CNT 5412, Spring 2025

BLOCKCIPHER

VIET TUNG HOANG

Some slides are based on material from Prof. Mihir Bellare (UCSD) and Prof. Stefano Tessaro (UW)

Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol

Blockcipher

efficiently invertible given the key

$$\stackrel{}{E}: \underbrace{\{0,1\}^k \times \{0,1\}^n}_{\text{Key space Domain}} \to \{0,1\}^n$$

Blockcipher Usage

Random key K is known to both parties, but not given to adversary A

Real-world Blockciphers

Defining Security for Blockcipher

Possible Properties	Necessary	Sufficient
Hard to recover the key	Yes	No
Hard to find M given $C \leftarrow E_K(M)$	Yes	No
•••		

Want: a single "master" property that is sufficient to ensure security of common usage of blockcipher.

An Analogy: Turing Test

What does it mean for a machine to be "intelligent"?

Possible Answers

It can be happy

It recognizes pictures

But no such list is satisfactory

An Analogy: Turing Test

Man (0) or Machine (1)?

Real versus Ideal

Notion	Real object	Ideal object
Intelligence		
PRF	E_K	Random function

Informal View of PRF Security

 $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Sample random $f: \{0,1\}^n \to \{0,1\}^n$ $K \Leftrightarrow \mathcal{K}$

Adversary doesn't know K or f

Want: a random function $f : \{0,1\}^n \to \{0,1\}^m$

Want: a random function $f : \{0,1\}^n \to \{0,1\}^m$

Want: a random function
$$f : \{0, 1\}^n \to \{0, 1\}^m$$

Want: a random function
$$f : \{0, 1\}^n \to \{0, 1\}^m$$

Reuse Prior Answer for Old Query

Want: a random function
$$f : \{0, 1\}^n \to \{0, 1\}^m$$

Putting Things in Code

Game Real_E procedure Initialize() $K \leftrightarrow \mathcal{K}$ procedure $\operatorname{Fn}(M)$ return $E_K(M)$ **Game** Rand_E string array $T = \{\}$ // Global variable **procedure** Fn(M) If $T[M] = \bot$ then $T[M] \Leftrightarrow \{0,1\}^n$ return T[M]

b

 $\operatorname{Adv}_{E}^{\operatorname{prf}}(A) = \operatorname{Pr}[\operatorname{Real}_{E}^{A} \Rightarrow 1] - \operatorname{Pr}[\operatorname{Rand}_{E}^{A} \Rightarrow 1]$

Exercise: PRF Attacks

Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol

Birthday Problem

$$C(N,q) = \Pr[y_1,\ldots,y_q \text{ not distinct}]$$

Fact: For $q \leq \sqrt{2N}$, $\frac{q(q-1)}{4N} \leq C(N,q) \leq \frac{q(q-1)}{2N}$

Birthday Attack on PRF Security

Birthday Attack on PRF Security

$$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$$

Need $2^{n/2}$ queries to break PRF security

Blockcipher

$$n$$
 $2^{n/2}$
 Status

 3DES
 64
 2^{32}
 Insecure

 AES
 128
 2^{64}
 Secure

 $\mathbf{Adv}_E^{\mathrm{prf}}(A) = C(2^n, q) \approx \frac{q^2}{2^n}$

Does It Matter In Practice?

Sweet32: Birthday Attacks on 64-bit Blockciphers in TLS and OpenVPN [Bhargavan, Leurent 16]

Recover cookie after capturing 785GB

Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol

Recap: TCP Reset Attack

First Attempt: Random Sequence Number Backward Compatibility Issue

Requirement: If two connections of same IP addresses and ports are within a small window, must have *X* < *Y* to avoid interference from delayed packets

Generating TCP Sequence Numbers with PRF

Recap: TCP SYN Flood

Countermeasure: TCP SYN Cookie

Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol

Goal: An eavesdropper cannot later open the car

A Wrong Solution

Question: Why is it bad?

One-Time Password Via PRF

https://tools.ietf.org/html/rfc6238

Should allow time drift, and accept for slightly outdated time

(Stateful) alternative: Run the PRF on a synchronized counter <u>https://tools.ietf.org/html/rfc4226</u>

A Real-world Example: RSA's SecureID

But it's disastrous if the key is stolen

The **Register**®

This article is more than 1 year old

SecurID breach cost RSA \$66m

In 2nd quarter alone

🦺 <u>Dan Goodin</u>

Wed 27 Jul 2011 // 17:17 UTC

Agenda

1. Blockciphers

2. Birthday Attack

3. App: TCP Sequence Number

4. App: One-time Password

5. App: Challenge-Response Protocol

Motivation: Man-In-The-Middle Attack

Question: Does one-time password work here?

Solution: Challenge-Response

Nonce: a string that should never repeat

