
 1

COP4530 – Data Structures, Algorithms and Generic Programming

Recitation 3

Date: January 20 & 22, 2009

Lab objectives:

1) Quiz

2) Set up SSH to run external programs.

3) Learn how to use the DDD debuger.

4) Learn to use the list STL.

5) Discussion and Q & A about Assignment 1.

Setup tasks:

1. Under the Start menu, find the folder named X-Win32 and open the Xutils32.

2. Start the SSH client. When the shell opens, go to Edit Settings and then go to Tunneling.

3. Check the box that says Tunnel x11 con and click OK. Now it is possible to run text

editors in separate windows from the SSH console. Fo emacs for example, just type

“xterm emacs” followed by the file name to be edited, and a separate emacs window will

appear.

4. Logon to your CS account.

5. Create a directory named cop4530.

6. Go into the cop4530 directory and create a sub-directory named recitation.

7. Go into the recitation directory. Type the command pwd. You should see

something similar to the following on the screen:

/home/majors/your_username/cop4530/recitation

8. Type the following command,

cp –r ~cop4530/spring09/recitation/rect3 .

You should see some error messages similar to the following,

cp: cannot open

`/home/courses/cop4530/spring09/recitation/rect3/lists/readstudent.cpp' for

reading: Permission denied

cp: cannot open `/home/courses/cop4530/spring09/recitation/rect3/wcount-

good.cpp' for reading: Permission denied

Note: The warnings above indicate that some files cannot be read because the

permissions have been set to non-world viewable.

 2

Task 1 : Learn to use the DDD debugger.

A debugger allows us to run other program executables and examine the behavior of these

programs as they are running. Debuggers are especially helpful when there is a mysterious bug

in the program that is not apparent at first glance.

One of the more popular debuggers for UNIX would be the GDB (the GNU debugger). A

graphical front-end version of GDB is known as the DDD.

1. Open the file wcount-bad.cpp.

2. Compile the program and run the executable. The desired effect of the program should

be as follows:

i. The user is allowed to add enter 3 distinct words. If the word entered already

exists, the count for the word is incremented for each repeated entry.

ii. The program should not accept any new words if all 3 slots are full.

The desired output for the program is as follows:

Please enter word (-1 to quit)

one

Please enter word (-1 to quit)

two

Please enter word (-1 to quit)

three

Please enter word (-1 to quit)

four

Array is full. Cannot add word.

Please enter word (-1 to quit)

one

Please enter word (-1 to quit)

three

Please enter word (-1 to quit)

-1

Exiting program..

wordarray[0] = one, count = 2

wordarray[1] = two, count = 1

wordarray[2] = three, count = 2

3. This program has logic errors. Use the DDD debugger to determine the location of the

error.

4. Fix the error to produce the desired output above. Hint: An unused function in the

program will be helpful.

 3

A sample solution will be provided in the file wcount-good.cpp. This file will be

made available by 3:00 p.m. Thursday (January 22, 2008). You may obtain the file by

typing the following in your current directory:

cp ~cop4530/spring09/recitation/rect3/wcount-good.cpp .

Task 2 : Learn to use the list STL.

1. Go into the lists directory.

2. Open the file readname.cpp. This client program uses the list STL to store in names

keyed in by the user. When the user is done, the program prints out all the names stored

in the linked-list.

3. Suppose you wish to write a similar program to print out some student information. This

program should store the name, age and section of each student.

i. Modify the program readname.cpp to prompt the user for the age and section

corresponding to each name.

ii. Store all three information about each student in a single linked-list.

iii. Use a FOR or WHILE-loop to print out the information stored in the linked list.

4. A sample output for such a program is shown below:

Enter name ('exit' when done): Susana

Enter age: 19

Enter section: 1

Enter name ('exit' when done): Lucas

Enter age: 21

Enter section: 2

Enter name ('exit' when done): Arturo

Enter age: 23

Enter section: 1

Exercise

Log on to linprog.cs.fsu.edu and use the DDD debugger to solve a bug problem

with an executable created from the file squares-bad.cpp located in your rect3

directory.

 4

Enter name ('exit' when done): Jane

Enter age: 20

Enter section: 2

Enter name ('exit' when done): exit

Name = Susan, Age = 19, Section = 1

Name = John, Age = 21, Section = 2

Name = Bill, Age = 23, Section = 1

Name = Janet, Age = 20, Section = 2

Sample solutions will be provided in the file lists/readstudent.cpp. This file

will be made available by 3:00 p.m. today (January 22, 2009). You may obtain the files

by typing the following command in your current directory.

cp ~cop4530/spring09/recitation/rect3/lists/readstudent.cpp

Task 3: Discussion and Q& A about Assignment 1

Advice from TA:

1. Read the project requirements carefully.

• You should attempt to satisfy all the requirements of the project.

• Your executable will be tested with an automated script, so your program should

behave in the same way as the executable.

• Your program should also print out the output in the same manner as the

executable.

• When in doubt, clarify with instructor or TA. Do not assume.

2. Plan ahead before you code.

You should decide on how you need to store the data so that it can be efficiently accessed

when needed.

3. Familiarize yourself with the reading and parsing input.

This is one of the more fun parts of the project. You get to practice/hone some of your

programming skills in parsing input.

4. Test your program extensively and write your own test files.

Do not presume that your program will only be tested with the sample input data already

provided.

5. Use I/O redirect to test your program with an input test file.

A sample file input.txt is provided to you. You can test your program by typing,

proj1 FLIGHTS.txt < input.txt

6. Seek help from instructor or TAs if you are stuck for too long.

 5

If you have been staring at the same segment of code for the past 3 hours and still can’t

figure out what is wrong, you need help! Submit your current work using the submission

script and email me at chatterj@cs.fsu.edu with a brief description of your problem.

7. Adhere to good programming styles and practices as your program will be graded on

design and readability (see Syllabus),

e.g. indent your code, include comments on major subroutines or algorithms (but not on

every line of code), close all open file descriptors, and etc.

8. Do your own work.

Q & A: ?

References

Topic Links

Templates 1. http://www.cplusplus.com/doc/tutorial/tut5-1.html

DDD Debugger 1. http://www.gnu.org/manual/ddd/html_mono/ddd.html

