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Mobile electronics are undergoing a convergenoghaft were formerly muliple single application desdnto

a single programmable device — generally a smamh@hThe programmability of these devices increttseis
vulnerability to malicious attack. In this papere wropose a hew malware management system that geek
use program differentiation to reduce the propagatf malware when a software vulnerability exidy.
modifying aspects of the control flow of the apption, we allow various portions of an applicatexecutable
to be permuted into unique versions for each thisted instance. Differentiation is achieved usiagdivare
and systems software modifications which are amlertaband scalable in embedded systems. Our imiteds
for modification include function call/return angstsem call semantics, as well as a hardware-suggort
Instruction Register File. Differentiation of exéghles hinders analysis for vulnerabilities as asllprevents
the exploitation of a vulnerability in a single glisuted version from propagating to other instanoéthat
application. Computational demands on any instafcthe application are minimized, while the resasrc
required to attack multiple systems grows with tluenber of systems attacked. By focusing on preventf
malware propagation in addition to traditional dbsowdefenses, we target the economics of malwaceder
to make attacks prohibitively expensive and infelasi

Keywords: Program differentiation; Malware prevention andigation; Return address indirection; System
call indirection.

1. Introduction

Like general purpose computing systems, mobile adsvand the software loaded on these
devices are subject to a host of security threadsnaalicious software (malware) attacks due
to vulnerabilities in their coding. Solutions toepenting malware become more challenging
as the complexity and interconnectivity of thesstems increase [36]. The increasingly
complex software systems used in modern smart phopatain more sites for potential
vulnerabilities, a problem exacerbated as appticatievelopers continue to integrate third
party software withplugins for such user applications as web browsers andtisemgines.
Recent exploitations of Google Desktop, Microsafetnet Explorer, and MobileSafari on the
Apple iPhone are examples [25, 24, 12, 21, 20, 14].

Rootkits are a grave concern due to their tenad#grimental effect on systems, and
difficult detection. Typically they target kernelimerabilities to infect system-level programs
and to conceal their existence. The rootkit apptices themselves include key loggers,
network sniffers, and a staging system to laundterotttacks like Denial-of-Service and
more. The primary use of Rootkits is to inject naiev and to collect sensitive user
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information. This is especially problematic for nilebdevices that are increasingly used to
store private data.

Traditional approaches have sought to provide asolate defense to specific
malware attacks by patching software vulnerabditie detecting and blocking malware [28,
27, 6, 5, 16]. However, the current situation représ a programmatic arms race between the
patching of existing vulnerabilities and the extdtion of new ones. Despite increased
awareness, vulnerabilities continue to be produesdpbserved in McAffee's position paper
citing Windows Vista as being less secure thampiieslecessors [18, 23, 34]. Most recently,
the modified Mac OS X system on the Apple iPhorils ta even implement widely accepted
best practices such as a non-executable heap oessddandomization of memory area
starting locations [20, 14]. Ultimately vulnerabés will be found and malware will go
undetected long enough to exploit such. We proposdifferent approach to managing
malware based on limiting the ability of viruses poopagate even in the presence of
undiscovered software vulnerabilities. When usedonjunction with traditional malware
defenses, this approach greatly increases thecultffiand cost for malware developers to
exploit vulnerabilities across a wide range of eulble systems.

Mitigation through the use of program differentistihas an analogue in biological
systems, which not only presume attack will ocautrib fact have well-known, openly visible
vulnerabilities [31, 9]. Beyond protective wallsplogical entities also rely on a system that
mitigates subsequent proliferation of biologicaheks. Biological systems defend both at the
individual level and the population level. Whiletiavirus software can convey individual
system protection, they do nothing to limit theidapropagation of new viruses across a large
set of homogeneous application code [40, 22]. Tdreetation between malware propagation
and resulting damage leads us to explore mitigatttarks by thwarting the propagation.

Program differentiation seeks to make each exelutimistance of an application
unique. There are various ways of achieving thisaftware. One simple method would be to
invoke different compiler transformations, or afeliént transformation ordering, to obtain
different versions of the same application. Howevbis approach has two problems that
make it infeasible. First, the vulnerable portiarfighe application must be the ones affected
and there is no way to guarantee those unknownerxalflities are modified by this
differentiation approach. The second problem is @enrsevere software engineering one.
Multiple distinct versions of the same program caede be difficult to produce and highly
impractical to maintain and update; subtle softwarers in an application will likely change
behavior in only a subset of differentiated versioRerformance may also differ widely
between instances of the program. A solution isdaedethat differentiates program
executables while preserving program semanticscamtrol flow, and maintaining a single
code profile for maintenance. We propose changebaidware support for control flow
instructions to achieve differentiation that chagiee binary representation of applications
without changing the execution order of instrucsiom the processor pipeline. The hardware
modifications change how functions are called (estdrned), how system calls are specified
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and how instructions

TetChed from m_emory are Source Differentiator Differentiated
mterpreted, This prevents Application (Call/Return, Syscall, Executables

. Hardware Instructions)
the  propagation  of
viruses by making each
instance of a vulnerable
application sufficiently
different to require a
nontrivial mutation of
malware code for each
infection. Figure 1 depicts the general workflowoof proposed methodology. Differentiation
can occur before distribution, during initial canfration or even at load time for each
invocation of the application. Whenever performedferentiation modifies the original
application using an undifferentiated instance andonfiguration database, generating a
potentially unique executable for each applicati@mtance.

Google's Android operating system for mobile deviisea prime example of the new
breed of embedded systems we seek to reinforcetharsdis also an ideal candidate for our
differentiation approaches. Android is a Linux<dsoperating system targeted at cell
phones, tablets and other mobile systems. The lsystem includes a Linux version 2.6
Kernel, basic libraries, and an application framdwiiat provides core Java programming
language functionality. Java applications are thaitt on a layer above the core system, with
each running in its own process within an instanfethe Dalvik virtual machine [1].
Nevertheless, given Android's open architecture @rbumer product platform, the libraries
and framework provide broad access to system fumality including phone calling, GPS
systems, and process control. As of the first tgmaof 2010, sales of Android-base
smartphones exceeded iPhone OS units, commandi8garcent market share and making it
the second best-selling smartphone system in tageaqpbehind RIM's Blackberry OS [19].

Android-based devices, like mobile devices in geheare a growing target for
attack due to their large and ever-growing instalbase as well as their inherent network
access. Given that an Android device includes fhencsource operating system as well as
applications, it provides us with an ideal platfofor our approaches, which integrate
operating system level enhancements with applicdéieel differentiation.

Config
Database

Figure 1. Softwar e Differentiation Workflow

2. Software Exploits

Vulnerabilities in software have not only provenstty, but are continually increasing in

number [36]. They can be broadly separated integs®sor architecture exploits and higher-
level software exploits that are independent oftdrget architecture. High-level techniques
are generally attacks on input strings that arerjmeted within a source level interpreter in
the application, such as overwriting of an SQL camdhstring with an unauthorized set of
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commands to compromise the database system. Ntitigaf such attacks must be handled by
the application and further coverage is outside shepe of this paper's processor-level
security systems. By far the most common securpfaits related to processor architecture
are buffer overflow attacks, which overwrite memtogations in vulnerable applications [6,
32]. These attacks exploit vulnerabilities in thenttol flow conventions of the target
architecture to gain control of system resourcd® Vulnerabilities exploited by the highly
prolific Code Red worm and recently discoverechia Apple iPhone browser are examples of
buffer overflow vulnerabilities [40, 22, 20, 2]

These attacks require an intimate understandirtgeoprogram code, including data
and program object locations, branching, and addnesage. The attack requires an
unbounded input buffer, used to insert a payloachalicious code, and a vulnerability that
allows the control flow to execute the payload cddafortunately, distribution of identical
versions of a software executable facilitates pgagian of a successful attack; once a
vulnerability is found and exploited the attaclapplicable to every other distributed instance.
It is this commonality that allowed the 2001 CodedRvorm (CRv2), which exploited a
vulnerability in Windows NT and Windows 2000 opémngt systems, to infect more than
359,000 Internet Information Servers on the Inteiméess than 14 hours [40, 22]. Mitigation
techniques, such as hardware restrictions thabldissxecution of code from within the stack
region of memory, seek to eliminate the vulnerapilunfortunately, there are buffer overflow
variants that do not require the insertion of pagllcode, but instead jump to existing routines
in the application to compromise the system. Conmiynoaferred to aseturn-to-libc attacks,
the target address in the application code is oftdibrary routine to manipulate systems
components (such as to invoke a shell or delegs)fil

Moreover, despite advances in security methodosogiesoftware development the
prevalence of software vulnerabilities continueggtow. This trend will likely continue as
software systems become more numerous and comf@esater opportunities for new
vulnerabilities arise from the tremendous growth high-demand, third-party software
applications that require administrative privilegas trusted access. The Google Desktop
application demonstrated several vulnerabilitiesiser-level software that had system-level
implications. A flaw discovered in December 200wed malicious websites to illicitly read
local search results from a target machine [25, 2hg following year, a flaw in the Internet
Explorer web browser combined with Google Desktlipwaed an attacker to retrieve private
user data or even execute operations on remoteidemdile impersonating the user [12,
21]. The extreme integration of third-party appificas is another growing threat, as
demonstrated by the recent discovery of a buffarftow vulnerability in the MobileSafari
browser on the new Apple iPhone [20]. Through tRplat, a malicious web site could
deliver a payload that allowed access to and trasssom of any phone data [14]. The threat
of malware on cell phones has loomed large in thst few years as they increase in
computational power. Now that modern cell phonessiamply full-fledged computer systems
they are subject to computer system threats, dmyuah larger distribution scale [29].
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Unfortunately, current anti-virus support is lindteto identifying existing
vulnerabilities or a few restricted patterns ofaekt This approach means that systems
security is always lagging behind the discovern@iv vulnerabilities and fast propagation can
defeat even the most active malware defense. Biffation offers the promise of either
eliminating or significantly slowing propagation digpendent of the type of software
vulnerability exploited. Used in conjunction witkxigting mitigation techniques, program
differentiation provides the strongest deterrenthtospread of future malware.

3. Differentiation Sources

The goal of differentiation is to restructure eastance of an application in a manner that
makes the exploitation of inherent vulnerabilities either the application or execution
environment more difficult. At the same time, thmplementation of a differentiation
technique should not hinder application maintenaobange functional behavior, or result in
dramatic performance differences between instarfeadicularly in embedded systems, the
ideal differentiation technique should have minini@alno impact on performance and be
scalable to the available resource budget. Finalye overhead required to support
differentiation should be minimal in both space amdcution time. We propose three
independent mechanisms to provide differentiatismgi a combination of hardware and
software techniques. Each of these techniquegeilindirection and by permuting indices
supports differentiation. The first two schemes ipalate function call and system call
semantics using both hardware and software motldica The third scheme modifies how
instructions are interpreted when fetched from ngmamd provides additional restrictions on
execution of the most vulnerable instructions. Ehegchanisms are not only orthogonal to
each other, but can be used in conjunction witlothker available protection schemes.

3.2 Return address differentiation

Our first approach is to introduce a level of irdtion into the function call return address
stored on the stack. The return address is thedlyparget of buffer overflow attacks, which
attempt to overwrite the address to point to a@&ylplaced in the buffer. By replacing the
return address with an index to a table of retulir@sses, we prevent the injection of a direct
address and instead force the attacker to anahgeéé¢havior of the new Return Address
Table (RAT). This requires modification of functiaall and return semantics to access the
return address through the RAT. Function calls nuiilize a register to pass the index in
much the same manner as the return address iswturpassed. The return instruction must
be modified to use the index to load the returnreskl from the RAT before jumping to the
instruction following the function call. Any buffesverflow would now override the RAT
index. Without knowledge of the ordering of retuaddresses in the read-only RAT, the
attacker can only jump to a random return addresation in the existing code. With some
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modification to memory management access, the itdad can be marked unreadable by all
instructions except function return. This removesle inspection from the arsenal of the
malware attack. Statistical attacks using randatices can be thwarted by increasing the size
of the RAT. The cost paid is a fixed increase orage requirements for the return address
table and a slight performance penalty on eachtiumaeturn due to the required table
lookup. Instruction set modifications include tball or jalr instructions andet. Calling
conventions replace the automatic movement of thgram counter for the next instruction
(generallyPC+4) with an index specifying the RAT entry containitige address of the next
instruction. This is performed by an additional tinstion, though in many cases this
additional instruction is loop invariant and camighbe performed much less often than the
function call. The call instruction could be toyakliminated; however, this would have
implications on micro-architectural resources like return address stack. Remaining calling
conventions remain unchanged. et instruction is modified to first read the index tife
stack, and then use the index to load the retudreasd from the RAT. In #oad-store
architecture, this would be performed by multigistiuctions. In either case, the performance
impact is less than expected since the branch girediwill continue to utilize the return
address stack, which generally contains the coaddtess.

Modifications to the function return code sequeace outlined in Figure 2. The
return behavior is updated to: 1) retrieve the xnilem the program stack; 2) access the RAT
to obtain the return address; and then 3) jumméoréturn address. The RAT itself is made
read-only, and in retrieving the return addressndguchecking can be imposed by using
logical instructions to mask the index value anevpnt the use of any out-of-range indices.
Even a small number of RAT entries results in algioatorial number of permutations. This
directly attacks the economics of a malware attankking a random attack extremely
unlikely to produce any useful predictable behawiod grossly thwarting the ability to have a
wide-ranging impact with a single system attackr B attacker who wishes to analyze
software or a system to improve malware success puagagation, the permutation
complexity elicits a signature analysis behaviat ik easily detectable by traditional intrusion
detection systems. Still, some consideration mustglven to the use of shared library
routines. Since these functions are shared byrdifteapplications, care must be taken when

using any process resources, Stack with Indices

particularly the RAT. If all

system processes use the rt 13

differentiation calling load rl.{spl  O0x13  4—t

conventions then libraries  and ri,r1, 0x3ff 0x13 RAT (Read-Only)
pose no difficulties; RAT load r1, [r1]  OxF..3A 0x12
indices are evaluated in the & OxF..3A 0x13
context of a process and each U™ 1 OxF.. 3A T

process contains a unique
RAT. Returns from library Figure 2. Secure Return Code Sequence



Program Differentiation 7

functions would still use the index into the prac®AT and jump to the correct location. In a
system where not all applications use differemdiattall semantics, the return from a library
function would then be undifferentiated, using thurn address on the stack and jumping to
the correct location. This mixed environment doesoffer the same level of protection as a
fully differentiated executable; however, only Bioy routines are left vulnerable and ideally
they would tend to be a more stable code basesneasily targeted by malware.

3.2 System call differentiation

Another candidate for indirection are system calhventions, which specify a system call
identifier generally passed using a specific datgister. System calls can be used to
manipulate files, memory or process permissiond, @an be compromised by malware that
changes the system call identifier prior to exemutiSystem calls are implemented by
jumping to a function in the operating systemnt®ys() in Linux), which then uses the system
call identifier to index into a jump table to thercect handler function. We thus have the
same basic approach as with the RAT. Differentatid the table (thesys call table in
Linux) will provide a different mapping of systeralkidentifiers to handler functions for each
system (not each application) at no additional lbgad. The only requirement to perform
system call differentiation is to permute the edrin thesys call table and update any
system calls in the applications. It is quite farean application to directly reference a system
call since almost all calls are performed in trendard systems librarieEC and others).
This simplifies the differentiation process. Of cgry this approach means that all applications
running on the system share the same system eallifigrs. This is likely not a problem since
viruses tend to propagate by infecting the samdiagiipn on different systems, not by
attacking different applications on the same systadowever, by duplicating the
sys call_table for each process, differentiation can be perforfoe@dach process on the same
system. The only additional requirement is an iaseein the stored state of the process and
de-referencing of the process table pointemitBys(). This approach again provides a level of
indirection that requires an attacker to now gaineas to a particular executable's custom
system call table in order to identify targets émmtrol flow redirection. Furthermore, the
customsys call_table can be pruned to only contain those used by thiécpkar program,
reducing malware ability to

. System Call Table

initiate  unexpected  system (Current Process)

calls. Figure 3 depicts the

. [index] System Call Handler
general process of accessing index]
—

the lookup table containing the Execute System Call ! _‘
system call specifier, which "X

ultimately results in one [syscall specifier X]
additional function call and one Figure 3. System Call Table L ookup

additional load from a table in
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memory. Normally a register contains the identifiar the system call to perform. We would
differentiate modules by replacing the identifieithvan index into the system call lookup
table.

3.3 ISA differentiation

The final modification to support differentiatiomqvides the strongest level of protection.
Instructions can be obfuscated by using a levéhdifection in the decoding of instructions
fetched from memory. This enables a portion of thstruction Set Architecture (ISA)
encoding to be changed for each program instancée vidaving instruction execution
unchanged. Keeping the decoded/executed instructtoeam the same allows software
engineers to more easily maintain an applicationges any version can theoretically be
transformed into a different version by applying thppropriate mapping of indirection
specifiers. This facilitates the debugging and Ipiatg of differentiated executables, a task
easily achievable using previous techniques. Thaxe been several possible approaches for
indirectly accessing instructions that could suppldferentiation. Computational accelerators
fuse multiple operations into single operationgbyviding a programmable set of functional
units [4]. An accelerator could be configured te usly simple instructions with a specific
new opcode/operand encoding that could vary amatiffetentiated executables. The FITS
system allows for mapping of an ISA, customized forparticular executable, to a
configurable processor [3]. The programmabilityopicode and operand decoders in FITS
allows for their permutation in the instructiongpparted by the ISA. Both, however, have
drawbacks in either potential performance penattieéacreased implementation time.
Ultimately, a most
attractive option is instruction|Program IRE
packing, a technique that can b|
readily adapted to provide|ADD $3. 54, $5

. - LDQ $2, 0($5)
differentiation at the hardware|suB $7, $5, $4

instruction level [15]. This |MUL %6 %4.56 /—’_’ SUB 87,85, 84
technique promotes frequenth »| ADD $3, $4, $5
occurring static and/or dynamic /T'
instructions  into  instruction [packs | 3 | ‘ 2 ‘ 9
registers, which can then hi
indexed for execution by using
just a few bits. The small size o
these indices allows multiple MUL $6, $4, $6
such references to be "packec
together into a single 32-bi
instruction. Parameterization of
register numbers and immediate

\w
N

LDQ $2, 0($5)

Packed Instruction

Figure 4. Indirection with an IRF
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values increases the number of instructions thatoeapromoted. This reduces code size and
improves energy efficiency, as the Instruction Remgi File (IRF) requires less power to
access than the instruction cache. Using instmicpacking, the indices of the packed
instructions can be permuted to generate new exielast With a 32-entry IRF (and one
instruction register reserved fonap), there are 31! possible permutations, leadinguite a
large space for differentiation of a single apglma Figure 4 shows an example program
being permuted within the IRF. The four instrucioare mapped into the IRF and the
appropriate identifiers are specified for the pakchestruction. Since we only have four
instructions to pack together, the fifth slot isppad to thewop, which need not necessarily be
at entry 0. Packing instructions with an IRF isoalke least intrusive solution, as it requires
the fewest changes to the baseline ISA. The tigrdbked instruction format can be supported
using just a few spare opcodes in almost any egidBA. An IRF needs to be added to the
pipeline, and the fetch and decode stages need tnaddified to be able to fetch instructions
from it. Instructions are placed in the IRF at ldgade for an application, and must be restored
on context switches. This allows separate apptiaatito have completely different IRF
entries. Instruction packing clearly satisfiesadlthe necessary requirements for providing an
easily permuted instruction indirection scheme ttkenmore, the additional energy and code
size savings (with no performance overhead) maketédthnique even more attractive for
implementing hardware instruction level differetiba, especially on restrictive embedded
systems. The IRF structure also allows for scatgbibalancing the size of the IRF with the
amount of differentiation desired. [15].

Using an IRF to support differentiation also pr@sdan additional benefit for
protecting code from malware. Since the IRF providetotally independent way to specify
the instructions that reside within it, it is pdseito disallow those instructions from being
fetched directly from the memory system. So if Wweags promote certain critical instruction
into the IRF, then we can execute the processarsafe mode that would not decode those
actual instructions when being fetched from the mmwnsystem. By targeting syscall, call,
return, adds to the stack pointer and short candhti branches, it becomes difficult for any
payload malware to perform critical, or even commimstructions without identifying the
IRF permutation. Additionally, empty IRF operarws be used to verify proper control flow
with the inclusion of a simple validating state fmae in the beginning of the processor
pipeline. This could be as simple as requiring sparéty calculation for the instructions. This
has little or no impact on application performanaed while the virus can replicate the
calculation, each instance of the application cae the free IRF encodings for different
validation checks. For the malware to propagat vttus must correctly handle an arbitrarily
large number of validation checks. Again, thishtgque offers scalability in an embedded
system up to the level of desired or allowable grtivn.
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3.4 Intrusion detection with Micro State Machine differentiation

We also propose developing a variety of small staaehines that monitor some identifiable
pattern of behavior of the application, such asueages of system calls or numbers of
arguments in function calls within a program. Thé&iero State Machines (MSMs) can be
defined at compile-time or load-time, and ultimateAn be easily implemented in hardware
without any effect on the pipelined instructions afsoftware program. A wide variety of
micro state machines can be made available, exctyteeferencing an index from within a
software executable. These include any state nmimitatterns proposed in the previous
literature. By requiring a program to execute anyalb of these micro state machines, the
integrity of program behavior can be checked oetsifithe regular program execution. Given
the wide variety of small state transitions that b@ monitored, differentiation is introduced
into applications by varying the particular MSM ledl for a given executable version and/or
varying the order of calling multiple micro statechines. Indeed, each application instance
may only need to verify one aspect of the entiegesmonitoring problem, with variation of
which MSM is implemented in any given instance.sTbomes with no direct performance
penalty and forces an attacker to have to undetstad thwart the monitoring of a large
number of state transition behaviors. The possdudmbinations of state monitoring are
ideally too large for any malware to comprehengiwddtermine, and the act of attempting to
do so is a detectable behavior pattern that cafuttker used to identify the presence of
malware.

The choice of MSMs is limitless given all the gystprocesses and properties that
can be tracked and checked for inconsistency. @t we are not requiring that a given
verification be perfect or guaranteed - that ig, plarticular section need not be invariant nor
must any attack be guaranteed to modify it. Juswitls intrusion detection systems, in this
method we seek to increase the probability of dietgdhreats and thereby responding to
them. Subject to resource restrictions we incrélasestrength of hardening by increasing the
number and variety of MSMs and the depth to whith gingle MSM is implemented. At this
application level the saving of data and restartifigerification for context switching must be
considered. By parameterizing an MSM to supportifipation of a starting state, the MSM
can be properly continued after context switches.

An example addressing code driven by direct constath as application code, is the
tracking of a portion of an application's call gnapwith compiler support analysis can be
performed on an application with the aim of ideyiti§ portions that are attractive targets with
low variability. An MSM can then periodically veyithe actual call behavior of the running
process.

Internal events driven by code such as systematipas represent another different
pool of data for MSM analysis. For example, tratistalook-aside buffer (TLB) behavior can
be monitored and verified by an MSM for generalyomalous behavior across all user
applications. A TLB miss that occurs long into thgecution of an application would
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represent code that had never been previously tecdtsuddenly being called, which suggests
injected code. Of course, this can sometimes becbbehavior as in the case of just-in-time
(JIT) compiled code, so careful analysis for suetMEEM must be made, for instance to only
be sensitive to TLB misses from particular rangas@mory.

Analyzing system wide operational semantics reprssanother higher level where
we can achieve monitoring across all user apptioatiCommon SQL injection attacks can be
detected by searching database-destined valuespfersial characters or embedded logic
statements. But another attack behavior is theesyaic delivery of varied inputs to evince
changes in output, typically when direct viewingS®L query results is not visible. Repeated
executions of the same SQL query code can be ansenthecked by an MSM when not
expected in the normal operation of a particulaliaption. The behavior and state of virtual
machines executing processes also represent syammantics that can be validated by an
MSM. The Android operating system provides a propeortunity for such monitoring, as it
uses a virtual machine for each running proces$idation of erroneous behaviors can be
monitored, as well as execution of code from memegions not belonging to the specific
application within the virtual machine. Since eadhning process is in a virtual machine,
operations invalid for the specific application dzendocumented and tracked, such as phone
call access from applications that have no busiaessssing the phone. Other behaviors such
as the previously mentioned TLB misses can alsonbaitored specifically relative to the
application within a given virtual machine.

The variable selection of micro state machine typesl quantity again aids
embedded system designers by providing a scalafense method. Increasing the number
of micro state machines results in a smooth ineréashe level of defense. The number can
be increased up to the desired defense level, & mwre likely the case up to the limit of
available resources for defense. Ideally, if an IREmployed the unused slots in non-fully
packed instructions are perfect locations for plgdhe triggers or counters for implementing
such micro state machines. These triggers can tighsaluring the pipeline fetch phase with
no direct penalty on the application processindguerance.

4. Evaluation

We have thus proposed several methods for implengerdifferentiation of software

executables using hardware support. To performnéiali test of the worst-case effect on
performance of our approaches we developed softwargions of two of the approaches,
implementing both a Return Address Table (RAT) amdLinux kernel modification

implementing system call indirection, targetingdies to the Alpha architecture. Both were
evaluated using the M5 Simulator, a modular platfdor computer system architecture
research, encompassing system-level architectuneth@s processor microarchitecture [35].
M5 supports the Alpha architecture and has a systdhemulation mode that can simulate
Alpha binaries. Moreover, M5 provides a full systeimulator that models a DEC Tsunami
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system in sufficient detail to boot a Linux kernéle specifically used the M5 full system
simulator to evaluate the results of our Linux lketrmodifications to support system call
indirection.

4.1 Function call return address

Our actual implementation of the RAT involved maahtion of a GCC version 4.0.2 cross-
compiler installation using glib version 2.3.6. nfigured to produce Alpha executables. We
inserted a program in between the compilation asgrmably stages (just before the execution
of theas assembler program), which post-processed allrrdtet) instructions in user code to
rewrite the program assembly. In addition, an atodyold return addresses was linked in with
every executable program. The address retrieven fle stack as the "return address” is
actually treated as an index into the RAT. Logishift instructions are inserted in order to
isolate the portion of the address representingntthex. The resulting index is then combined
with the base pointer and offset of the startingpof the RAT. A single load instruction is
then inserted to retrieve the actual return addtedse used. The resulting post-processed
Alpha assembly file can then be assembled anddibkethe remaining GCC compile chain.

In Alpha assemblyret instructions use a return address stored by cdiovem
register $26. Figure 5 shows the assembly addexibpost-processing application to replace
the normalret instruction. The value being passed through regi26 is now an index into
our RAT, which we implemented with 1024 entriesic®i the maximum literal size in Alpha
assembly is 255, we use logical shifts to isolate hits in position 12-3, zeroing the three
least-significant bits since the index must be gqwadd aligned. Once the index is identified,
it is added to the base address of our RAT asagethe base pointer to obtain the location in

# $26 holds value originally passed as return address
# isolate bits 12-3 to get a 1k address to a quadword
# maximumliteral size is 255, so shift left then right
# nmust be quad word aligned so zero right 3 bits

srl $26, 3, $26 # >> 3 to get on quad boundary

sl $26,57,%26 # << 3 then 54 to isolate ten bits

srl $26,54,%26 # >> to get 10 bits pos [12-3]

# load fromreturn address table
# base of tabl e+index nust also be offset frombp $29

addq $26, $29, $26 # add base pointer to index

# add table offset to base+i ndex
I dg $26, ratabl e($26) !litera

# performreturn using retrieved address
ret $31, ($26),1

Figure 5. Return Address Post-Processing
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memory from which to retrieve the actual returnradd. A simple return is now performed,
with register $26 now containing the actual retawidress as retrieved from the RAT.
Differentiation of multiple software executable si®ns is achieved by permuting the order of
return addresses in the table.

We compiled several benchmarks from the MiBenchcherark suite [13] using our
modified GCC compiler and executed them, verifyitigeir essential correctness. The
resulting increases in instruction count and coneditioads are presented in Figure 6.
Instruction count increased by only 1.04% on averagth this including a single outlying
increase of 4.32% for the Telecomm benchmarks. Antbe other benchmarks the highest
increase was only 0.31%. The increase in loads sti@emewhat similar behavior, with an
average increase of 3.38%, which includes two eéreases of a 7.75% and 8.13% increase
for the Office and Telecomm benchmarks respectivdhgong the remaining benchmarks the
highest increase was just under 0.6%.

4.2 System calls
Our actual
. . Return Address - Instruction Count
implementation for
system call 450%
differentiation involved 4.00%
ape . 3.50%
modification of the —
Linux 2.6.13 kernel| | 250%
) ) ) . ‘o INCcrease 2 00%
distribution  provided o
with the M5 simulator. 100%
Each running process i D.50%
aSSOC|ated W|th a o Automotive  Consurmer Metwark Office Telecornm Average
. . B hmark Cat
task struct, which is chenmatt bty
defined in the
. Ret Add -C itted Load
scheduler. We modified Sin fedress - mommited toads
the scheduler to include 9.00%
an array that would 800%
. 7.00%
hold a unique copy of —
the system call table for | 5.00%
. 3 ‘o INCcrease 4.00%
each process, which ig .
populated when a new 200%
process is created 1.00%
S|nce the actual o on Autarmotive  Consumer  Metwork Office Telecormm  Average
- Benchmark Category
handling of system calls

occurs in  assembly

routines, we added a Figure 6. Return Address Table Simulation
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function to the scheduler that is visible from #esembly language routines and that returns
entries from the system call table. We modified $lystem call handler to use the current
system call specifier (normally an index into trefadilt system call table) and pass it to our
function. The function uses the value as an inaéx the system call table for the currently
running process and returns the corresponding lasyatem call specifier, which is then used
to make the system call. The most significant ceanmgeeded for implementation of system
call tables involve modification of the system dadindler assembly routine. Figure 7 shows
the modifications to the applicable assembly souilee in the Linux kernel (new code
italicized). Originally the system call identifiéan index into the original system call table) is
passed through register $31, but now the registetatns an index into the system call table
for the currently running process. We set this indes an argument and call the
get_cur_sys tbl function we created in the scheduler to obtaingystem call table from the
currently executing process and retrieve the cosgstem call identifier corresponding to the
index argument. Thelent sys:

retrieved system call SAVE_ALL
identifier is th dt I da $8, Ox3fff
identifier Is then used to bi ¢ $sp, $8, $8
dispatch a system cal | da $4, NR_SYSCALLS($31)
. . stq $16, SP_OFF+24($sp)
in the normal fashion. /* remove (lda $5, sys_call_table) */
Differentiation can be /* we obtain systemcall el sewhere */
hi d b . | da $27, sys_ni _syscall
achlieve ) permutlng cnpult  $0, $4, $4
the system call table [dl $3, TI_FLAGS($8)
stq $17, SP_OFF+32($sp)

contents  for eac.:h /* remove (sBaddq $0, $5, $5)
process, thus changing /* since no offset */

stq $18, SP_OFF+40( $sp)
all the system .Ce}" bl bs $3, strace
specifiers used within beq $4, 1f

the  actual machine /* set first argument to the offset */
language of each /* (register saved by SAVE ALL) */

executable version| ~addg $31, $0, $16 .
. . /* load retrieval function and call it */
The functional behavior /* register $0 will then have actual index */
of each executable i I da 227, ?se;t_)cur_lsyﬁ_t bl ¥
. 1. jsr 26, 27), al pha_ni _sysca
unaffected, S'.nce any /* restore first argunent */
two permutations of I dg $16, 160($sp);
Sy.Stem call tablgs will /* use register $27 to nake systemcall.*/
ultimately result in the addq $0, $31, $27
; jsr $26, ($27), al pha_ni_syscall
same .actual function| | dgp Sap. 0($26)
call being executed af bl t $0, $syscall _error /* call failed */
; ; stq $0, 0($sp)
the same points in the stq $31, 72($sp) /* a3=0 => no error */
control flow. S
We ran

unmodified, Alpha- Figure 7. System Call Handler Code
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compiled versions of several MiBench benchmarkghen M5 simulator using the modified
Linux kernel with system call implementation. Usiageparate system call table per process
entails some increase in loads due to the workiredjuo retrieve the system call table from
the running process. The average increases in db@dmoads are provided in Figure 8,
which is nominal at 0.15%, with Office benchmarks/ing the highest average increase of
0.51%. This can be attributed to the relative igfiency of system calls in typical
applications. For this reason we did not include fgures for the negligible to undetectable
change in execution time. This is to be expectedrgihis infrequency as well as the large
amount of work performed during a system call comegdo the small amount of work from
our few additional loads.

4.3 Ingtruction level indirection

Implementing instruction level indirection will rege the addition of an IRF and its
associated instruction extensions to the procesemg with modification of the compiler to

support instruction packing. The actual permutifighe contents of the IRF randomly at
compile/link-time is a simple operation. Since tRd- is relatively performance-neutral, the
resulting processor design will feature reducedliegiion code size, improved energy
efficiency, and an increased resistance to malwaopagation. Previous application of
instruction packing on these MiBench benchmarks stesvn an energy savings of 15.8%
with a corresponding code size reduction of 26.8%s is for a 4-window 32-entry IRF that

seeks to maximize code density both statically dpdamically. Reserving a few unused
instruction registers to trigger micro state maekinminimally impacts the overall

improvements provided by instruction packing. Reisgr 5 additional slots (beyond the one
for nop) results in a code size reduction of 24.2% anaraesponding energy reduction of

14.9%. Average

execution time s System Call - Committed Loads
within 0.3% of the

original case. The vast DED%

majority of tightly 0.50%

packed instructions do
not utilize all 5 slots,
and thus there is
ample room to extend 0.20%
these instructions with

0.40%

% Increase 0.30%

0.10%
references to micro
. 0.00%
state machine Altormative  Consumer  Metwork Ofice Telecomm  Awerage
Changing Operations. Benchmark Category

Simultaneously, not

all instructions that Figure 8. System Call Table Simulation
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feature a loosely packed instruction field can alijumake use of that available storage area.
Having micro state operations fill these slots prdg any additional code size increase or
execution time increase by providing a simply-dembanechanism for modifying intrusion
detection state machines. In extremely rare stestolfi code that are very densely packed with
few free slots, additional tightly or loosely padkimstructions can be inserted to trigger the
appropriate state changes, thus keeping our mesthapplicable to all software applications.

5. Related Work

There has recently been growing activity in thé phbne industry regarding security in cell
phone applications and hardening of cell phoneesystagainst viruses and other malware.
One example is the Symbian Signed initiative toitdily “sign” applications for use on
Symbian OS devices [33]. Although this can helpvéwify the integrity of participating
software it entails increased development costs aathplexity. Also, as with any
certification-based system it is not scalable. Auccessful application development will
promote increasing code quantities that inevitadlystrip available code review resources.
Signing may limit the applications a user may veéduity install, but ultimately malware may
infiltrate a system through means other than a’'sisactive installation. Again the real
problem is limiting and even stopping the malicidaehavior of viruses and malware, given
the assumption that malware will eventually hawhance to execute.

Many techniques have been proposed to defend adairffer overflow attacks,
including implementation of non-executable stackaar[27], placement afanary marker
values on the stack [6], encryption of pointer eslun memory [5]. The approaches entalil
various levels of effectiveness and performanceattpand have met with various proposed
shortcomings or defeats, including the failure wiually implement such well-accepted
defenses. A stunning example is the most recent ®I&cX system on the Apple iPhone,
which simply failed to implement a non-executabéajn [20, 14]. Attempts to audit code to
identify common vulnerabilities, either by hand [B], or by automated methods [8, 39],
such as searching for the use of unsafe librargtiomns, have proven costly, sometimes
prohibitively so [17, 11]. Indeed, writing correcode seems the most difficult defense to
implement, with United States Computer Emergencgditeess Team (US-CERT) statistics
showing an increase from 1,090 vulnerabilities reggbin 2000 to over 4,200 in the first three
quarters of 2005 alone [36]. Given a successfalchitIntrusion Detection Systems (IDS)
have focused on detecting violations of securitlicgoby monitoring and analyzing some
characteristic of system behavior, with the goaldehtifying, reporting on, and ultimately
terminating anomalous behavior that may be indieatif an attack [16].

Actual randomization of the otherwise predictabtale footprint of software has
been considered in techniques such as Address $pgoat Randomization (ASLR), which
inserts random memory gaps before the stack badehaap base (and optionally other
memory areas such as the mmap() base). Attacksneelsss likely to succeed in executing a
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malicious payload and more detectable due to thawer pattern of failed attacks (typically
program crashes) [28]. PaX is a patch for Linuxkés that, among other security measures,
employs ASLR.

However, Several methods for defeating ASLR pratechave been proposed. For
stack-based attacks, adding a nop slide to thenbigj of the payload increases the chance of
having the effective code land past the beginnihghe targeted memory area. Also, the
ASLR mmap() base randomization ignores the 12 Igigsificant bits representing the page
offset. Given a buffer entry function and a pripttall within the same page, the printf() can
be repeatedly returned to using a format string taugeport the stack frame contents and
determine the actual stack base offset [7]. Thebmurnof randomized bits used in an ASLR
scheme can be effectively reduced by only requidisgovery of the 16-bit mmap() base
randomization, thus allowing any buffer-overflowpéoit to be converted to a tractable attack
[30].

SHARK provides architectural support for protectittom Rootkits [37]. By
generating Process Identifiers (PID) in hardward #en encrypting page tables, SHARK
attempts to prevent compromised operating systeam funning malicious code. Program
differentiation differs in that SHARK attempts toopide a single wall of protection, while
Program Differentiation provides a Defense-in-Depfiproach. Defense-in-Depth adds to
overall defense since, if an attacker managesedakbthe security on one machine, the attack
will not be spread to others. Furthermore, SHARKjuiees a significant architectural
addition, while a significant portion of Program fiérentiation can be implemented in
software. In fact, program differentiation works W& combination with other protection
schemes. Overall security is enhanced with any handware or software protection
mechanism since it must be exploited for virus pggiion to occur. Not only can other
protections exist independently of our proposefedihtiation schemes, theethodology of
differentiation may be readily applied to other teation mechanism to make propagation
even more challenging.

Other related research has attempted to analogft@ase defense to biological
immune defense systems. Natural immune systemsemigned to operate in an imperfect,
uncontrolled, open environment that is analogousutoent computer system environments. It
has been proposed that principles of immune systemisiding distributability of response,
multi-layering of defense responsibilities, and etdaity, be applied to computer systems to
increase security [31]. Given that diversity isiaportant source of robustness in biological
systems, computing machines are notable in thgtsh#fer from their extreme lack of such
diversity. Proposed diversification methods haveuded random addition of nonfunctional
code, reordering of code, and various softwaresystem transformations [9].
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6. Conclusions

While vulnerabilities in software systems will conte to invite new malware attacks, we
believe that proper mitigation techniques can redhe impact of these attacks. Towards this
goal, we propose expanding our current malware ndefefocus from the traditional
approaches of absolute attack prevention to inclafferts toward preventing malware
propagation. By differentiating software program executableg seek to thwart malware
propagation when a vulnerability exists in a gigeftware application. This is accomplished
through virtualizing the control flow of the apmiion, enabling function call/return and
system call semantics to be permuted into uniqusiaes for each application instance. We
also show how an existing processor design utdian Instruction Register File (IRF) can
achieve further security though the use of difféegion of instructions in the IRF as well as
by restricting vital instructions from being fetchdirectly from memory. We show that these
techniques require minimal overhead with respectincreased memory footprint and
execution time. In worst-case software simulatioheur control flow differentiation method
using function calls and returns we found only @4% average increase in instruction count
and 3.38% average increase in loads. In softwamglation of a Linux kernel implementing a
per process system call table the increase in ctiedribads is nominal at 0.15%. Automation
by the compiler and implementation of actual simpl@rdware support structures can
ultimately result in little to no performance degation for such differentiation.

The benefits of the minimal performance impact of techniques, as well as their
scalability, are ideal for embedded systems. Thagmiques can be implemented in whatever
guantities are desired or allowable in a systemhaut draining precious performance
resources in the pursuit of defense. Current treshdsv that software programs will continue
to possess vulnerabilities that are discoverable dtackers. However, inherent in
differentiation is the targeting of the economidsnmlware, makingprofitable high-impact
attacks prohibitively expensive and infeasible. i/iwe accept that there may be successful
attacks on any single distributed executable vardiy dramatically increasing the ratio of
effort to damage scope, attackers incur a subatatiincentive to developing malwageen
in the presence of an exploitable software vulnerability. This research was supported in part
by NSF grants CNS-0615085 and CNS-0915926.
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