CIS 4360: Computer Security Fundamentals

Asymmetric Crypto

Viet Tung Hoang

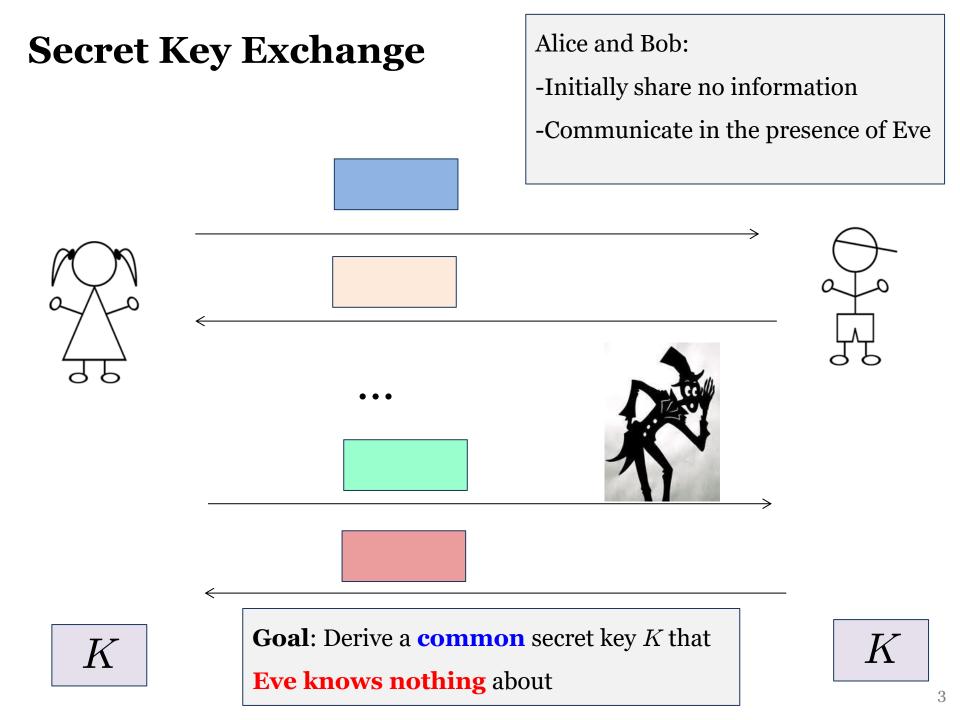
Some slides are based on material from Prof. Stefano Tessaro, University of Washington

Agenda

1. Motivation: Key Exchange

2.Number Theory Basics

3.Diffie-Hellman Assumptions



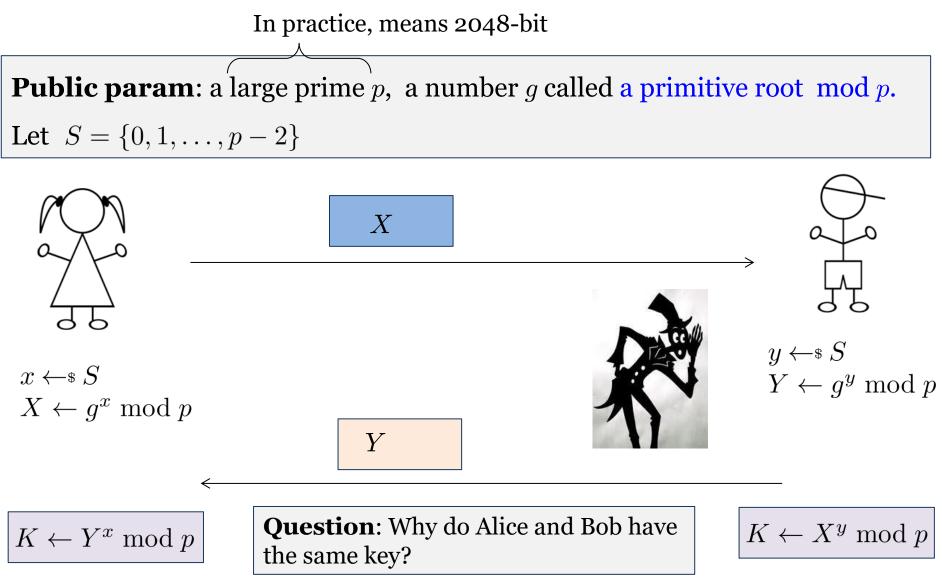
Secret-Key Exchange

Key exchange is a very important problem

You use it several times every day

Big Question: How to build a key exchange?

Basic Diffie-Hellman Key Exchange



DH Key Exchange: Questions

What does it mean to be a primitive root mod p? Why can't Eve compute the secret key?

• • •

Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3.Diffie-Hellman Assumptions

Some Notation

For
$$n \in \{1, 2, 3, ...\}$$
, define
 $\mathbb{Z}_n = \{0, 1, ..., n - 1\}$
 $\mathbb{Z}_n^* = \{t \in \mathbb{Z}_n \mid \gcd(t, n) = 1\}$ $\varphi(n) = |Z_n^*|$

Example: n = 14

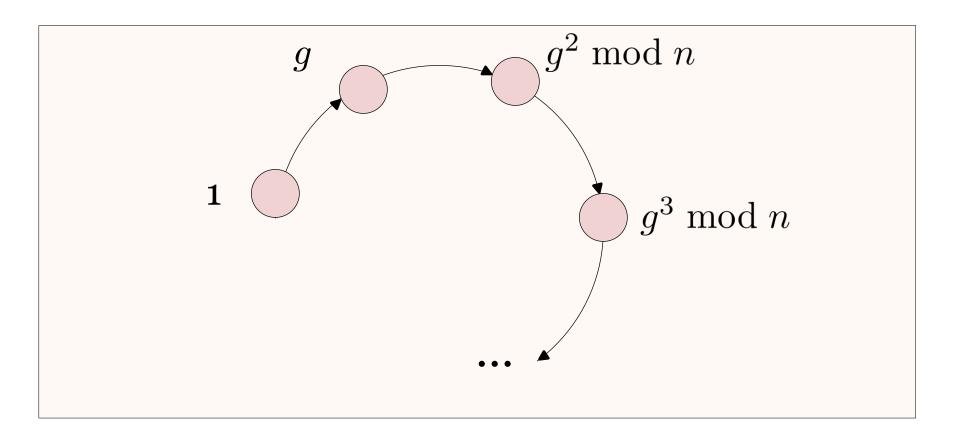
$$\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$
$$\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\} \qquad \varphi(14) = 6$$

Example: prime p

$$\mathbb{Z}_{p}^{*} = \{1, 2, \dots, p-1\} \quad \varphi(p) = p-1$$

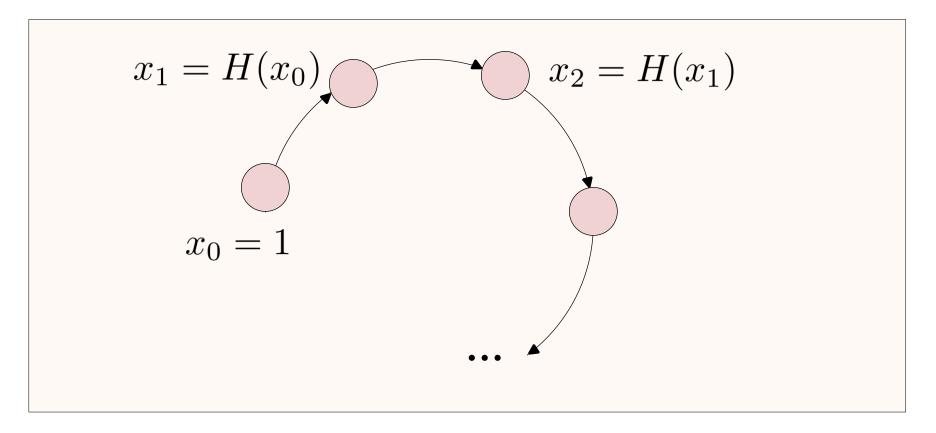
An Observation

Consider a number $g \in \mathbb{Z}_n^*$



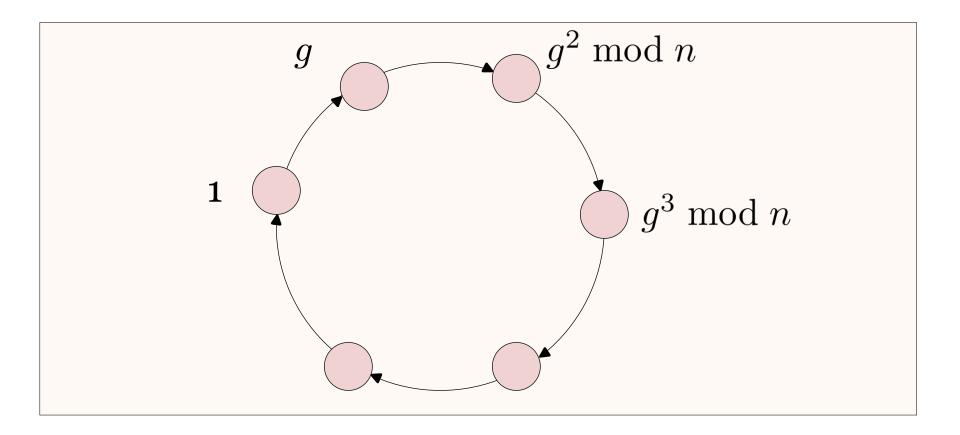
Rho Attack In Disguise

 $H(x) = x \cdot g \bmod n$

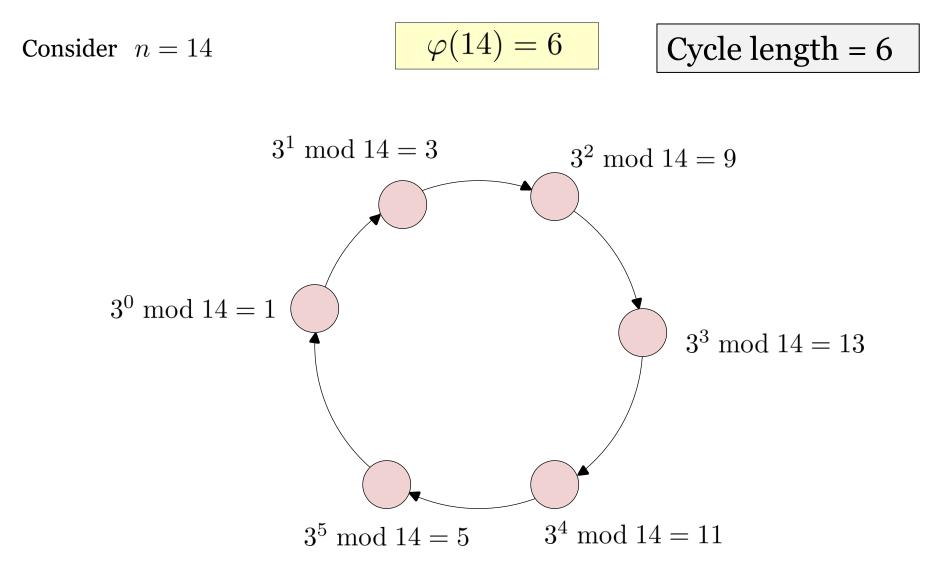


Question: Find a collision of this hash on domain \mathbb{Z}_n^*

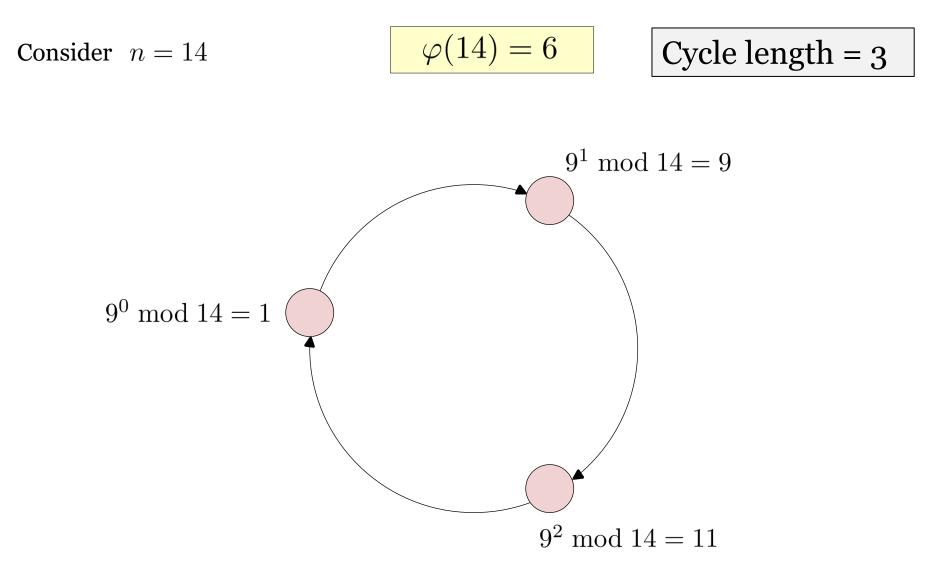
Collision Doesn't Exist 👄 Rho Shape is a Circle



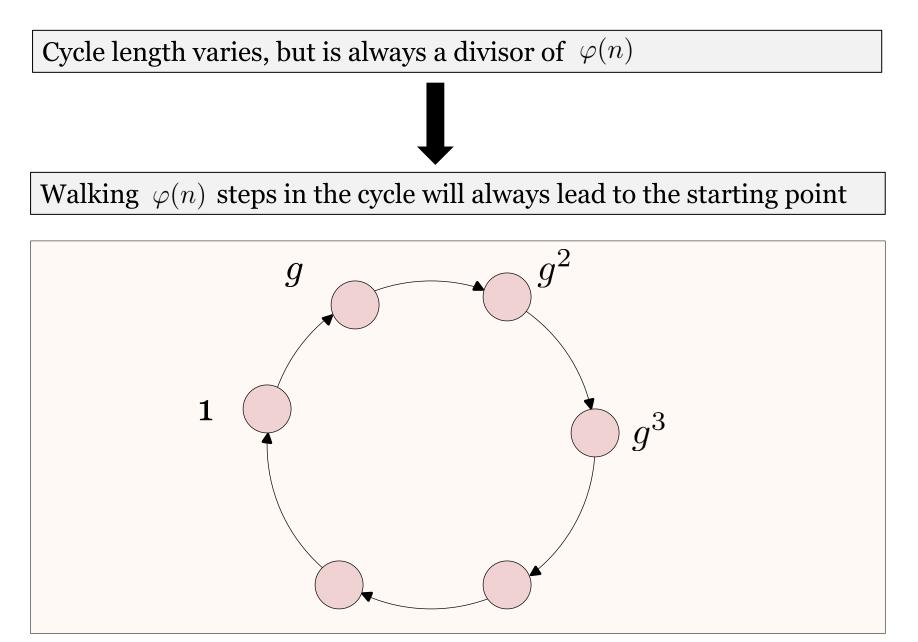
An Observation



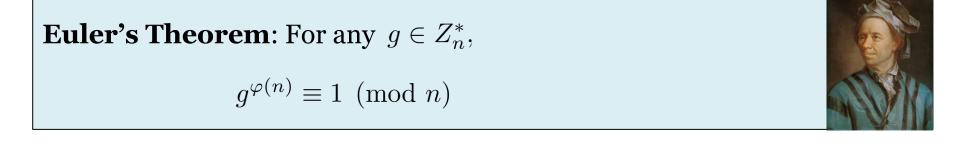
An Observation



The Common Trait



Restating in Algebraic Form

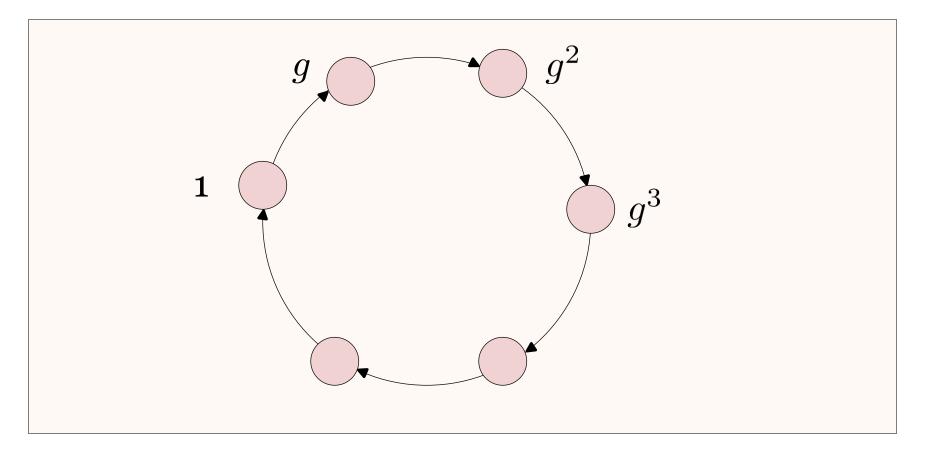


Fermat's Little Theorem: For any prime p and any $g \in Z_p^*$,

$$g^{p-1} \equiv 1 \pmod{p}$$

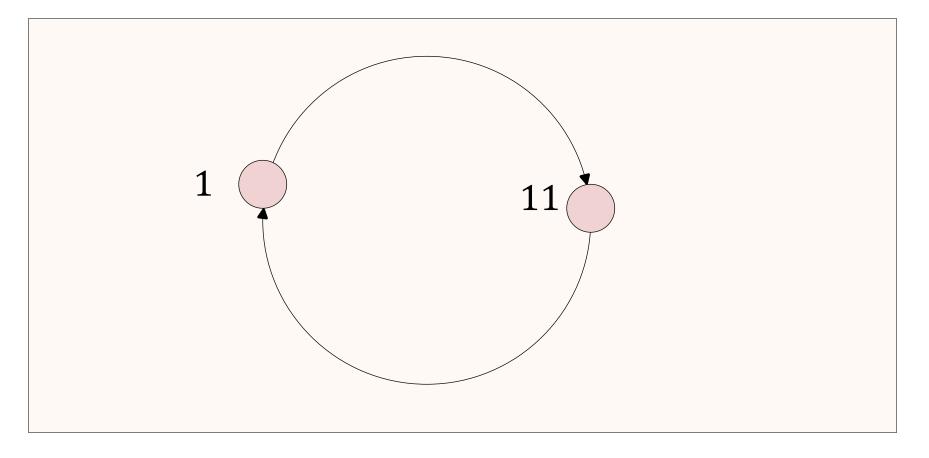
Generators and Cyclic Groups

Define $\langle g \rangle_n = \{g^i \mod n \mid i = 0, 1, 2, ...\}$ as the cyclic group mod ngenerated by g



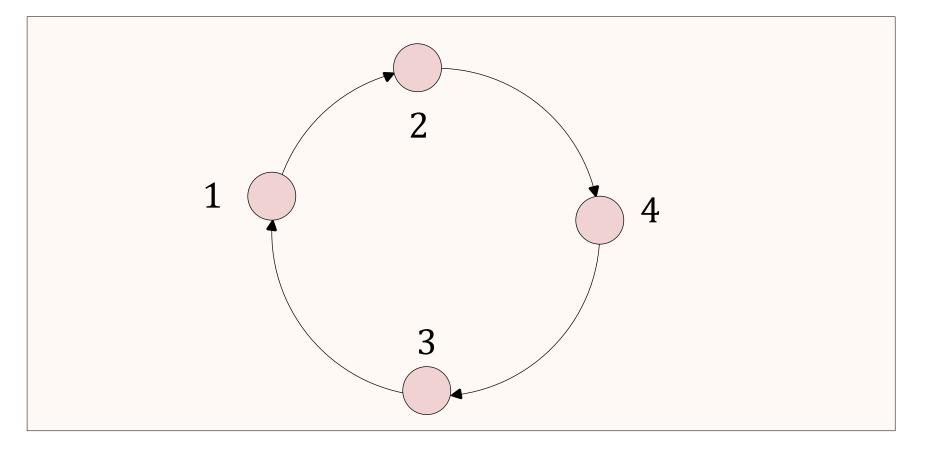
Examples

$$n = 12, g = 11, \langle g \rangle_n = \{1, 11\}$$



Examples

$$n = 5, g = 2, \langle g \rangle_n = \{1, 2, 3, 4\}$$



Primitive Roots

If the cycle length is $\varphi(n)$ then we say that g is a **primitive root** mod n

Theorem: For any prime *p*, there **exist** primitive roots mod *p*

Exercise: Find all primitive roots of 7

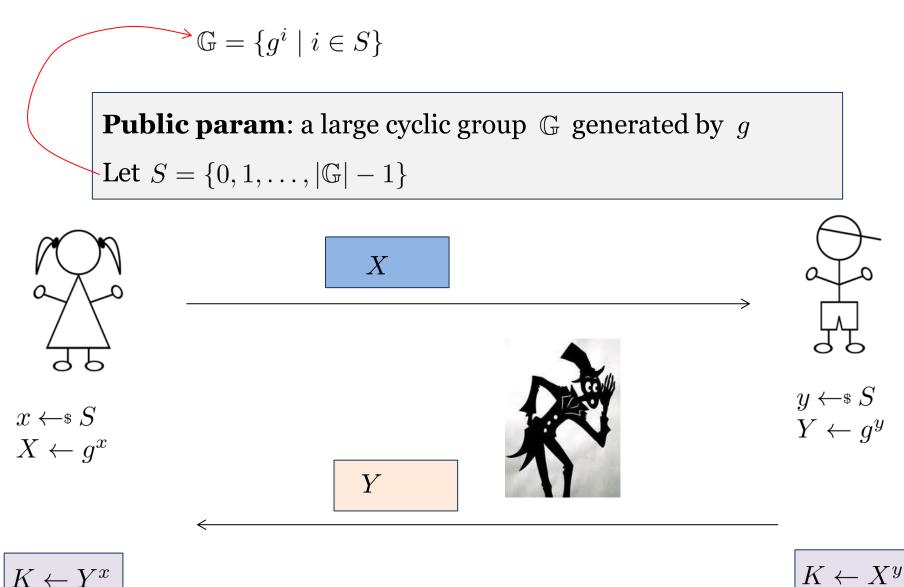
Agenda

1. Motivation: Key Exchange

2. Number Theory Basics

3. Diffie-Hellman Assumptions

Review of DH Key Exchange



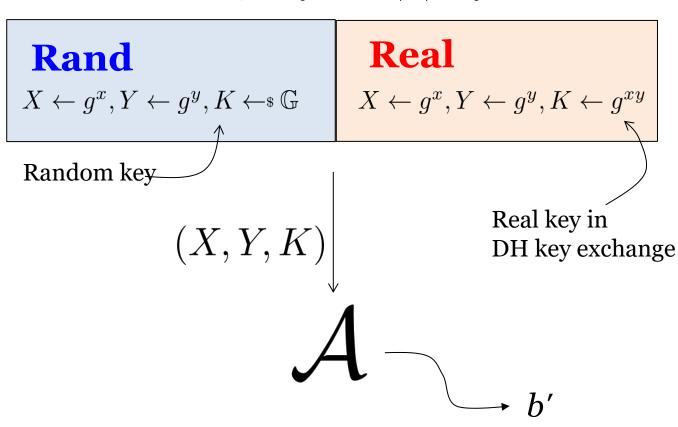
Intuition for Security The Discrete Log Problem

Let $\mathbb{G} = \{g^i \mid i \in S\}$ be a cyclic group of size N



Decisional DH Assumption

Discrete Log hardness is **not** enough to justify security of DH key exchange, so we need a stronger assumption



 $x, y \leftarrow \{0, 1, \dots, |\mathbb{G}| - 1\}$

The DH key exchange is secure if DDH holds

Caveat

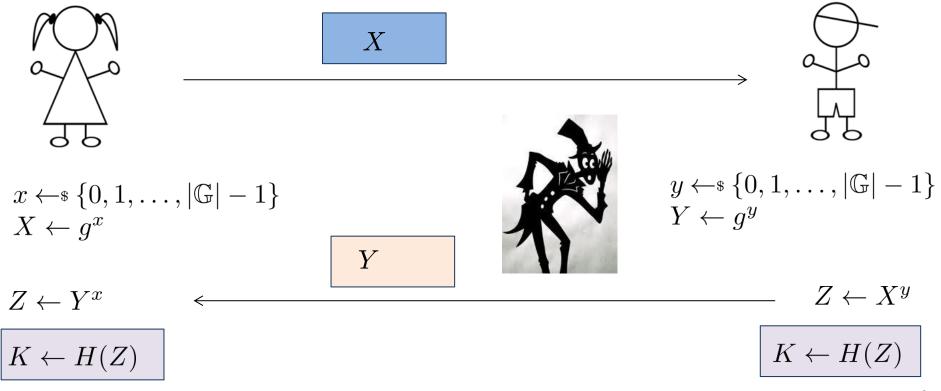
DDH does not hold for \mathbb{Z}_p^*

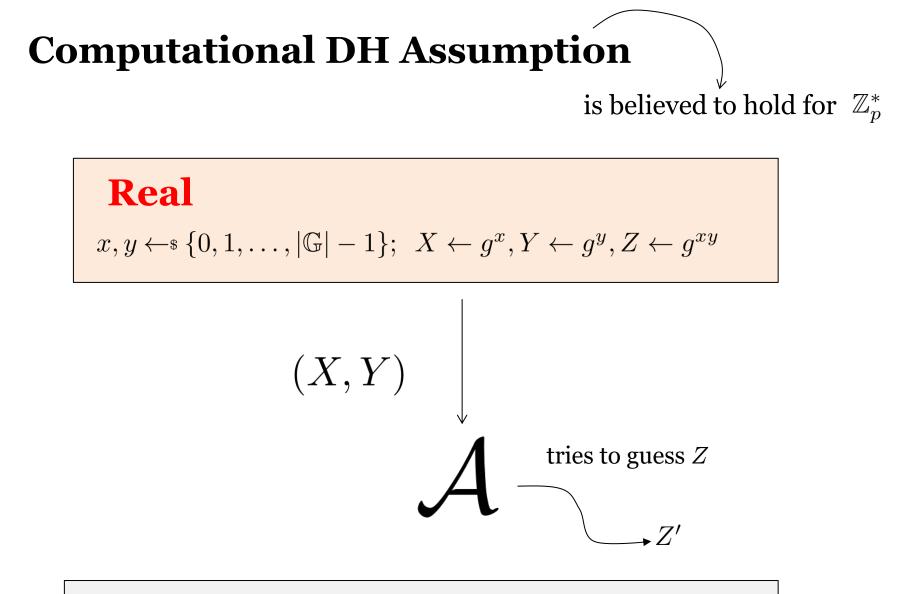
[~] Can break it with advantage 1/2

Strengthening DH Key Exchange

Same as before, but use a hash H at the end

Public param: a large cyclic group \mathbb{G} whose generator is g





The strengthened DH key exchange is secure if CDH holds, and *H* is modeled as a random oracle.