifndef MYVECTOR_H
#define MYVECTOR_H

#include <iostream>
#include <stdlib.h> // EXIT_FAILURE, size_t

namespace blah
{

template <typename T>
class Vector;

//----------------------------------
// Vector<T>
//----------------------------------

template <typename T>
class Vector
{
public:
 // constructors - specify size and an initial value
 Vector ();
 ~Vector ();

 // member operators
 T& operator [] (int) const;

 // other methods
 int size () const;
 int capacity () const;

 // Container class protocol
 int push_back (const T&);

 void dump (std::ostream& os) const;

protected:
 // data
 int size, capacity;
 T* content; // pointer to the primative array elements

};

} //end of namespace blah

#endif

 3

6. Brief description of each method/operator overloads:

a. Vector ():

i. The size is initialized to 0 since we do not have any elements in a newly

declared vector.

ii. The capacity is initialized to 2 since the project requirement states that

the default constructor “initializes an array of size 2”.

iii. The array (named content in our example) is initialized to a size of 2.

b. ~Vector():

i. Deallocate the dynamically allocated memory for the array.

ii. Deallocate any other dynamically allocated memory

iii. Set size and capacity to 0.

c. T& operator [] (int ind):

i. Check the bounds for the index ind that is passed in. If the index is

invalid, print out an error message.

ii. If the index is valid, return the value of the element located at the index

ind of the array.

d. int size() const:

i. Returns the size of the array.

e. int capacity() const:

i. Returns the capacity of the array.

ii. This method is optional.

f. void push_back(const T&):

i. Check to see if there is currently enough space to add T. If there is, just

add T to the array

ii. If there isn’t enough space, reallocate memory for a larger array. You

may do so by doubling the capacity of the array. Copy the contents over

to the new larger array and then add T to the array.

g. void dump(std::ostream &os) const:

i. Prints out the contents of the array.

ii. This method is optional.

 4

References

Topic Links

STL vector 1. http://www.sgi.com/tech/stl/Vector.html

STL list 1. http://www.sgi.com/tech/stl/List.html

