# **Hw1 Solutions**

CNT 5412 — Viet Tung Hoang — Spring 2025

#### Your Name Here!

## Problem 1

Here I assume that you have installed Latex properly in your machine. You should compile this file under pdflatex.

#### Problem 2

One of the most important aspects of Latex is its math mode. Mathematical symbols should look like x or  $X_5$  or  $e^t$ . Never write something like x in ordinary text mode—it looks terrible.

# Problem 3

Occasionally you need to draw pictures. To do that, you first need to produce a picture file in pdf format—here my file is **ecb.pdf**—and then insert it in the latex file. To draw pictures, I use PowerPoint. You then can print the picture as a pdf file, and use some other tools to crop the image. The resulting picture is shown in Figure 1.

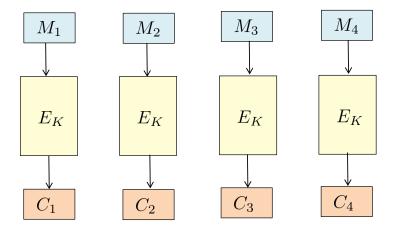



Figure 1: The ECB mode of encryption, illustrated for 4 blocks.

### Problem 4

In this course we'll routinely use the following notation. For a finite set S, we write  $x \leftarrow S$  to denote picking an element of S uniformly at random and assigning it to x, and we write |S| to

denote the number of elements of S. We write  $0^n$  to denote the all-zero string of n bits, and  $1^n$  the all-one string of n bits. Let  $\{0,1\}^n$  be the set of all n-bit binary strings and  $\{0,1\}^*$  the set of all binary strings. For binary strings x and y, we write |x| to denote the length of x, and x||y the concatenation of x and y. If x and y also have the same length, we write  $x \oplus y$  to denote their xor. We use  $\bot$  to denote a symbol that indicates invalidity; you can think of it as NULL.

#### Problem 5

In homework you'll be asked to give attacks. Below is how you should write an attack to break the left-or-right security notion of the ECB mode of encryption. Don't worry about the technical details; you'll learn them later. The takeaway lesson here is:

- You should write pseudocode to describe your attack, and accompany it with some English explanation.
- Always analyze your attack by calculating its *advantage*. This is a number from 0 to 1 that measures how likely your attack will succeed.
- In our class you'll learn lots of attack notions, and as a result, you are likely to mistake one for another. Always consult the notes to make sure that you are giving the correct form of attack.

We now construct an adversary A that breaks the left-or-right security notion of the ECB mode. The code of the adversary is given in Figure 2.

```
adversary A^{\text{Enc}(\cdot,\cdot)}
Pick arbitrary distinct messages M_0, M_1 of the same length C_0 \leftarrow \text{Enc}(M_0, M_0); C_1 \leftarrow \text{Enc}(M_0, M_1)
if C_0 = C_1 then return 0 else return 1
```

Figure 2: The code of an adversary A breaking the left-or-right security of ECB.

Informally, the adversary A first picks two arbitrary messages  $M_0$  and  $M_1$  of the same length. It then queries  $C_0 \leftarrow \text{Enc}(M_0, M_0)$  to get a ciphertext  $C_0$  of  $M_0$ , and then queries  $C_1 \leftarrow \text{Enc}(M_0, M_1)$ . The adversary will output 1 (meaning that it believes that it's in the right world) if and only if  $C_0 \neq C_1$ .

If we are in the left world then  $C_1$  is a ciphertext of  $M_0$ . Because ECB is deterministic, we must have  $C_0 = C_1$ , and in that case the chance that the adversary outputs 1 is 0. If we are in the right world, meaning that  $C_1$  is a ciphertext of  $M_1$ , then we must have  $C_1 \neq C_0$  due to the fact that  $M_0 \neq M_1$  and the ECB mode is perfectly invertible. Thus the chance that the adversary outputs 1 is 1. Hence the left-or-right advantage of the adversary is 1 - 0 = 1.