CNT 5412, Spring 2025

CRYPTOGRAPHY

VIET TUNG HOANG

Agenda

1. Crypto Usage & Goal

2. Classical Crypto

3. One-time Pad & Perfect Secrecy

4. Modern Crypto

Crypto Use Is Ubiquitous

A Classical Crypto Goal: Privacy

Privacy: Adversary can't learn anything from the content that it eavesdrops.

A Classical Crypto Goal: Privacy

But Privacy Alone Is Not Enough

Authenticity: Adversary can't forge valid ciphertexts

Four Fundamental Cryptographic Problems

Agenda

1. Crypto Usage & Goals

2. Classical Crypto

3. One-time Pad & Perfect Secrecy

4.Modern Crypto

Caesar Cipher

Caesar Cipher In The Wild

	The A Register®	
This article is more thar	1 year old	
Mafia bo	oss undone by clumsy crypto	
Little Caesar		
A John Leyden	Wed 19 Apr 2006 // 14:14 UTC	
Clues left in the clun to track his associate	nsily encrypted notes of a Mafia don have helped Italian investigators es and ultimately contributed to his capture after years on the run.	
	The A Register ®	
	This article is more than 1 year old	
	BA jihadist relied on Jesus-era encryption	
	30 years for airline bomb plot	
	A Team Register	Tue 22 Mar 2011 // 11:52 UTC
	An IT worker from British Airways jailed for 30 years for terrorism offences used	

encryption techniques that pre-date the birth of Jesus.

10

Shift Cipher

Use a secret key $K \in \{0, \ldots, 25\}$

Same as Caesar cipher, but shift *K* positions, instead of 3.

Substitution Cipher

Key: a permutation $\pi: \Sigma \to \Sigma$

Example: $\Sigma = \{A, B, C, \dots, Z\}$

Break Substitution Cipher: Frequency Analysis

Agenda

1. Crypto Usage & Goals

2. Classical Crypto

3. One-time Pad & Perfect Secrecy

4. Modern Crypto

Encryption Syntax

Define security?

Perfect Secrecy

Intuition: Ciphertext should reveal **no additional info** about plaintext

For every m and c: $\Pr_{K \notin \mathcal{K}}[Msg = m \mid \mathcal{E}_K(Msg) = c] = \Pr[Msg = m]$

Common case: Ciphertext is uniformly random, independent of msg

An Example

Substitution Cipher Is Not Perfectly Secret

 $\Pr[Msg = bad boy | Ctx] = 1 \neq \Pr[Msg = bad boy] = 1/2$

Achieving Perfect Secrecy: One-time Pad

Behind Every Notion, There Is An Assumption

For every m and c: $\Pr_{K \leftrightarrow \mathcal{K}}[Msg = m \mid \mathcal{E}_K(Msg) = c] = \Pr[Msg = m]$

It's **assumed** that you pick a fresh key for each encryption

Reusing One-time Pad Breaks Security

Can recover both M and M' if the messages are English texts and long enough

THEFT MARCINE SECERETS The Definitive Exposé of Soviet Espionage in America

Bad Usage of One-time Pad: USSR's reusing of one-time pads led to the decryption of 2900 messages.

+ CCC

Чалистиче

Bad Usage of One-time Pads: PPTP protocol in Windows NT

Nov 26, 2019

Fortinet's blunder led them to reuse a one-time pad several times

Limitation of Perfect Secrecy

Agenda

1. Crypto Usage & Goals

2. Classical Crypto

3. One-time Pad & Perfect Secrecy

4. Modern Crypto

Lego Approach

Computational

Science

Modern Crypto

Provable Security

Modern Crypto: A Lego Approach

Modern Crypto: A Computational Science

- Assume **computational** hardness of **a few** primitives

- Confidence by cryptanalysis

Modern Crypto: Provable Security

-Define security notions for applications

-**Prove** the transformer meets the notions

