CNT 5412, Spring 2025

AUTHENTICATED ENCRYPTION

VIET TUNG HOANG

1. AE and Its Security Definitions

2. Failed Ways to Build AE

3. Generic Compositions

4. Padding-Oracle Attack on SSL/TLS

Motivation: Challenge-Response Revisited

Question: Break this identification mechanism if encryption is CTR.

Solution: Authenticated Encryption

Authenticated Encryption (AE)

Emerged ~ 2000 -

Begin with two **realizations**

- 1. Authenticity is routinely needed/assumed
- 2. "Standard" privacy mechanisms don't provide it

Provide an easier-to-correctly-use abstraction boundary

AE Syntax

Defining Security for AE

Authenticity

Agenda

1. AE and Its Security Definitions

2. Failed Ways to Build AE

3. Generic Compositions

4. Padding-Oracle Attack on SSL/TLS

Plain Encryption Doesn't Provide Authenticity

Question: Does CBC provide authenticity?

Answer: No, because any ciphertext has valid decryption

A Bad Fix: CBC with Redundancy

On decryption, verify the decrypted last block is zero.

Question: Break the authenticity of this scheme with a single Enc query

An Attack

Complex Redundancy Doesn't Help

Some (unkeyed) "redundancy" function, such as checksum

The redundancy is verified upon decryption

Question: Break the authenticity of this scheme with a single Enc query

A Case Study: WEP

Used in IEEE WiFi standard

Attack 1: Exploiting Short IV

Assume all messages are of the same length, and fairly long

Goal: recover at least one message

Attack 1: Exploiting Short IV

Aim for an IV collision

For 24-bit IV's, how many ctx to wait for collision prob ≈ 0.5 ?

Attack 1: Exploiting Short IV

Same IV, can recover $M_1 \oplus M_2$

Attack 2: Chop-Chop Attack

Goal: recover the underlying message by exploiting Dec queries

Attack 2: Chop-Chop Attack Illustrated Via A Simpler Variant of WEP

Example: Parity(10011) = $1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$

Attack 2: Chop-Chop Attack Illustrated For 4-bit Message

Decryption In CloseUp

Exploit Decryption Response

Exploit Decryption Response

Exploit Decryption Response

Exploit Decryption Even Further

Solve A System of Linear Equations

$$\begin{pmatrix}
M_1 \oplus M_2 \oplus M_3 \oplus M_4 = \Box \\
M_1 \oplus M_2 \oplus M_3 = \Box \\
M_1 \oplus M_2 = \Box \\
M_1 = \Box
\end{pmatrix}$$

Agenda

1. AE and Its Security Definitions

2. Failed Ways to Build AE

3. Generic Compositions

4. Padding-Oracle Attack on SSL/TLS

Constructing AE: Generic Composition

Method	Usage
Encrypt-and-MAC	SSH
MAC-then-Encrypt	SSL/TLS
Encrypt-then-MAC	IPSec

Encrypt-and-MAC: Simple Composition

Privacy	Authenticity
No	No 🥿
for some bad encryption scheme	

No privacy: encrypting the same message results in the same tag **No authenticity** if one can modify *C* such that decryption is unchanged.

Encrypt-and-MAC in SSH

MAC-then-Encrypt

No authenticity if one can modify C

such that decryption is unchanged.

MAC-then-Encrypt in TLS

Privacy	Authenticity
Yes	Yes

Encrypt-then-MAC

Privacy	Authenticity
Yes	Yes

A Common Pitfall in Implementing EtM

Happened in ISO 1972 standard, and in RNCryptor of iOS

Forget to feed IV into MAC

Break auth with one query

Agenda

1. AE and Its Security Definitions

2. Failed Ways to Build AE

3. Generic Compositions

4. Padding-Oracle Attack on SSL/TLS

The Padding-Oracle Attack

"Lucky Thirteen" attack snarfs cookies protected by SSL encryption

Exploit is the latest to subvert crypto used to secure Web transactions.

Meaner POODLE bug that bypasses TLS crypto bites 10 percent of websites

Some of the world's leading sites are vulnerable to an easier, more simplified attack.

Besearchers poke hole in custom crypto built for Amazon Web Services

Even when engineers do everything by the book, secure crypto is still hard.

New TLS encryption-busting attack also impacts the newer TLS 1.3

Researchers discover yet another Bleichenbacher attack variation (yawn!).

Attack Model: Chosen Prefix Secret Suffix

Goal: Recover M

attacker.com

attacker.com

Enc oracle

Dec oracle

Encryption In SSL: MAC-then-Encrypt

Patching In SSL Encryption

Secure if implement properly

Careless Implementation Leads To Attack

Scanning For Vulnerable Implementations

Implementation Is Hard: Timing Leakage

How To Attack Illustration For Two-block Message

Recover Last Byte of Second Block

CBC Decryption

