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ABSTRACT

In recent years, the need to reduce the power and energy requirements of computer microprocessors
has increased dramatically. In the past, microprocessor architects succeeded in improving the
performance of their designs by increasing clock frequency, and building wider and deeper pipelines.
These design choices inevitably lead to increased power and energy usage, and thus increased heat
dissipation. With the proliferation of battery-powered embedded and mobile computer systems, it
is necessary to reduce energy usage without sacrificing performance.

This dissertation analyzes two architectural techniques that are designed to reduce the en-
ergy usage required to complete computational tasks, without impacting performance. The first
technique is the Tagless-Hit Instruction Cache (TH-IC), which reduces energy used for fetching
instructions by disabling several large fetch-related structures when it can be guaranteed they are
not needed. The second is Static Pipelining, which reduces power by moving much of the pipeline
control from pipeline logic to the compiler. These techniques have previously been studied with
high level, architectural models based on the Sim-Wattch simulator. Such models estimate total
energy usage by attributing a usage to various architectural events. The energy for each event must
be derived from actual physical models of those components, and will be inaccurate if energy usage
is dependent on factors that cannot be summarized by a single energy value per event. In addition,
issues such as circuit timing and fabrication technology cannot be considered by the model without
designing the real circuit it represents.

This dissertation presents an analysis of physical models of a traditionally-architected 5-stage
OpenRISC processor, an implementation of the TH-IC, and a statically pipelined processor, all of
which have been created from scratch using a hardware definition language and computer aided
design tools. The OpenRISC processor serves as a baseline for comparison versus the statically
pipelined processor. Additionally, the RISC processor is examined both with and without the
TH-IC. Accurate estimates of energy usage and timing are derived using these models.
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CHAPTER 1

INTRODUCTION & MOTIVATION

In recent years, the need to reduce the power and energy requirements in computer microprocessors
has increased dramatically. In the past, microprocessor architects succeeded in improving the
performance of their designs by increasing clock frequency, and building wider and deeper pipelines.
These design choices inevitably lead to increased power and energy usage, and thus increased heat
dissipation. Eventually, this heat dissipation can exceed the rate at which heat can feasibly be
removed from the chip, a limit often referred to as the power-wall. With the proliferation of battery-
powered embedded and mobile computer systems, it is necessary to reduce energy usage without
sacrificing performance. Additionally, power represents a significant fraction of the operating costs
of datacenters, and the cost of operating its cooling equipment is clearly related to the power
dissipated by the computational equipment.

Unfortunately, estimating the power comsumption of complex dynamic systems such as ASIC
microprocessors is difficult. A simple power measurement technique, used by Sim-Wattch, counts
events as they happen in the various components of the processor. While simple to implement,
such models assume that a given event dissipates the same energy each time it occurs, which may
not be the case. In addition, when building such a model, it is difficult to account for every source
of energy dissipation, and to estimate the energy used by each of the wide variety of structures
found in a processor.

Among the most accurate methods for estimating power usage is by simulating the circuit
directly. This entails simulating the transistors and wires that compose the circuit. But since the
circuit is digital, the voltage at any point in the circuit will almost always be one of two voltages, and
will only intermittently be at a value between them. This means that power can be modelled easily
by simply accumulating the energy needed to (dis)charge the capacitance of the wires each time
the voltage is switched. However, creating such a model requires having a (nearly) complete design
of the circuit, such as you would provide to an ASIC manufacturer for fabrication. For instance,
using the Synopsys tool suite, a circuit specified in VHDL can then be synthesized to a netlist
using the Design Compiler. While providing a very detailed picture of power and energy usage
within the processor, these simulations are time consuming compared to higher level simulations
like Sim-Wattch. However, as computational resources have grown, such simulations are becoming
more feasible.

This dissertation presents a study of two techniques that reduce the power usage required to
complete computational tasks, without impacting performance. The first technique is the Tagless-
Hit Instruction Cache, which reduces energy used for fetching instructions by disabling several
large structures when it can be guaranteed they are not needed. The second is Static Pipelining,
which reduces power by moving much of the pipeline control from pipeline logic to the compiler.
These techniques have been studied with high level models such as Sim-Wattch, but have not been
analyzed at a physical level.

In order to implement the high-detail simulations of these techniques, a configurable, component-
based framework for low-level architectural exploration called CARPE (Computer Architecture Re-

1



search Platform for Exploration)[1] has been designed as part of this dissertation. This framework
provides a number of commonly used processor components, such as caches, branch predictors,
and so on, that have been designed to allow easy integration. The framework uses a text-based
configuration system based on the Linux kernel kconfig system,[20] allowing easy modification of
various parameters such as cache size and associativity, branch predictor type, and so on.

This dissertation presents a study these techniques by implementing and simulating them at
the netlist level, and estimating the energy used for a number of benchmarks, using the CARPE
framework.
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CHAPTER 2

CARPE (COMPUTER ARCHITECTURE

RESEARCH PLATFORM FOR EXPLORATION)

CARPE is a framework designed to provide easy configuration and elaboration of CPU design
netlists, along with simulators for the netlists. The framework provides several components that
can be reused between designs, including L1 instruction and data caches, branch prediction buffers
(BTBs), branch target buffers (BTBs), and arithmetic units. This reuse allows for fair comparisons
between designs, and quicker implementation of CPU designs, as implementing these subcompo-
nents can be quite difficult and time consuming. CARPE also includes a system for collecting and
exporting run-time statistics, and can export execution traces to an external program or script for
processing in parallel with the simulator execution.

2.1 Configuration

The framework uses a kconfig-based configuration system, shown in Figure 2.1. This con-
figuration system can be used to modify various parameters, such as cache and branch predictor
implementations, pipeline features, testbench parameters, and simulation and synthesis tool con-
figurations.

2.2 Components

The CARPE framework includes a traditionally architected five-stage pipeline capable of exe-
cuting the integer subset of the OpenRISC instruction set architecture.[22] The block diagram of
this processor is shown in Figure 2.2. The pipeline architecture is based on Hennessy and Pat-
terson’s DLX design, and includes instruction and data caches, branch prediction, support for
integer multiplication and division, and exception handling. This design is used as a baseline for
comparison in the studies described in later chapters of this dissertation.

CARPE includes reusable L1 instruction and data caches. The instruction cache supports line
fill in critical-word-first order, and can bypass instructions from memory to the pipeline as they are
being written to the cache. Sequential accesses that are within the same cache line can be satisfied
without repeating the tag check, until the end of the line is reached.

The data cache also supports critical-word-first line fill, and can also bypass data from memory
to the pipeline. The data cache uses a store buffer to allow back-to-back loads and stores without
stalling, assuming no cache misses.

3



Figure 2.1: CARPE Configuration
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2.3 Simulation

In addition to providing component and processor implementations, CARPE also provides the
ability to assemble the processor design from its components, synthesize the design, and create
simulators for the design from both RTL and netlists, all from a single simple command line
interface. The framework supports various VHDL simulation tools, including GHDL, Synopsys
VCS, and Cadence NCSIM. The framework currently only supports Synopsys Design Compiler for
synthesis.

CARPE provides the ability to gather run-time traces of events throughout the pipeline. Events
can be traced using a monitor, which is an instantiable component that watches for changes to the
value held by a particular signal. When a value change occurs, a record of the event, including an
event identifier, a timestamp, and an associated value are output to a file or Unix fifo. This allows
an external program to process the event trace to generate aggregated statistics of the simulation.

The framework generates a driver script for each simulator. The driver script starts the simulator
using the correct parameters, and possibly a co-simulator that will be used to verify execution. If
the cosimulator is available, the trace generated through the simulation monitors is compared
against the trace of committed instructions produced by the cosimulator. This verification occurs
in a process separate from both the main RTL/netlist simulator and the cosimulator, and thus can
be done in parallel.

As previously mentioned, CARPE can simulate a design compiled either from RTL or from a
synthesized netlist. Netlist simulations are opaque, and unlike RTL simulations, cannot be enhanced
with monitors that trace internal events. Thus, when a netlist simulation is performed, the original
RTL from which the netlist was synthesized is simultaneously simulated, and the external behavior
of the netlist is compared to that of the RTL. This allows partial verification of the correctness of
the netlist simulation, as well as allowing statistics to be generated from the RTL model during the
simulation.

Since this framework is designed to perform a high-detail simulation of the processor, only
the processor is simulated. Components that require a real system bus, such as hard disk drives,
displays, keyboards, and so on are not supported. This choice was made in order to significantly
reduce run time and the overall complexity of the simulator. However, it means that simulations
must execute completely from main memory, without relying on the filesystem or console.

During the simulator initialization phase, the program to be executed is read from the disk
file whose name is provided in the command line. The program is written to the simulated main
memory, the processor’s synchronous reset signal is asserted, and then the clock is started. The
reset signal is then deasserted after one clock cycle, after which the processor starts executing
instructions.

The benchmarks used in this study come from the Mibench benchmark suite. Only the integer
instructions are supported by the pipeline, and thus the benchmarks that use floating-point cannot
be simulated. Code necessary to initialize caches and set up the C runtime environment was
added at the start of the benchmarks. This initialization code requires only a few thousand cycles
to execute, and is negligible when compared to the millions of cycles required to complete the
benchmark. Additionally, these benchmarks have been modified to remove use of system calls.
This required that any input data used by the benchmark be statically included in the program
binary itself. Since loading the program in memory occurs before the processor begins execution,
loading the input data does not contribute to any of the statistics gathered by the simulator.
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However, the input data is typically only read once at the beginning of the program, and is on
the order of kilobytes, and thus also contributes a negligible amount to the runtime of the original
benchmarks.
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CHAPTER 3

TAGLESS-HIT INSTRUCTION CACHE

The TH-IC [14] was introduced as an effective alternative to an L0/filter cache for single-issue
pipelines, with the goal of reducing instruction fetch energy. This chapter will provide background
material on the TH-IC, as well as the preliminary work on improving its effectiveness, and extending
its use to high-fetch-bandwidth pipelines.

3.1 Background

The primary motivator in targeting instruction fetch for energy reduction is that this stage of
the pipeline requires accessing a number of large structures in order to maintain high throughput.
A level zero instruction cache (L0-IC) reduces fetch energy when compared to using just a level one
instruction cache (L1-IC), as an L1-IC is much larger, often containing a factor of at least 64 times
as many instructions [17]. However, an L0-IC has much higher miss rates and each miss incurs a
1-cycle miss penalty as the L0-IC is checked before accessing the L1-IC. These miss penalties cause
both a loss in performance and reduce some of the energy benefit from accessing the lower power
L0-IC due to increased application execution time. The TH-IC holds instructions and provides
them to the core in nearly the same fashion as an L0-IC, but has no associated miss penalty when
the instruction is not present. Instead, it makes guarantees about when the next instruction to be
fetched will be resident in the TH-IC by using a small amount of additional metadata. When such
a guarantee cannot be made, the TH-IC is bypassed and the L1-IC is instead directly accessed. No
tag check is performed when an instruction is guaranteed to reside within the TH-IC. In addition,
I-TLB (Instruction Translation Lookaside Buffer) accesses are unnecessary on guaranteed hits as
the page number of the virtual address is not used to index into the TH-IC. The energy savings for
a TH-IC actually exceeds the savings from an L0-IC due to no execution time penalty on TH-IC
misses and no tag checks or I-TLB accesses on TH-IC hits.

Figure 3.1 shows the organization of a TH-IC with a configuration of four instructions per
cache line. There is a next sequential (NS) bit associated with each line that indicates that the
next sequential line in memory is guaranteed to be the next sequential line in the TH-IC. Associated
with each instruction is a next target (NT) bit indicating that the instruction is a direct ToC and
that its target instruction resides within the TH-IC. These bits allow the processor to determine,
while accessing a given instruction, whether the next instruction to be fetched will be a guaranteed
TH-IC hit. Whenever an instruction is guaranteed to be present in the TH-IC, the bit labeled
“Access L1-IC/I-TLB?” is cleared, and is set otherwise.

For instance, if the next instruction to be sequentially fetched follows the current instruction,
and the current instruction is not the last in its line, then the next fetch is guaranteed to be present
within the TH-IC, since the line will not be evicted before it is fetched. Otherwise, if the current
instruction is the last in its line, we must check the line’s NS bit. If the NS bit is set, then the
next line is a guaranteed hit, and will be accessed from the TH-IC. If the NS bit is not set, then
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Figure 3.1: TH-IC Organization

the next line is not a guaranteed hit, and it will be accessed directly from the L1-IC. At the end of
the cycle in which the successive instruction is fetched, the L1-IC line containing it is written into
the TH-IC, and the previous line’s NS bit is set. As long as neither line in the pair is evicted, later
traversals across the pair will result in guaranteed hits to the second line. If either line in the pair
is evicted, the first line’s NS bit will be cleared.

The NT bit plays a similar role in guaranteeing hits. However, it is used to determine whether
or not the target of a direct transfer of control (ToC) is a guaranteed hit. For example, suppose the
current instruction being fetched is a direct transfer of control, and the branch predictor determines
that it should be taken. If the NT bit associated with the instruction is set, then the target is
guaranteed to be present within the TH-IC. Otherwise, the target will be fetched from the L1-IC.
At the end of the cycle in which the target is fetched, it will be written into the TH-IC, and the NT
bit associated with the ToC will be set. If neither the ToC’s line nor the target’s line are evicted
prior to the next time the ToC is fetched, then the NT bit will still be set. If the branch predictor
again indicates that the ToC should be taken, the target will be accessed from the TH-IC.

In addition to the bits used to provide guarantees, the TH-IC tracks state to aid in invalidating
these bits when they become obsolete. Each line has an associated TL field that indicates which
lines should have its NT bits cleared when the corresponding line is evicted. Since the TH-IC is
accessed in the same cycle as the L1-IC on potential misses to avoid invalidating metadata for false
misses, the TH-IC can eliminate the high portion of the tag that is redundant to the L1-IC. These
smaller tags are referred to as IDs. Despite containing additional types of metadata, the TH-IC
metadata size per line is about the same size as the metadata in an L0-IC per line due to the
significantly decreased tag size.

The following sections describe preliminary work on new extensions to the TH-IC that provide
multiple instructions per cycle, as well as improving its energy usage reductions.

3.2 High Level Simulation

Before going into detail regarding microarchitectural innovations, we describe the processor
configuration, benchmarks, simulation environment, and target instruction set used in this study.
This information is referenced later in the paper when describing the design. As the currently
predominant architecture in embedded systems is the ARM architecture, we have based our model
on the ARM Cortex series of cores. The series includes a wide variety of cores, from simple, single-
issue, in-order architectures with short pipelines, to complex, superscalar, out-of-order cores with
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pipelines of up to 20 stages. These cores are intended for low power usage scenarios, and can be
implemented using synthesized logic and compiled RAMs, and without use of custom blocks. The
new techniques presented in this paper can similarly be implemented without custom blocks, and
using synthesized logic.

Our experimental configurations are shown in Table 3.1. For single issue experiments, we used a
similar configuration to the one described in the TH-IC paper [14] to verify that the TH-IC results
can be reproduced and to facilitate comparisons. We also used two more aggressive processor
models: a two-way fetch, superscalar in-order model, and a four-way fetch, superscalar out-of-order
model. As mentioned, all the models have been parameterized to closely represent the features
found in the ARM Cortex series used in smartphones and tablets. We have attempted to use
configurations similar to those described in the ARM online documentation [2].

The simulation environment used includes the SimpleScalar simulator [6, 3] with Wattch exten-
sions [5]. Wattch assumes clock gating, and approximates the leakage in inactive processor com-
ponents as using a constant percentage of their dynamic energy. The Wattch power model using
CACTI [28] has been accepted for providing reasonably accurate estimates for simple structures.
We have modified Wattch to allow this leakage to be configured, and run simulations assuming
10%, 25%, and 40% leakage. The benchmark suite used in this study is the MiBench suite [12].
We compiled all benchmarks using the GCC compiler included with the SimpleScalar toolset.

The structures we evaluate in this study include the TH-IC, L1-IC, I-TLB, BPB, and BTB.
The TH-IC has a similar structure to that of a small, direct-mapped L0-IC, and its metadata can
be stored in registers since the size of each metadata type is very small.

Similarly to the TH-IC study, we also used the MIPS/PISA instruction set. The formats used
for direct unconditional ToCs are shown in Figures 3.2 and 3.3. The target address in the jump
format is an instruction address. Each MIPS instruction is four bytes in size and aligned on a four
byte boundary. In this paper we describe the program counter (PC) as referring to instruction
addresses rather than byte addresses as the two least significant bits in a byte address are always
zero.

We also modified the baseline instruction fetch architecture simulated by SimpleScalar in order
to more realistically model a multiple issue processor. Our modified version of SimpleScalar has a
configurable fetch width, allowing up to one, two, or four sequentially consecutive instructions to
be fetched per cycle. We call the instructions fetched in a given cycle a fetch group. Each fetch
group is always aligned to a boundary of its size. For instance, when simulating a four-wide fetch,
each fetch group is aligned on a 16-byte boundary. If a transfer of control targets an instruction
that is not at the start of a group, then the instructions in the group that reside prior to the target
are not accessed. A beneficial side effect of this alignment is that exactly one L1-IC line is accessed
per fetch cycle, which is not the case in the original SimpleScalar model. Once instructions are
fetched, they are placed into a (2× fetch width− 1)-instruction deep queue. We assume that the
number of instructions that can be issued from this queue per cycle is the same as the fetch width.
We do not fetch instructions unless the queue has fetch width free entries. In this way, the fetch
architecture ensures that fetch width instructions are available for issue each cycle, and yet does
not fetch farther ahead than is immediately useful.
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Similar to
ARM Cortex-

A5
ARM Cortex-

A8
ARM Cortex-

A15

Issue Style In-order Out-of-order

Fetch/Decode/Issue Width 1 2 4

Fetch Queue Size 1 3 7

Memory Latency 100 cycles

Page Size 4 kB

DTLB, I-TLB
10-entry, fully

assoc.
32-entry, fully

assoc.
32-entry, fully

assoc.

L1-IC
4 kB, 2-way

assoc
16 kB, 4-way

assoc
32 kB, 2-way

assoc

L1-DC
4 kB, 4-way
assoc, 16 B

line

16 kB, 4-way
assoc, 64 B

line

32 kB, 2-way
assoc, 64 B

line

L2-UC
128K, 8-way

assoc
256K, 8-way

assoc
512K, 16-way

assoc

BPB
Bimodal, 256

entries
2-level, 512

entries
Comb., 1024

entries

BTB 256 entries 512 entries 1024 entries

Branch Penalty 2 cycles 4 cycles 8 cycles

RAS 8 entries 16 entries

Integer ALUs 1 2 4

Integer MUL/DIV 1 2 2

Memory Ports 1 2 3

FP ALUs 1 2 2

FP MUL/DIV 1 1 1

LSQ Size 2 4 8

RUU Size 2 4 8

Table 3.1: Experimental Configuration

opcode rs rt branch offset

16 bits5 bits5 bits6 bits

Figure 3.2: Conditional Direct Branch Format

opcode target address

6 bits 26 bits

Figure 3.3: Unconditional Direct Jump Format
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3.3 Designing a Multiple Fetch TH-IC

The original design of the TH-IC is limited in use to single issue microarchitectures. Such
simple microarchitectures are useful in applications with demands for low power, but are less
applicable when higher performance is demanded. Since multiple-issue processors are now becoming
commonplace in low-power applications, we have designed a multiple fetch TH-IC that can be used
in these more complex microarchitectures.

The layout and operation of the TH-IC is similar under multiple fetch pipelines as under single
fetch. The output port on the TH-IC is widened to allow fetch width adjacent instructions to be
accessed each cycle. In addition, rather than tracking the position of the instruction fetched in the
previous cycle, the position of the last issued instruction in the last fetch group is tracked. For
instance, if on the next cycle the processor will fetch the group that sequentially follows the current
fetch group, the position of the final instruction in the current group is stored. If the processor will
fetch the target of a taken direct transfer of control, then the position of the transfer of control is
stored, and not the position of the final instruction in its group. This position tracking behavior
for taken direct transfers enables the correct NT bit to be set once the target is fetched.

A consequence of increasing the fetch width is that the number of opportunities for sequential
intra-line fetches are less frequent. Suppose, for instance, that a basic block of code is being
executed for the first time, and that it is several TH-IC lines in length. If the TH-IC line size is
four instructions, a single issue processor will be able to take advantage of guaranteed hits for three
out of four instructions in each line. However, when the fetch width is widened to four instructions,
no hits can be guaranteed, as each sequential fetch will consume the entire line, and successive
fetches will be from new lines. Thus it is quite beneficial to increase the instruction cache line size
when using the TH-IC on multiple fetch processors.

3.4 Further Reducing Fetch Energy

While the instruction cache may be the dominating contributor to fetch energy dissipation,
there are other structures that use significant additional power. These include the I-TLB and the
structures involved in branch prediction.

We have devised a new organization, as show in Figure 3.4, that stores metadata that is used
to avoid accesses to the I-TLB and the branch related structures for multi-fetch architectures.
Figure 3.5 illustrates the entire fetch engine once these changes have been put into place. The
primary changes are to the TH-IC itself, and the introduction of a small amount of logic to detect
small direct jumps, whose purpose and function will be explained later. Some additional control
logic must be routed from the TH-IC to other structures, allowing the TH-IC to control when
these structures are accessed. In a standard pipeline, the BTB, BPB, RAS, L1-IC, and I-TLB are
accessed together in parallel, during a single pipeline stage. The TH-IC is also accessed in parallel
with these structures, during the same pipeline stage. Data that is read from the L1-IC must be
fed back to the TH-IC so it can be written at the end of the cycle. As the TH-IC may be accessed
for a read and a write in the same cycle, it must be implemented using dual-ported memories.

While the TH-IC already disables the I-TLB much of the time, it provides opportunities to
disable it even when the fetch will not occur from the TH-IC. This is facilitated by adding the
CP, LLP, and SP bits as shown in Figure 3.4. There is one CP (current page) bit, which indicates
current physical page is the same as the last one accessed from the I-TLB. This bit is necessary
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Figure 3.4: New Metadata Organization

because, if the I-TLB is disabled, there may be occasions where the physical page number is not
known, but fetching can proceed anyway. There is one LLP (last line in page) bit, which indicates
that the last line in the TH-IC is also the last line in the page. This bit is used to detect when
a sequential fetch leaves the current page. Finally, an SP (same page) bit is associated with each
instruction, and indicates that the instruction is a direct transfer of control whose target is in the
same page.

For disabling the branch prediction hardware, no new metadata is needed beyond that described
in [13]. However, some of this metadata has been rearranged or is used in a different fashion. These
changes are described in more detail in the following subsections.

3.4.1 Disabling I-TLB Accesses on TH-IC Misses

Disabling I-TLB accesses needs to be addressed within the context of the TH-IC, which disables
the I-TLB on guaranteed hits. Consider Figure 3.6, which depicts a code segment that straddles
a page boundary. There are three different ways that the application can switch between these
two pages. First, the unconditional jump (instruction 3) in block 1 can transfer control to block
3 (instruction 7). Second, the conditional branch (instruction 9) in block 3 can transfer control
to block 2 (instruction 4). Finally, there can be a sequential fetch within block 2 (instruction 5
to instruction 6). There is an NT bit associated with each instruction indicating if the associated
instruction is a direct ToC and that its target instruction is resident within the TH-IC. There is
an NS bit associated with each line of instructions indicating if the next sequential line is resident
within the TH-IC. The figure shows the status of these bits after each of the three blocks has
initially been executed. The I-TLB will not be accessed for the transitions 3→7, 9→4, and 5→6
when the NT bits associated with the first two transitions and the NS bit associated with the third
transition are set. Note that when the next instruction is guaranteed to be in the TH-IC, the
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Figure 3.5: New Fetch Engine Block Diagram. Grey lines indicate control signals

physical page number is not needed as there will be no tag check for guaranteed hits. Thus, as long
as the loop continues to iterate, there will be no I-TLB accesses even though the page boundary is
repeatedly being crossed.

We attempt to disable the I-TLB on TH-IC misses if the next instruction is guaranteed to
remain in the same page. However, the processor needs to detect when a page boundary has been
crossed on a TH-IC hit so that the next TH-IC miss will always access the I-TLB to obtain the
current physical page number (PPN). We add an internal register to store the PPN immediately
after it has been read from the I-TLB, and a current page bit (CP, shown in Figure 3.4) that
indicates whether or not the stored PPN corresponds to the page of the instruction to be fetched.
We additionally keep a single bit of state, called “Access I-TLB?”, that determines if the I-TLB
should be enabled. We use this information to avoid I-TLB accesses when accessing the L1-IC. If
the instruction resides on the same page, the most recently retrieved PPN is reused.

The CP bit is set each time the I-TLB is accessed as the PPN register is updated. Whenever
a transition between instructions is made that crosses a page boundary and the next instruction
is a guaranteed hit, then the CP bit will be cleared as the I-TLB is not accessed on TH-IC hits.
The first instruction accessed that is a TH-IC miss when the CP bit is clear will result in an I-TLB
access and the CP will be reset.

We store additional metadata to make guarantees when the next access is a TH-IC miss, but
will reside in the same page so we can avoid additional I-TLB accesses. The analysis of this problem
can be divided into distinct cases: (1) sequential accesses, (2) direct ToCs, (3) returns, and (4)
other indirect ToCs. We attempt to disable I-TLB accesses in the first three cases. The following
subsections describe when we can guarantee that the next instruction to be fetched for TH-IC
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Figure 3.6: Example Loop Straddling a Page Boundary

misses will remain on the same page. I-TLB accesses can only be disabled in these cases when the
CP bit is set.

3.4.2 Disabling the I-TLB for Sequential Accesses

If the current instruction is not the last instruction in the page, then the next sequential
instruction accessed is guaranteed to reside on the same page. We perform this check in two steps.
First, when the last line in the direct mapped TH-IC is replaced, a check is made to determine if
the new line is the last line in the page, which is indicated using the last line in page bit (LLP,
shown in Figure 3.4). Note that if the last line of the TH-IC is not being replaced, then the LLP bit
is unchanged. Second, when there is a sequential fetch, the current instruction is checked to see if it
is the last instruction in the TH-IC, which is accomplished by detecting if the portion of the virtual
address containing the TH-IC index and the most significant bits of the line offset identifying the
instruction within the line are all 1’s. This check examines six bits for a TH-IC configured with
sixteen 16-byte lines, as there are 64 instructions within the TH-IC. This second check only needs
to be performed when the LLP bit is set. Figure 3.7 depicts the line in page and inst in TH-IC bits
that must be accessed for these two checks. We have found that in 94.7% of all sequential fetches,
the last line in the TH-IC is also not the last line in the page. This large percentage is due in part
to the page size containing 16 times the number of instructions as the TH-IC in our configuration.

3.4.3 Disabling the I-TLB for Targets of Direct ToCs

If the target of a ToC is within the same page as the ToC instruction itself, then the I-TLB
need not be accessed, as the current PPN register value can instead be used. Figure 3.8 shows
how often each type of ToC occurred in the MiBench benchmark suite. Direct ToCs for the MIPS
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ISA include conditional branches, direct unconditional jumps, and direct calls, which comprised
14.2% of the total instructions and 93.3% of the ToCs. Figure 3.9 shows the ratios of how often
these direct ToCs have targets to the same page, which occurs 93.7% of the time on average. We
believe this frequency is high enough to warrant metadata to avoid I-TLB accesses when fetching
these direct targets. Thus, we include a same page (SP) bit for each TH-IC instruction, depicted
in Figure 3.4, that indicates when the instruction is a direct ToC and its target is on the same
page. We check if the virtual page number returned by the I-TLB on the cycle when the target
instruction is fetched is the same as the virtual page number used in the previous cycle for the ToC.
If so, then the SP bit associated with the direct ToC instruction is set and subsequent fetches of
the target fetch group when the ToC is taken need not access the I-TLB.

The processor does not always have to wait until the following cycle to set the SP bit when
the direct ToC instruction is fetched from the TH-IC as a guaranteed hit. Instead, we can often
exploit the faster TH-IC access time to determine within the same cycle if the target address is
within the same page. Our experimental configuration used a four-kilobyte page size, which is a
common size for many processors. A four-kilobyte page contains 1024 MIPS instructions, where
each instruction is four bytes in size and aligned on a four byte boundary. Thus, only the ten most
significant bits of the 12-bit page offset can have nonzero values for instruction addresses. If the
instruction is a direct unconditional jump or call, and the 16 most significant target address bits
shown in Figure 3.3 are the same as the corresponding bits of the program counter (PC), then the
SP bit is set and the I-TLB is disabled for the next instruction.
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3.4.4 Disabling the I-TLB for Targets of Returns

A return address stack (RAS) is used in our configuration to avoid mispredictions associated
with return instructions. The processor can be made to compare the virtual page number of the
target address in the top RAS entry with the virtual page number in the PC. This is possible
because the top RAS entry is available very early in the cycle, and so the comparison can be
performed without creating additional timing pressure. If they match and a return instruction is
fetched on a TH-IC hit, then the I-TLB access on the next cycle is disabled.

3.4.5 Disabling BPB/BTB Accesses

On single-issue pipelines without delayed transfers of control, and on multiple-issue pipelines,
branch prediction is a necessary feature in order to mitigate branch penalties. Branch prediction
structures can be very large, and it is beneficial to avoid accessing them whenever possible. The
BTB is particularly expensive to access, as each entry holds an address, and has an associated tag
that must be compared with the ToC PC. We first describe techniques for disabling these structures
on single fetch pipelines, then explain how they can be applied to multiple fetch pipelines.

3.4.6 Disabling BPB/BTB Accesses for Non-ToCs and Direct Jumps

The primary structures dealing with ToC speculation include the branch prediction buffer (BPB)
and the branch target buffer (BTB). We store two sets of bits in the TH-IC that we use to disable
these structures when they are not needed. These bits are the NSNB bits (next sequential not
a branch) and NTNB bits (next target not a ToC). Each instruction has an NSNB bit and an
NTNB bit associated with it, as shown in Figure 3.4. Whenever the NSNB bit for an instruction is
set, it indicates that the instruction that sequentially follows it is not a direct conditional branch.
Similarly, when the NTNB bit for an instruction is set, it indicates that the instruction is a direct
ToC, and that its target is not a direct conditional branch.1

We use these bits in the TH-IC by taking advantage of a single predecode bit that we have
added to the L1-IC. Predecoding is used in many pipeline designs, such as to facilitate detection of
calls and returns for activating the return address stack (RAS).

The bit we predecode prior to insertion in the L1-IC is the NB bit, which is set when the
instruction is a not direct conditional branch. We fill the NSNB bits in the TH-IC from the
predecoded NB bits in the L1-IC, as shown in Figure 3.10. The predecoded NB bits in the L1-IC
are shifted over to initialize previous instructions’ NSNB bits. We can also initialize NSNB bits in
the previous TH-IC line, provided that the current line was reached by a sequential fetch, and not
via a ToC.

We can avoid accessing the BPB and BTB on the following fetch if it is a guaranteed TH-IC
hit, and one of the following is true. (1) The following fetch occurs sequentially after the current
fetch, and the current instruction’s NSNB bit is set. (2) The following fetch is the target of a direct
ToC and the current instruction’s NTNB bit is set.

Note that the BPB and BTB may now be disabled for direct unconditional jumps and calls.
Due to the faster TH-IC access time, and the simple jump/call encoding used in the MIPS ISA, on

1We used a simple branch predictor in this study that always mispredicts indirect jumps that are not returns. If an
indirect branch predictor is used that stores target addresses for indirect jumps in the BTB, then the NSNB/NTNB
bits could instead mean that the next fetched instruction is not a conditional branch and not an indirect jump other
than a return.
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TH-IC hits we have sufficient time to detect direct jumps and calls, and simply multiplex in the
jump target before the next fetch, making the BPB and BTB irrelevant.

We also avoid updating the branch predictor for ToC instructions that do not activate the BPB
and BTB. This can result in reduced contention in these structures, potentially improving branch
prediction behavior.

The cost of this approach is extra predecode logic (checking for branch opcodes), the NB bits
added per L1-IC instruction, and the NSNB and NTNB bits per TH-IC instruction.

NBinst 0 inst 1 inst 3NBinst 2NB

inst 1 inst 3NBinst 2

NB

NB

L1−IC Line:

inst 0

NS NS NS NS

Current TH−IC Line

(On Sequential Fetch)

NB

NS

inst 3

NB

Previous TH−IC Line

NB

Figure 3.10: Filling NSNB Bits from L1-IC Predecode Bits

3.4.7 Disabling BTB Tag Array Accesses

The BTB is a simple cache of ToC targets, and like most caches, has a tag array that comprises
a significant portion of its storage. However, since BTBs typically hold a single ToC target per
entry, this tag array can be larger than data or instruction caches with similarly sized data arrays.
Provided that the BTB has at least as many entries as the TH-IC has instructions, we can take
advantage of a set NT bit to disable access to the BTB tag array on sequential fetches. If the fetch
on the next cycle will sequentially follow the current instruction, and is either within the same
line or the current line’s NS bit is set, then we can examine the next sequential instruction’s NT
bit. If that bit is set, then we know that the BTB entry for that instruction cannot have been
replaced since it was last accessed. In other words, if the BTB entry for the ToC is replaced, then
the instruction itself within the TH-IC would have been replaced and the associated NT bit would
have been cleared. As a result, a BTB hit is guaranteed when the NT bit is set, and we can avoid
the BTB tag check that is normally required.

3.4.8 Disabling BPB/BTB Accesses with Multiple Fetch

When multiple instructions are fetched per cycle, we must slightly adjust the interpretation
of the NSNB and NTNB bits. First, we associate the NSNB bits with each fetch group, rather
than with each instruction. The total number of NSNB bits remains the same, at one bit per
TH-IC instruction. For example, when the pipeline fetches four instructions per cycle, it will access
four NSNB bits along with those instructions. However, each bit in this group will indicate the
non-branch status of a corresponding instruction in the next sequential fetch group. Thus, when
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initializing these bits from the NB bits held in the L1-IC, we must shift them over by a whole fetch
group, and not just a single instruction.

We also adjust the interpretation of NTNB bits. We still associate each NTNB bit with an
instruction, but interpret each NTNB bit to mean that no instruction in the target fetch group
(except those prior to the target instruction) is also a ToC. We could associate multiple bits per
instruction, allowing individual instructions within the target fetch group to be disabled, but this
is unlikely to provide much benefit. On average, branches will target the middle of a fetch group,
so half these bits will not be used.

If a direct unconditional jump or call instruction is fetched from the TH-IC as a guaranteed hit,
then the processor has time in the same cycle due to the faster TH-IC access time to extract the
target address from the jump format, which is shown in Figure 3.3. Accessing the BTB in this case
is unnecessary as the target address is already available, regardless of whether or not the target
is on the same page. The BPB can also be disabled in this case as direct unconditional jumps
and calls are always taken. Thus, when a sequentially accessed instruction, direct call or jump is a
TH-IC hit and the NSNB bit for the previous instruction is set (meaning the current instruction is
not a conditional branch), then both the BTB and BPB are disabled.

This strategy has the added effect that it is not necessary to insert direct jumps and calls into
the BPB or BTB. Fewer accesses result in reduced contention in those tables, allowing more room
for branches, and thus improving the branch prediction rate.

3.4.9 Variable Length Instruction Set Architectures

One of the dominant ISAs in current use is the Intel x86 ISA. Unlike the ISA used in this study,
and unlike nearly every other ISA in common use, this ISA uses a variable-length instruction.
While such an ISA may appear to make the TH-IC unusable for reducing fetch energy, this is not
the case.

In order to adapt the TH-IC to variable-length ISAs, the key concept is to treat each byte of an
x86 instruction as an individual, complete instruction. The fetch engine can then treat the first N−1
bytes of an N byte instruction as noops, and attributes the full effect of the complete instruction
to the final byte. Metadata bits are then associated with each byte in the TH-IC, instead of each
instruction. For instance, when setting the NT bit for a multi-byte branch instruction, the NT bit
associated with the final byte of the branch will be set. With this organization, the multiple-fetch
architecture described in this paper can be used to fetch multiple bytes per cycle, thus maintaining
performance.

We did not study a TH-IC as just described with a variable-length ISA for this paper. The
power savings would likely be marginally lower, as the amount of metadata storage required would
be greater than for an ISA with a fixed, 32-bit instruction size.

3.5 High-level Simulation Results

The baseline shown in the graphs in this section assumes that the fetch associated structures
(I-TLB, BPB, and BTB) are accessed every cycle. During our simulations we performed numerous
checks to verify the validity of all guarantees. Our model accounts for the additional energy required
to transfer an entire line from the L1-IC to the TH-IC, as opposed to just the instructions needed
when no TH-IC is used. Our model also properly attributes the additional energy required for
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Table 3.2: Optimal Configurations

Fetch Width 10% leakage 25% leakage 40% leakage

1 32/T8 16/T8 64/none
2 32/T8 32/T8 32/T8
4 32/T16 32/T16 32/T8

configurations that extend the L1-IC with predecoded data. Our experiments include configurations
with L1-IC lines of different lengths, while keeping the L1-IC size and associativity constant. TH-IC
lines are necessarily always the same length as L1-IC lines, but we included configurations with
varying numbers of TH-IC lines.

As a share of total processor power, leakage power has increased with the downward scaling of
fabrication technologies. As previously mentioned, in order to cover the range of potential process
technologies, we have simulated three different leakage rates, 10%, 25%, and 40%.

Table 3.2 shows the experimentally determined lowest-energy configurations for each fetch width
and leakage rate. In this table and the following figures, the notation “X /TY ” refers to a config-
uration with an X -byte IC line size, and a TH-IC with Y lines. The notation “X /none” refers to
a configuration with an X -byte IC line size, and no TH-IC.

Figures 3.11-3.19 show the total fetch energy for each pipeline, normalized to the best-case
L1-IC-only configuration for each pipeline. The most obvious result shown by these graphs is that
a larger TH-IC size results in more efficient usage of the other structures, but also increases TH-IC
energy usage. The TH-IC hit rate generally increases with size, but eventually its power will exceed
the power saved by disabling the other structures.

As expected, with higher leakage rates, the effectiveness of the TH-IC diminishes, and smaller
TH-ICs are more effective than larger ones. In spite of this, the TH-IC provides benefit in all
configurations, although that benefit may be miniscule at higher leakage rates. In addition, it is
anticipated that technologies such as high-k metal gate (HKMG) will drastically reduce leakage
power even as technology scales smaller. For instance, Global Foundries’ 28nm HKMG Low-
Power/High-Performance Platform (LPH), intended for use in high-end smartphones and tablets,
reduces active power by up to 40%, and leakage currents by up to 90% when compared to earlier
technologies [11]. Where power is a concern of much higher importance than performance, a very
low leakage, low power technology will likely be used in combination with a low performance, single
issue design, a situation in which the TH-IC is highly effective.

The following paragraphs describe the reduction in access rates of the individual components.
Figure 3.20 shows the resulting L1-IC accesses. This reduction in accesses is the primary

contributor of energy savings, as the L1-IC is the largest of the fetch associated structures. We are
able to avoid accesses to the L1-IC for between 77% and 88% of instructions in all configurations.
Benchmarks with small, tight, and easily predicted innermost loops, such as pgp, sha, adpcm, and
crc show the best performance. This is due to the high TH-IC hit rate, and optimal branch predictor
performance while executing these loops. Benchmarks such as qsort, which have higher indirect
jump counts, have higher L1-IC access rates, as the targets of indirect jumps cannot be fetched
from the TH-IC, and cannot be predicted.

Figure 3.21 shows the resulting I-TLB accesses. The original TH-IC alone already results in
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Figure 3.11: Fetch Energy, 1-wide Fetch, 10% Leakage
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Figure 3.12: Fetch Energy, 1-wide Fetch, 25% Leakage
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Figure 3.13: Fetch Energy, 1-wide Fetch, 40% Leakage
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Figure 3.15: Fetch Energy, 2-wide Fetch, 25% Leakage
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Figure 3.17: Fetch Energy, 4-wide Fetch, 10% Leakage
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Figure 3.18: Fetch Energy, 4-wide Fetch, 25% Leakage
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Figure 3.19: Fetch Energy, 4-wide Fetch, 40% Leakage

significant reductions in I-TLB accesses (in fact, exactly at the rate for L1-IC accesses), but the
techniques presented in this paper further reduce the access frequency down to less than 6% of
cycles for 1-wide fetch, less than 9% of cycles for 2-wide fetch, and less than 12% of cycles for
4-wide fetch. Much of the benefit comes from detecting when the current line is not the last line
in the page during sequential fetches. However, some of the benefit is obtained by the use of the
SP bit for direct ToCs, which allows ToCs that leave their page to be detected. The differences in
I-TLB access rates between the benchmarks occur for reasons similar to the differences in L1-IC
access rates.

Figure 3.22 shows the resulting BPB and BTB target array accesses. Figure 3.23 shows the
resulting BTB tag array accesses. The BTB tag access rate is lower than the BPB/BTB target
rate because the tag array is only accessed when the branch instruction’s NT bit is not set, whereas
the target is accessed for all direct branches. We are able to prevent accesses to the BPB and BTB
target for at least 77% of instructions for 1-wide fetch, 72% of instructions for 2-wide fetch, and
64% of instructions for 4-wide fetch. We are able to reduce BTB tag array accesses even further, to
83% of instructions for 1-wide fetch, 78% of instructions for 2-wide fetch, and to 68% of instructions
for 4-wide fetch. In the MiBench suite, only 14.2% of instructions are direct transfers of control
(jumps and branches). In the 1-wide fetch configuration, we are able to come to within 9% of this
optimum for BPB and BTB target array accesses, and to within 3% of the optimum for BTB tag
array accesses.

Note that, on average, access rates for all the fetch related structures improve when higher fetch
widths are used. This is primarily due to the larger L1-IC sizes (and thus higher hit rates) that are
present on the more aggressive pipeline models. In our model, L1-IC misses result in reactivation
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Figure 3.20: L1-IC Accesses (Normalized)
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Figure 3.22: BPB/BTB Target Accesses (Normalized)

of all structures once the line fill completes, and so higher L1-IC miss rates result in higher energy.
Figure 3.24 shows the number of execution cycles for each of the simulated benchmarks, nor-

malized against the configuration with no TH-IC (but with the same L1-IC line size). The slight
improvement in performance shown here can be explained by the reduction in BTB contention as
discussed in 3.4.6, and as evidenced by the corresponding reductions in BTB replacements (Fig-
ure 3.25) and branch mispredictions (Figure 3.26). Though the frequency of BTB replacements
were decreased by similar fractions for all 3 pipelines, the effect on mispredictions is greater on the
single-fetch pipeline because its BTB has fewer entries. Note that this improvement may not hold
when changing the L1-IC line size, due to different miss rates.

Finally, Figures 3.27-3.35 show the energy usage breakdown for each benchmark on the lowest
energy TH-IC-based configuration of those we tested. Since the goal is to minimize total fetch
energy usage, whether or not a TH-IC is used, we have chosen to normalize each graph to the
optimum L1-IC-only configuration. Thus, each graph shows the ratio of energy savings of the best
TH-IC-based configuration versus the best L1-IC-only configuration. This shows that, in all cases,
adding an optimized TH-IC provides benefit over simply optimizing the L1-IC and not using a
TH-IC.

3.6 Hardware Implementation and Analysis

In order to more accurately model the power and performance of the TH-IC, it has been
implemented in synthesizable RTL. The RTL model was synthesized using a low-power 65 nm
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Figure 3.23: BTB Tag Accesses (Normalized)

technology by ST Microelectronics. In this hardware implementation, only the basic TH-IC with
NS, NT, and TL bits has been implemented.

Other work[4] has shown that transferring a complete block between caches in a single cycle is
detrimental for power consumption. Implementing such a transfer requires that the caches have
ports as wide as a full cache block. In addition, for associative caches, all ways of the cache must
be read simultaneously, as the tag array is typically accessed in parallel with the data array, with
the tag check and way selection occurring in the same cycle. For a 4-way set associative cache with
16-byte blocks, this requires what is essentially a 512-bit port.

For these reasons, the TH-IC has been implemented to transfer the cache block over multiple
cycles. However, instructions can be forwarded to the pipeline as they are read from the L1-IC,
as long as the pipeline is requesting the instruction that is currently being transferred. This is
the case as long as the instructions are requested in consecutive sequential order without moving
to a different line, and the pipeline does not stall between consecutive instructions. For example,
when transferring the first instruction of a block, it will be forwarded to the pipeline. If the next
instruction requested by the pipeline is at the next consecutively sequential address and is also
within the same block, it can also be automatically forwarded. However, since the fill occurs
over consecutive cycles, if the pipeline stalls during the fill operation, the cache cannot continue
forwarding filled instructions, and must wait until the fill operation completes to satisfy the next
pipeline request.

The downside to this strategy is that each TH-IC miss imposes a penalty of one cycle for each
remaining instruction in the cache block. However, this penalty is smaller than the miss penalty
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Figure 3.24: Simulated Cycles (Normalized)

for a filter cache, because the TH-IC miss is detected ahead of time. On a true TH-IC miss, the
transfer of instructions from the L1-IC to the TH-IC is immediately initiated with the first L1-IC
access in the block. With a traditional filter cache, the filter cache must be accessed before the
fill is initiated, imposing an additional 1-cycle penalty. So the performance of this TH-IC is lower
than that of an L1-IC on its own, but still better than that of a traditional filter cache.

Table 3.3 shows the area used by instruction fetch units both with and without a TH-IC. Due to
the limited selection of block memories that were available, the L1-IC valid bits and LRU table were
implemented using register cells. As a result, these components occupy a disproportionate amount
of area, and do not have chip-select signals that can be used to reduce their power consumption.
The TH-IC adds small memories for the TH-IC instruction data and the ID field. There are very
few valid and NS bits (32 each in this implementation), and the use of the NT and TL bits prevents
them from being implemented as block memories. These bits are instead implemented using register
cells in the datapath subcomponent, thus accounting for its increase in size. Thic TH-IC adds under
9% to the total area of the instruction fetch unit.

3.7 Experimental Results

Figure 3.36 shows the performance impact of introducing the TH-IC implemented as just de-
scribed. The average performance reduction for this implementation is less than 2%.

Figure 3.37 shows the relative outcomes of fetches for pipelines with and without a TH-IC. The
bars whose labels begin with “L1-Only” correspond to the pipeline without a TH-IC, and those
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Figure 3.25: BTB Replacements (Normalized)

L1-IC Only L1-IC + TH-IC

L1-IC Instruction Memory 290370 290370
L1-IC Tag Memory 87115 87115
L1-IC Valid Bits 31412 31637
L1-IC LRU Table 47242 47242
TH-IC Instruction Memory — 11440
TH-IC ID Memory — 8899
Control 1234 1540
Datapath 2033 21026

Total Area 459406 499271

Table 3.3: Instruction Fetch Unit Area Results
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Figure 3.26: ToC Mispredictions (Normalized)
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Figure 3.27: Fetch Energy, 1-wide Fetch, 10% Leakage, 32/T8 vs. 64/none
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Figure 3.28: Fetch Energy, 1-wide Fetch, 25% Leakage, 16/T8 vs. 64/none
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Figure 3.29: Fetch Energy, 1-wide Fetch, 40% Leakage, 16/T4 vs. 64/none
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Figure 3.30: Fetch Energy, 2-wide Fetch, 10% Leakage, 32/T8 vs. 64/none
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Figure 3.31: Fetch Energy, 2-wide Fetch, 25% Leakage, 32/T8 vs. 64/none
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Figure 3.32: Fetch Energy, 2-wide Fetch, 40% Leakage, 32/T8 vs. 64/none
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Figure 3.33: Fetch Energy, 4-wide Fetch, 10% Leakage, 32/T16 vs. 32/none
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Figure 3.34: Fetch Energy, 4-wide Fetch, 25% Leakage, 32/T16 vs. 32/none
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Figure 3.35: Fetch Energy, 4-wide Fetch, 40% Leakage, 32/T8 vs. 32/none
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Figure 3.36: TH-IC Performance Impact

whose labels begin with “TH-IC” correspond to a pipeline with a TH-IC. The outcomes for the
L1-only configuration are broken down as follows:

• L1-Only Filled: instructions forwarded to the pipeline during block fills;

• L1-Only Hits: cache hits;

• L1-Only Tagless: cache hits that could be performed without a tag check (sequential fetches
from within the same cache block);

The outcomes for the TH-IC configuration are broken down as follows:

• TH-IC L1 Filled: instructions forwarded to the pipeline during block fills for L1-IC misses;
i.e. both L1-IC and TH-IC are being filled;

• TH-IC Filled: instructions forwarded to the pipeline during block fills for TH-IC-only
misses; i.e. the TH-IC is being filled from the L1-IC;

• TH-IC True Misses: instructions fetched from L1-IC, true TH-IC miss

• TH-IC False Misses: instructions fetched from L1-IC, false TH-IC miss

• TH-IC Hits: instructions fetched from TH-IC

As shown in this figure, the TH-IC is able to achieve a reasonably good hit rate of more than
87%. The TH-IC True Misses category is quite small, at less than 4%. The additional latencies
imposed by the TH-IC only occur for this category of fetches, and the TH-IC Filled category
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Figure 3.37: TH-IC Fetches

represents fetches that prevented some of this latency. On average, fewer than 7% of fetches were
satisfied in this way, however for some benchmarks (patricia, jpeg) the fraction is significant.

Due to additional latencies introduced by the TH-IC, there is a slight decrease in the number
of fetch requests. This occurs because the latencies prevent the pipeline from speculating quite as
far into the instruction stream, and thus fewer misspeculations can occur.

Figure 3.38 compares the absolute power usage of the instruction fetch units, for both the L1-
only configuration and the TH-IC configuration. The power usage for the L1-Only configuration is
broken down as follows:

• L1-Only Inst SRAM: power used by instruction memory

• L1-Only Tag SRAM: power used by tag memory

• L1-Only Valid Bits: power used by valid bits

• L1-Only LRU Table: power used by LRU table

• L1-Only Datapath: power used by datapath (multiplexers for address and instruction)

• L1-Only Control: power used by control logic

The power usage for the TH-IC configuration is broken down as follows:

• TH-IC L1 Inst SRAM: power used by the L1-IC instruction memory
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Figure 3.38: TH-IC Instruction Fetch Power Usage

• TH-IC Tag SRAM: power used by L1-IC tag memory

• TH-IC Valid Bits: power used by L1-IC valid bits

• TH-IC LRU Table: power used by L1-IC LRU table

• TH-IC Inst SRAM: power used by TH-IC instruction memory

• TH-IC ID SRAM: power used by TH-IC ID memory

• TH-IC Datapath: power used by datapath (multiplexer for address and instruction; TH-IC
Valid, NS, NT, TL bits)

• TH-IC Control: power used by control logic

As shown in this figure, although the TH-IC introduces new memories and significant new datapath
logic, it manages a substantial reduction in power usage. This occurs primarily through a reduction
in the access rates of the L1 instruction and tag memories. Introducing the TH-IC results in an
instruction fetch power reduction of 22%.

Figure 3.39 compares the relative instruction fetch energy usage of each configuration. Although
the TH-IC results a small performance penalty of less than 2%, this penalty is far less than the
improvement in power usage, and thus the TH-IC reduces instruction fetch energy over 20%.

Figure 3.40 shows the total core power usage. As this figure shows, instruction fetch is the
dominant contributor to total core power. This occurs due to the relatively large instruction cache
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Figure 3.39: TH-IC Instruction Fetch Energy Usage

size, combined with its frequent, nearly continuous access rate. In comparison, although the data
cache is equal in size to the instruction cache, and involves a more complex datapath and control
logic, it is accessed much less frequently and thus has lower power usage. The overall effect is a
reduction in total core power of over 9%.

Figure 3.41 shows relative total core energy usage. Although the TH-IC introduces a small
performance penalty, the penalty is not sufficient to outweight the power reduction of the TH-
IC. Thus total core energy is substantially reduced as well, by over 7%. However, the delays
introduced when filling TH-IC lines result in smaller improvements to energy usage that was found
in the higher-level simulations.

When the TH-IC was first introduced[14], high level simulations produced an estimated energy
reduction of nearly 30% for a configuration similar to the one presented here. That work used a
slightly smaller 16KB L1-IC, while this work used a 32KB L1-IC, and it should be expected that
the power savings would be larger with the larger L1-IC. However, several inaccuracies in the high
level simulation resulted in an overestimation of the power savings that could be achieved. While
the results of this study affirms that the TH-IC is capable of reducing power and energy usage, it
also shows the need for improved high-level modelling techniques that more accurately predict the
energy usage of new architectures.
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Figure 3.40: TH-IC Total Core Power Usage
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Figure 3.41: TH-IC Total Core Energy Usage
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Figure 3.42: TH-IC Core Energy*Delay
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Figure 3.43: TH-IC Core Energy*Delay2
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CHAPTER 4

STATIC PIPELINING

The second architectural technique to be researched in this dissertation is called static pipelining.
This chapter provides background information on static pipelining.

Static pipelining is a reconceptualization of the traditional 5-stage RISC pipeline that replaces
the complex, dynamically controlled instruction flow found in these pipelines with simple, statically
determined control generated by the compiler. As shown in Figure 4.1, in a traditional 5-stage RISC
pipeline, each instruction is executed over 5 sequential stages, each stage taking (at least) one cycle
to complete. These stages are fetch (IF), decode (ID), execute (EX), memory (MEM), and writeback
(WB). A different instruction occupies each stage of the pipeline, and instructions flow down the
pipeline, starting at IF and committing at WB. Each instruction encodes a simple operation, such
as an ALU operation, a transfer of control, or a memory access.

Figure 2.2 shows the layout of an OpenRISC 5-stage pipeline. Instructions are fetched from the
L1 cache in the IF stage. In the ID stage, the instruction is decoded, and additionally, the register
file is read. ALU operations are performed in the EX stage, and memory accesses are performed in
the MEM stage. Finally, in the WB stage, values are written the the register file, and exceptions
may be handled. Each stage is separated from the one that follows by a group of pipeline registers,
which are written every cycle (ignoring stalls and flushes).

While the traditional processor dynamically pipelines the steps required to perform each in-
struction, the static pipeline instead relies on the compiler to simulate the pipelining. The effects
described above (register read/write, functional unit operations, memory accesses, and pipeline reg-
ister writes) are exposed directly to the compiler. The compiler breaks each traditional instruction
into equivalent static pipeline effects. The compiler then schedules and parallelizes effects, within
the constraints of the static pipeline microarchitecture.

The compiler generates code by first compiling to a standard RISC-like ISA. It then expands
each RISC instruction into a number of effects that mimic the flow of the instruction through a
standard RISC pipeline. For example, the standard RISC instruction

add r1, r2, r3

IF RF EX MEM WBIF RF EX MEM WB

(c) Static Pipelining(b) Traditional Pipelining(a) Traditional Insts

or

store

sub

load

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

RFadd

Figure 4.1: Traditional Pipelining vs. Static Pipelining
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would be expanded into the sequence

RS1 = r2
RS2 = r3
OPER1 = RS1 + RS2
r4 = OPER1

The expanded code is then optimized using standard optimization techniques, such as copy prop-
agation, dead code elimination, code motion, and so on. Once compilation is finished, effects are
parallelized as much as the dependencies between them and the available templates allow.

In the static pipeline, nearly all of the dynamic control logic, such as hazard detection, forward-
ing, is eliminated, reducing circuit area and thus power. The pipeline registers between pipeline
stages are replaced with compiler-controlled temporary registers, and forwarding of values is han-
dled by the compiler using these registers. In instances where forwarded values would normally
be written to the register file, but never reused, the write to the register file can be eliminated,
again reducing power. The performance of such a pipeline is tremendously compiler dependent,
and reliant on a number of advanced optimization techniques. However, an in-house compiler is
able to attain cycle counts comparable to that of a traditional RISC pipeline for many benchmarks.

Figure 4.2 shows the microarchitecture of a static pipeline based on a standard 5-stage RISC
architecture. The static pipeline has all the major components of a standard RISC pipeline, such
as a register file, ALUs, a load/store unit, and a branch predictor. As mentioned, the pipeline reg-
isters are replaced with compiler-controlled temporary registers. These registers are not arbitrarily
addressible, the way register file registers are. Each register can only be written with values from
a small number of sources. These registers are:

• RS1, RS2 (register sources 1 & 2): can be written with a entry read from the register file

• LV (load value): can be written with a value read from memory

• OPER1 (operand 1): written with the value produced by the first functional unit (FU1)

• OPER2 (operand 2): written with the value produced by the second functional unit (FU2)

• SE: can be written with the (possibly sign extended) immediate value from an instruction

• CP1, CP2: temporary “copy” registers; each can be written with a value from most of the
other temporary registers

• ADDR: stores an address that can be used for memory accesses and control transfers

• SEQ: can be written with the value of PC + 1

The static pipeline instruction provides a number of independent effects that occur in parallel,
as dictated by the so-called “wide” instruction format shown in Table 4.1. Most of these effects are
essentially multiplexer selectors and register enables that choose from where each of these registers
will take their next values. The supported effects are:

• FU1 (functional unit 1): performs basic integer single-cycle ALU operations

• FU2 (functional unit 2): performs long-latency integer and floating-point operations
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Figure 4.3: Static Pipeline Templated Instruction Formats

• CP (copy): performs a write into one of the copy registers (CP1 or CP2)

• SEQ (sequential address register): performs a write into the sequential address register; used
primarily to save the PC upon entering a loop

• PTB (prepare-to-branch): initiates a transfer of control

• RF (register file): controls reading and writing the register file

• SE (sign-extend): controls sign-extension and handling of immediate values

• MEM (memory): controls load/store operations

• ADDR (address): supplies address for load/store operations and control transfers

The static pipeline exposes more independent effects to the compiler than a typical processor.
As a result, the full instruction is relatively large, at over 80 bits wide. The compiler typically
cannot parallelize more than a handful of effects per instruction, however, so most instructions
have a no-op for several of the effects. In order to reduce the size of each instruction, a set of
32 “templates” are chosen, as shown in Figure 4.3. The most significant five bits of the 32-bit
instruction are used to identify which template is in use. The remaining bits are divided into fields
of various widths, each of which can be used to encode a single effect. The 5-bit template identifier
determines which combination of fields will be used, as well as which effect each field encodes. For
a given template identifier, the wide instruction can be generated by extracing each field in the
32-bit instruction to the appropriate effect in the wide instruction. The set of templates that are
used to compress instructions is determined by profiling.
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Effect Field Encoding Effect Field Encoding Effect Field Encoding
FU1 OP NOP FU2 OP NOP MEM OP NOP

ADD ADD STORE
SUB ADDF LOAD
AND SUBF LOADU
OR MULT SIZE BYTE
XOR MULTF HALF
NOT DIV WORD
SLL DIVU CACHE
SRL SLTF VALUE RS1
SRA ITF RS2
SLT ITD OPER1
SLTU FTI CP1
BEQ FTD OPER2
BNE DTI LV

SRC1 OPER1 DTF SEQ
OPER2 SRC1 OPER1 CP2
RS1 OPER2 RF DESTEN 0/1
RS2 RS1 DESTVAL OPER1
LV RS2 OPER2
CP1 LV RS1
CP2 CP1 RS2
ZERO CP2 LV

SRC2 OPER1 ZERO CP1
OPER2 SRC2 OPER1 CP2
RS1 OPER2 SE
RS2 RS1 DEST 5 bits
LV RS2 SRC1EN 0/1
CP1 LV SRC1 5 bits
CP2 CP1 SRC2EN 0/1
SE CP2 SRC2 5 bits

CP EN 0/1 SE SE EN 0/1
SRC RS1 SEQ EN 0/1 SRC NOP

RS2 SRC PCINCR CP1
OPER1 LV CP2
OPER2 PTB EN 0/1 IMM
SE COND 0/1 HI 0/1
LV SRC RS2 IMM 16 bits
ADDR SE

DEST CP1 SEQ
CP2 ADDR

Table 4.1: Static Pipeline Wide Instruction Format
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Figure 4.4: Static Pipeline Compilation Flow

4.1 Compilation

As mentioned earlier, the static pipeline compilation process is more complex than for a tra-
ditional pipeline. Figure 4.4 shows the flow for our static pipeline compiler. First, a standard C
compiler front-end (LCC) is used to compile C code to traditional MIPS instructions. These RTLs
are then optimized using a traditional code optimizer (VPO), to produce the optimized MIPS code.
Each MIPS instruction in the optimized MIPS code is then expanded to a set of equivalent static
pipeline effects. These effects are then further optimized using a version of VPO that has been
modified to process static pipeline code. Thus the code is essentially optimized twice, first as MIPS
code, and then as static pipeline code.

Although the MIPS instructions supplied to the code expander are already optimized, the
code expander causes a large number of redundant or otherwise optimizable effects that were
not initially present in the MIPS code to be exposed. For example, the expanded code exposes
accesses to the intermediate temporary registers that were not present before. The new data flow
chains that are present in the static pipeline code can be optimized using traditional optimizations
such as common sub-expression elimination, copy propagation, and dead assignment elimination.
Additionally, operations such as branch target calculation are directly exposed to the compiler.
Since, for example, the targets of branches are often loop-invariant, the code to calculate them can
be hoisted out of loop bodies in order to avoid calculating them every cycle. The calculation of
targets of loop branches can be optimized away entirely, by recording the PC of the first instruction
in the loop just before the loop is entered, using the SEQ register. These sorts of optimizations are
not at all possible on MIPS code, because MIPS code hides accesses to internal registers, while the
static pipeline code exposes them.

Scheduling static pipeline code is a more difficult task for the static pipeline than traditional
pipelines. Static pipeline code typically exhibits false dependences more frequently than traditional
RISC code, due to the many temporary registers used. The scheduler attempts to schedule the
block first by ignoring false dependences, and choosing instructions from the longest dependence
chain in each block. If this fails, the schedule is not modified. However, the independence of effects
within each static pipeline instructions allows increased flexibility in scheduling, and moving effects
between basic blocks.

In order to reduce code size, the code must be compacted, as discussed earlier. This task is
divided into two parts: choosing the set of templates supported by the processor, and then choosing
which templates to use when compacting the code. In order to generate the set of supported
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templates, a set of benchmarks representative of the expected workload is compiled and simulated.
For this initial compilation, wide instructions are used. The wide instructions allocate space for all
effects, even when those effects are not in use, but only the wide instructions that can be represented
using one of formats shown in Figure 4.3, but with no limitation to the effects encoded by each
field. The benchmarks are then simulated, and the simulator counts the number of times each
combination of effects occur while simulating each benchmark. By choosing the 32 most common
combinations of effects, over 90% of all instructions are covered. This set of 32 supported templates
is used to generate the final compiler, simulator, and hardware instruction expander.

4.2 Hardware Implementation

The statically pipelined processor shown in Figure 4.2 uses a 3-stage pipeline. As in the tra-
ditional RISC pipeline, the first stage is the fetch stage. The static pipeline does not require
a traditional instruction decoder, however, it does require a template expander, and this is per-
formed in its own stage. The address and data associated with memory access instructions is sent
to the data cache at the end of the instruction expansion stage. The final stage is the execute
stage, in which the ALUs are activated, control transfers are resolved, and memory accesses are
completed. All registers and the register file are written at the end of the execute stage.

The template expander is responsible for expanding the 32-bit instructions described in the
previous section into a wide instruction containing all possible effects. As mentioned in the pre-
vious section, the set of templates are determined through profiling. Once the profiling has been
completed, a description of the templates are written to a file for later processing. This file is used
to generate the assembler, simulator, and the RTL code for the static pipeline.

The RTL code for the template expander is generated by examining each effect, and determining
all the possible source locations that effect might be located in the 32-bit instruction. The template
ids are grouped according to the source field (if any) that they use for the effect, and a multiplexer
is constructed that chooses the appropriate field (or nop) for each group of ids. As shown in
Figure 4.3, the template formats are selected so that the positions of fields overlap as much as
possible, in order to minimize the number of inputs required for each multiplexer. In practice, no
multiplexer had more than 5 inputs, The complexity of this stage is much lower than the execute
stage, and easily fits within the same timing constraints.

When a PTB effect is active in the template expansion stage, the corresponding BEQ or BNE
effect is expected to be in the fetch stage. The result of this BEQ/BNE effect is used to select the
program counter to be used for the next fetch. Thus, at the end of the template expansion stage,
the PTB field of the expanded instruction (combined with the prediction provided by the BPB)
is used to select the target that will be used for the next fetch. This target is forwarded from the
values that will be written to the registers at the end of the execute stage, and is saved in the
register labelled TGT. If a misprediction is discovered in the execute stage, later instructions are
flushed, and fetch resumes from the correct program counter.

Since the LV register can be used as an input to the ALUs, the access to memory must be
initiated in the template expansion stage, so that the data that will be written to the LV register
will be ready before the instruction retires. This requires that the value to be written in the
ADDR1 register at the end of the execute stage be forwarded to the end of the template expansion
stage. Additionally, the data to be stored must be selected from the new register values that will
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L1 Miss Latency 16 cycles

L1-IC/DC 4-way assoc., 512 sets, 16 B line (32KB), LRU replacement

BPB Bimodal, 32 entries, 2-bit state

BTB 2-way assoc., 32 sets, LRU replacement

Multiply Latency 10

Divide Latency 20

Clock 250 MHz

Table 4.2: Pipeline Configuration

be written at the end of the execute stage.
Similarly configured implementations of the Static Pipeline and the OpenRISC pipeline de-

scribed in previous sections were synthesized using a low-power 65 nm technology by ST Microelec-
tronics. The configurations for these processors are shown in Table 4.2. The static pipeline does
not require a BTB, and so this entry does not apply in that case. The critical path for each design
was through the L1 data cache tag check.

The multiplier and divider used for this study are respectively synthesized from components in
the DesignWare library that are included with Synopsys Design Compiler. The multiplier used is
the dw mul seq sequential multiplier, and the divider used is the dw div seq sequential divider.
These components have latencies (in cycles) that are adjustible. The desired number of cycles
is provided as a parameter when instantiating the component, and Design Compiler chooses an
implementation that will complete in the given number of cycles. Choosing a larger cycle count
allows the tool to create a component with lower cycle times, and vice versa. For each component,
the cycle count was chosen to be the smallest number of cycles such that the component’s cycle
time was shorter than the L1 data cache cycle time.

The resulting area for each synthesized pipeline is shown in Table 4.3. The static pipeline has
a smaller area primarily due to the lack of a BTB. Additionally, the static pipeline’s control logic
is slightly smaller, due to the simplicity of the pipeline and reduced instruction decoding logic. On
the other hand, the datapath area is significantly larger due to the large number of multiplexers
required to shuttle values between registers and functional units. The static pipeline also has an
additional 32-bit adder not found in the OpenRISC, which is needed for the ADDR1 effect and
accounts for the additional functional unit area. In the OpenRISC pipeline, the adder is shared for
both add instructions and load/store address calculation.

4.3 Experimental Results

After synthesis, the netlists were simulated using the Mibench benchmark suite to gather switch-
ing statistics for the design. This information was fed into Synopsys Design Compiler to calculate
power consumption for these benchmarks. Since support for floating-point operations adds signif-
icant complexity to processors, they were not used in this study. Thus, the benchmarks in the
Mibench suite that use floating point were not included. Additionally, the high-level simulations
used in previous studies simulated a small fraction of instructions (approximately 1%) using the
standard MIPS ISA. This MIPS code was used to simplify the implementation of the simulator,
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OpenRISC Static Pipeline

L1-IC 459406 459427

L1-DC 497640 496119

Pipeline 102828 52277
Control 4864 2970
Datapath 13625 17408
Functional Units 12411 13117
BPB 1152 1152
BTB 53117 —
Register File 17651 17626
Miscellaneous 8 4

Miscellaneous 3544 3197

Total Area 1063420 1011022

Table 4.3: Pipeline Area Results

which is based on the SimpleScalar toolset, and is used exclusively for system calls. The simulator
used in this study does not support executing both static pipeline instructions and MIPS instruc-
tions, since it realistically simulates the actual hardware. However, this was not a problem as the
benchmarks have been modified to remove all uses of system calls.

Figure 4.5 shows the relative execution times in cycles of both the Static Pipeline and the
OpenRISC on the integer subset of the Mibench benchmark suite. On average, the Static Pipeline
performs nearly 7% better than the OpenRISC pipeline. Most of the improvement comes from
the 5% reduction in IPC, from 0.77 for the OpenRISC, to .95 for the static pipeline. The static
pipeline is able to achieve this higher IPC for several reasons. First, the static pipeline does not
need to stall due to data hazards. Second, the static pipeline has fewer branch mispredictions
because it can always provide the correct branch target without using a BTB. Third, when a
branch is mispredicted, the penalty is lower due to a shorter pipeline. Additionally, the static
pipeline requires 1% fewer instructions to complete the same work, as shown in Figure 4.6.

Figure 4.7 shows the power used by each pipeline. The power for each processor is broken down
into the following components:

• Pipeline (control and datapath)

• L1 instruction cache (SRAMs and controller)

• L1 data cache (SRAMs and controller)

• Miscellaneous (cache arbiter, etc.)

Figure 4.8 breaks down the power used by each subcomponent of the pipelines, excluding caches.
Pipeline power is broken down into the following subcomponents:

• SP Register File: static pipeline register file
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Figure 4.5: Static Pipeline Relative Cycles
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Figure 4.6: Static Pipeline Relative Instructions
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• SP ALU: the adders, multiplier, divider, and shifter required to implement the static
pipeline’s FU1, FU2, and ADDR1 effects

• SP Datapath: static pipeline datapath, including internal registers

• SP Control: static pipeline control, including instruction expander

• SP BPB: static pipeline branch prediction buffer

• OR1K Register File: OpenRISC register file

• OR1K ALU: the OpenRISC adders, multiplier, divider, and shifter

• OR1K Datapath: OpenRISC datapath, including internal registers

• OR1K Control: OpenRISC control, including instruction expander

• OR1K BTB: OpenRISC branch target buffer

• OR1K BPB: OpenRISC branch prediction buffer

The Static Pipeline itself uses less than half the power of the OpenRISC. The vast majority of
the static pipeline’s power reduction comes from the removal of the BTB, which uses over half the
power of the RISC pipeline. Additional small power reductions come from reductions in register
file activity. However, the static pipeline’s datapath power is somewhat higher, which is primarily
due to the number of large multiplexers required. The ALU power of the static pipeline is also
higher, due to the second adder required for the ADDR1 effect. The OpenRISC shares a single
adder for both ALU operations and load/store address calculations.

Most significantly, the L1 instruction cache power usage is much higher for the static pipeline.
This is explained by the higher IPC found in the static pipeline. The increase in instruction cache
power does not completely undo the power saved by the static pipeline, which shows an average
total core power reduction of nearly 2%.

Though power is reduced somewhat, the performance improvement is more significant, and
thus the primary benefit of the static pipeline is actually performance, and not power reduction.
However, improving performance while using the same power translates directly into energy savings.
Figure 4.9 shows the energy used by each pipeline. The slight decrease in power usage, combined
with the shorter execution time results in an overall reduction in energy usage of 8.5%. The
combination of improved performance and reduced power results in even larger improvements to
the energy*delay product and energy*delay2, as shown in Figures 4.10 and 4.11. The energy*delay
product is improved by over 13%, and the energy*delay2 is improved by over 16%.

Earlier work assumed that the static pipeline would be able to reduce power and energy usage
by reducing activity in the register file, branch prediction structures, internal (pipeline) registers,
and so on. These assumptions appear to be confirmed in the resulting pipeline power usage rates.
Additionally, it was assumed the compiler could can do a better job of scheduling pipeline actions
than is possible in the tightly constrained logic found in a microprocessor. This assumption is
confirmed in the reduced cycle counts found in the static pipeline. However, the higher IPC found
in the static pipeline results in higher cache power, reducing the power saved by the pipeline itself.
The additional instruction fetch energy was not accounted for in earlier studies, and thus most of
the power usage was not reduced, but instead moved to a different component in the processor.
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Figure 4.10: Static Pipeline Energy*Delay
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Figure 4.11: Static Pipeline Energy*Delay2

As mentioned, the removal of the BTB provides a significant reduction in pipeline power, and
deserves some discussion. RISC architectures frequently use a branch delay slot, which gives the
pipeline an additional cycle to resolve branches, in which case a BTB is not necessary. However,
using a delay slot results in a performance decrease. It is often the case that the delay slot cannot
be filled with a suitable instruction, such as when the branch condition is dependent on all the
instructions in the basic block. Additionally, there may be data hazards on the values used to
resolve the branch, especially since the branch condition must be resolved at such an early stage in
the pipeline. This means that additional forwarding paths will be required, and that the pipeline
must sometimes insert bubbles when those values cannot be forwarded. The static pipeline does
not have these problems, as it uses a BPB to speculate on the condition, and the BPB is typically
quite accurate and uses comparatively little power.

The high-level studies of the static pipeline included floating-point benchmarks, for which the
static pipeline was able to provide better power savings than are seen for the integer benchmarks.
Floating benchmarks tend to be dominated by small loops that execute for many iterations, and the
static pipeline performs quite well on this type of code. The performance benefits of static pipelining
for small loops are evident in the qsort, crc, sha, and stringsearch benchmarks, whose runtimes
are dominated by small loops.
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CHAPTER 5

RELATED WORK

Other architectural features related to the TH-IC and static pipelining are presented in this section.

5.1 Loop Buffers

Loop buffers are small structures that have been proposed for fetching innermost loops using less
energy. Their purpose and is very similar to the TH-IC: to reduce the number of L1-IC and I-TLB
accesses by retrieving the instructions from a much smaller, lower power structure. Not only do
loop buffers avoid L1-IC accesses, but they also do not require I-TLB accesses while executing from
the loop buffer. Loop buffers are automatically exploited when a short backward direct transfer of
control is encountered, indicating that looping behavior is likely [19]. In order to reduce the rate of
false positives, many loop buffer designs will not become active until one or more iterations have
occurred.

The simplest of loop buffers can only buffer loops with no (or minimal) control flow. More
advanced designs, such as the loop buffer found in the Cortex A15 [18], are capable of handling one
or more forward branches, in addition to the backward branch at the end of the loop. This allows
simple if/else sequences to be handled, while still fetching from the loop buffer.

We have simulated our baseline models augmented with an “ideal” loop buffer, with sizes
equivalent to the sizes of the TH-IC studied. This loop buffer is ideal, in that it can buffer any
innermost loop with simple internal control flow. The simulated loop buffer can handle an arbitrary
number of forward branch instructions. It can also handle an arbitrary number of backward branch
instructions, provided that these backward branches always target the first instruction of the loop.
On recovery from a branch misprediction, the loop buffer resumes the most recently buffered loop, if
any, unless the misspeculated path results in a new loop being detected. Other backward branches,
and all indirect jumps and returns cause the loop buffer to become idle. If an innermost loop
exceeds the size of the loop buffer, only the initial instructions of the loop will be buffered, and
later instructions will be accessed from the L1-IC. Loops will only be buffered if they meet the
above conditions, and after two iterations of the loop have passed.

In nearly all cases the simulated loop buffer hit rate was significantly lower than the TH-IC
hit rate (for the same number of instructions stored), and in no case was the loop buffer hit rate
over 50%. Figure 5.1 shows the fraction of instruction fetches that occur from the loop buffer
(hit rate), for different loop buffer sizes on a single fetch width core. In no case is the hit rate
greater than 50%, while the TH-IC easily manages to exceed 75% of accesses from the TH-IC. (Hit
rates for different fetch widths were nearly identical.) The mediocre hit rate achieved by the loop
buffer strategy is directly tied to their limited flexibility with regard to control flow. The TH-IC
does not have this problem, and can effectively handle loops containing arbitrary conditional and
non-conditional control flow. Nested loops are easily handled by the TH-IC. The TH-IC can also
recover quickly from irregular control flow, such as indirect jumps, which would cause the loop
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Figure 5.1: Loop Buffer Hit Rate

buffer to go idle until the next suitable innermost loop is detected.
As a result of the low hit rate, loop buffer does not reduce fetch energy nearly as well as the

TH-IC. Figures 5.2-5.4 show the simulated energy usage of the baseline pipelines, augmented with
loop buffers of various sizes, under 10% static leakage conditions. In these figures, the notation
“X /LY ” refers to a configuration with an X -byte IC line size, and a loop buffer with storage for Y
instructions. At best, the ideal loop buffer saves 20-25% of the energy used for instruction fetch,
while the TH-IC achieves savings in excess of 40%. In addition, the loop buffer simulated here has
fewer restrictions than any loop buffer found in an actual processor, and so the hit rates achieved
in reality would likely be lower.

5.2 Low Power Instruction Fetch

Zero overhead loop buffers (ZOLBs) are small structures sometimes used in embedded proces-
sors [9]. Unlike the loop buffer described above, the ZOLB is explicity initialized by the compiler
using instructions introduced for that purpose[26, 27]. The ZOLB benefits include reducing loop
overhead due to using an internal counter and avoiding L1-IC, I-TLB, and BPB/BTB accesses
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Figure 5.2: Loop Buffer Fetch Energy, 1-wide Fetch
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Figure 5.3: Loop Buffer Fetch Energy, 2-wide Fetch
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Figure 5.4: Loop Buffer Fetch Energy, 4-wide Fetch

after the first iteration of the loop. However, a ZOLB also provides limited benefit as the loops it
can exploit must have a known number of iterations, must have no conditional control flow except
for the loop branch, and must be small enough to fit into the ZOLB. In contrast to both of these
approaches, our techniques can disable access to the L1-IC, I-TLB, and BPB/BTB much more
frequently.

The trace cache [25, 24] was developed to widen the instruction fetch bottleneck by allowing
instruction fetch accesses to traverse transfers of control. It achieves this by concatenating multiple
separate basic blocks into a single cache line, which is indexed by the initial PC combined with the
taken/not-taken states of each branch in the sequence of blocks. Since the cache is indexed using
the branch pattern of the sequence, different branching patterns will lead to duplication of basic
blocks within the trace cache. The size of the trace cache is typically fairly close to the size of the
L1 cache, while the size of the TH-IC is much smaller. These factors combine to make trace caches
less suitable for low-power, embedded architectures.

Kadayif et al. studied not accessing the I-TLB unless the virtual page changes [16]. One
technique they evaluated was to examine the updated PC (sequential accesses, BTB lookups for
branches, etc.) and compare the virtual page number with the current virtual page number. This
approach works well as long as the comparison being performed does not affect the critical path
for the cycle time as the comparison occurs after a new PC value is obtained, which is typically
near the end of the cycle. In contrast the techniques for disabling the I-TLB in this dissertation
should not put extra logic on the critical path. For instance, we determine if the next sequential
fetch will cross a page boundary by checking at the beginning of the cycle if the address of the
current instruction is the last instruction in the page and is only required to perform this check
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when the last line in the TH-IC is the last line in the page. We also detect when the target of a ToC
instruction is to the same page and sets an SP bit that is used to disable the I-TLB access in the
next cycle if the ToC is taken. Kadayif et al. also suggested that the format of ToC instructions
could be changed to indicate whether or not the target is to the same page. We capture most of
this benefit while not requiring any ISA changes.

There have also been proposed alternative BPB and BTB designs to reduce energy usage. A
leakage power reduction technique has been proposed to make BPB and BTB entries drowsy if they
are not accessed after a specified number of cycles [15]. The use of counters will offset some of the
energy benefits. Another BTB design proposed using fewer tag bits to save power at the cost of some
false positive tag matches [10]. We believe that this paper’s proposals are complementary to both of
these techniques, and could be advantageous in combination, as the number of accesses are reduced,
and so more targets are available for activation of drowsy mode. Yang et al. proposed a small branch
identification unit and avoided accessing the BTB until the next branch is encountered. But this
approach requires changing executables to store branch distance information and also requires the
use of a counter to detect the next branch [29].

Parikh et al. proposed disabling access to the BTB and BPB to save energy by using a prediction
probe detector (PPD) that contains two bits for each instruction in the L1-IC [23]. These two bits
indicate whether or not the BPB and BTB should be accessed and these bits are assigned values
while an L1-IC cache line is being filled. These authors proposed that the PPD be checked before
going to the BPB or BTB, which they recognized may sometimes be on the critical timing path.
In addition, the predecode bits used in this paper are used to set NSNB bits when a line is loaded
from the L1-IC into the TH-IC. In contrast to the PPD approach, the techniques presented in this
paper do not affect the critical timing path.

Calder et al. proposed making all branches use page offsets instead of PC offsets to allow fast
target calculation [7]. These authors proposed to use indirect jumps through a register for branches
across page boundaries. They also used predecode bits to indicate whether or not an instruction
is a branch. The disadvantages of this approach are that it requires an ISA change and the page
offset extraction from the L1-IC may be on the critical timing path.

Hines et. al. [13] introduces NSNB and NTNB bits in order to disable branch prediction
structures for non-ToCs. That work does not discuss a method for using these bits on multiple-
fetch processors. Additionally, it proposes waiting until instructions are fetched and decoded to
detect whether or not it is a transfer of control, and requires that this detection is completed before
the end of the fetch stage. By using predecoding as described in our research, these bits can be
used before an instruction is even accessed, dramatically increasing their effectiveness. Hines et. al.
does not take advantage of the other techniques listed in this dissertation for disabling the I-TLB
and BTB tag arrays. We were able to achieve much greater power reduction with these additional
techniques than was found in that paper.

Finally, Nicolaescu et. al. [21] describes a technique for reducing data cache access energy that
may be adapted to instruction fetch. Data access instructions require that the address is generated
by adding an immediate offset to a base value retrieved from a register. The offset is typically small,
and adding it to the base often does not produce carry-outs from many of the most significant and
least significant bits. This property can be exploited to use a fast adder that does not propagate
these carry-outs, and instead only checks them to detect when the result will be incorrect. The
“fast” address is then used to access a “way cache unit”, a small, fully-associative structure that
memoizes the way that was last used to access the particular address. The way cache unit is a
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small enough that it can be accessed in the same cycle as and immediately after the fast address
generation. If the way cache hits, the retrieved way is used to access the L1-DC, without requiring
access to the tag array or D-TLB (Data Translation Lookaside Buffer).

5.3 Transport Triggered Architectures

The Static Pipeline has been compared to other “exposed datapath” architectures. One of
these architectures is the “Transport Triggered Architecture” (TTA).[8] In a transport triggered
architecture, the only instruction is a “move” instruction, that transports data from one register to
another. Some registers, however, are attached to the inputs of functional units, and can “trigger”
an operation when data is moved into them. Typically, multiple moves can be completed in parallel
each cycle, and some TTA implementations may allow moves to be predicated by some condition.
Functional units have zero or more operand registers, and a trigger register, which also recieves an
operand but initiates the operation.

A standard RISC-like instruction requires multiple TTA “instructions” to complete. For exam-
ple, consider a simple instruction from a RISC ISA, such as:

add r1, r2, r3

On a transport triggered architecture, this instruction would instead be implemented as:

r2→ add.operand; r3→ add.trigger
add.result→ r1

The first instruction moves the first operand into the operand register for the functional unit
responsible for addition. The next moves the second operand into the trigger register for the
functional unit. The move into the trigger register causes the add to be initiated. The third
instruction reads the sum of the operands out of the functional unit’s result register.

Like the Static Pipeline, forwarding of values between operations can occur without writing
intermediate values to the register file. For example, the RISC-like sequence

add r1, r2, r3
add r4, r1, r5

can be achieved with TTA code sequence

r2→ add.operand; r3→ add.trigger
add.result→ add.operand; r5→ add.trigger
add.result→ r4

Here, the write to r1 by the first RISC instruction is avoided by forwarding the result of the first
add directly back to the operand port of the adder without going through the register file. The
corresponding Static Pipeline effects would be:

RS1 = r2; RS2 = r3
OPER1 = RS1 + RS2; RS2 = r5
OPER1 = OPER1 + RS2
r4 = OPER1
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Again, the write of the intermediate value to r1 is avoided.
Unlike the static pipeline, a TTA requires a large transport network to shuffle values between

the register file and the result and operand registers of the functional units. The static pipeline
does require something similar to a transport network, but its size is limited by restricting value
movement to a set of paths similar to what might be found in a simple RISC processor. This is
possible because the Static Pipeline compiler produces code by statically expanding each RISC
instruction into a set of effects that mimics what is performed dynamically by a 5-stage pipeline.
Similar techniques could be used to generate TTA code, but the primary goal of TTA is high
performance (as opposed to low power) which is facilitated by the ability to transport values
arbitrarily.
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CHAPTER 6

FUTURE WORK

This chapter describes future work for the TH-IC and Static Pipeline.

6.1 Tagless-Hit Instruction Cache

The study of the TH-IC could be improved by examining architectures with wider pipelines and
fetch windows. A more thorough implementation including place and route and clock tree insertion
would allow the capacitance of the final circuit to be extracted, resulting in a more accurate power
usage estimate.

Finally, the proposed extensions that were only simulated at a high level could be implemented
as was done for the TH-IC.

6.2 Static Pipeline

The most fruitful method for reducing the static pipeline’s power usage would likely be to reduce
its dynamic instruction counts, which are high when compared to a traditional RISC architecture.
This could be achieved by finding a more compact encoding, and by further improvements to the
code generated by the compiler. It may involve rearchitecting the pipeline as well. For example,
tradeoffs that improve code density by pushing some work back down to the processor may improve
total power usage by reducing the activity of the power-hungry instruction cache at the expense of
higher pipeline power.
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CHAPTER 7

CONCLUSION

This dissertation presents a detailed analysis of a pair of techniques for reducing power and energy in
microprocessors. The first of these techniques, the Tagless-Hit Instruction Cache, is quite successful
at reducing instruction fetch power and energy usage. Caches in general usage a substantial fraction
of total core power, and the instruction cache is particularly power hungry, since it is activated
nearly every cycle in order to provide instructions to the pipeline. In comparison, the data cache
does not use as much power, since loads and stores occur in only a fraction of all instructions. By
fulfilling instruction fetch requests from a small tagless array, the TH-IC is able to reduce instruction
fetch energy by nearly 20%, and total core energy by over 7%. For the baseline processor used in
this dissertation, timing was not impacted, and performance was reduced by less than 2%. For
situations where power usage is a concern, this slight performance reduction may not be an issue,
and will be outweighed by the benefits in power and energy usage. More advanced modifications to
the TH-IC have been shown in high-level simulation to provide even greater reductions in energy.
However the timing impact of these modifications have not been evaluated, and they have not been
simulated at the netlist level to provide more confidence in their energy reductions.

For the second technique, static pipelining, this dissertation was able to show significant energy
savings. These energy savings come primarily from improvements in performance while using similar
power to traditional RISC. The static pipeline itself uses significantly less power than a traditional
RISC pipeline (up to 50%), however caches are the dominant source of power dissipation. This
study found that static pipelining achieves a higher IPC, resulting in performance is that is better
than that of a traditional in-order 5-stage pipeline. This higher IPC results in higher instruction
cache power, thus negating some of the power reductions of the static pipeline. However, the
performance is sufficient to result in substantial energy reductions.

Further improvements to performance and energy usage may be possible, over the savings found
thus far. The static pipeline model produced for this dissertation did not include floating point
support. High level simulation found that floating benchmarks use significantly lower power when
executed on the static pipeline. It is likely that these finding will carry over to the real hardware, as
was the case for the integer-only benchmarks used in this study. Additionally, due to the exposed
nature of the static pipeline, future research may discover optimizations that apply to the static
pipeline and not to a traditional RISC pipeline.

The results of both studies, when considered together, show that optimization effort should
be directed toward eliminating large structures such as caches, and reducing their activity. In
comparison, the logic required to implement most ISA-specific features such as instruction decoding,
result bypassing, register file accesses, ALU operations, and so on is quite small. On-core caches
use considerable power, especially in the case of the instruction cache, which must be accessed for
every single instruction that is fetched. The BTB, which is also accessed at every instruction fetch,
can consume a substantial portion of pipeline power. The power needed to implement the simple
abstractions provided by traditional ISAs is in fact not significant.

Techniques that reduce cache access rates are likely to be provide tremendous benefits in terms
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of reduced power. For example, the Thumb instruction set supported by ARM processors provides
improved code density, thus allowing the same program to be executed with fewer instruction cache
accesses. Though instruction decode complexity is increased, it allows twice as many instructions to
be fetched per cycle without increasing cache activity. However, there are some limitations imposed
by the smaller instruction size, such as fewer accessible registers and fewer available operations,
and thus performance may be reduced.

These studies have also shown the importance of detailed and realistic simulation when attempt-
ing to estimate power usage of new designs. Earlier studies found reduced power and energy usage,
and these reductions were confirmed in lower level studies, but were not as significant. When lim-
iting power and energy usage is the primary design goal, detailed simulations should be performed
at the earliest feasible stage of the design process.
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