CIS 4360: Computer Security Fundamentals

Message Authentication Code

Viet Tung Hoang

The slides are loosely based on those of Prof. Mihir Bellare, UC San Diego.

1. MAC and Authenticity

2. MAC Constructions

The Need for Authenticity

Classical encryptions (CTR, CBC) don't provide authenticity

MAC Syntax

Formalizing Security

 $\operatorname{Adv}_{\mathcal{T}}^{\operatorname{mac}}(A) = \Pr[\operatorname{MAC}_{\mathcal{T}}^{A} \Rightarrow 1]$

Exercise: Breaking MAC Security With No Query

1. MAC and Authenticity

2. MAC Constructions

An Insecure Construction: Plain CBC-MAC

Question: Break CBC-MAC with a single Tag query

An Incorrect Fix of CBC-MAC

Exercise: Break this version using 3 Tag queries

A Good Construction: Encrypted CBC-MAC

Dealing with Fragmentary Data

Solution: Padding with 10^*

Question: Can we instead use padding with 0^* ?

Example: Suppose that the block length is 16 bytes.

