
CIS 4360: Computer Security Fundamentals

Viet Tung Hoang

Software Security

The slides are based on those of Prof. Stefano Tessaro, University of Washington

and the book “Computer Security: A Hands-on Approach” (Wenliang Du)
1

Agenda

1. Multi-user Systems

2. Access control in UNIX

3.Attacks on SetUID programs

Authentication Multi-user systems

• Users authenticate to access a system

• Many users access the same system

• Users may share resources

• Access control mechanisms decide which user
can access which resource

Examples:

• Gmail, Facebook, an operating system, …

3

Multi-level security

• Main motivation behind multi-user systems:
Military and other government entities want
to use time-sharing too

Top secret data Unclassified data

4

Security Policies

A security policy is a statement that partitions the
states of the system into a set of authorized (or secure)
states and a set of unauthorized (or non-secure) states.

A secure system is a system that starts in an authorized
state and cannot enter an unauthorized state.

5

Security Policies – What do they involve?

• Subjects

– People, users, employees, …

• Objects

– Files, documents, physical locations, …

• Actions

– Read, write, open, edit, append, …

6

Access control matrix

file 1 file 2 … file n

user 1 read, write read,
write, own

read

user 2

…

user m append read,
execute

read,write,
own

Subjects

Objects

7

Discretionary Access Control (DAC)

• Users decide access to their own files

8

Mandatory Access Control (MAC)

• Security decisions are made by a central policy
administrator

Examples:
• Bell-LaPadula

– Users are assigned security clearances, general policy
captures who can read a file.

• Biba
– Dual to Bell-LaPadula, deals with integrity.

Meaning: Violating these policies would allow breaks of
confidentiality / integrity

9

Example: Bell-LaPadula Model

Implements:

• Security clearances

• Need-to-know

10

Classification levels

Top secret

Secret

Confidential

Unclassified

11

Compartmentalization

Top secret

Secret

Confidential

Unclassified

European Special intelligence

12

Classification levels and compartmentalization

• Security level (L,C) assigned to files and users

– L is classification level (Top secret, secret, …)

– C is compartment (Europe, Special intelligence…)

Dominance relationship:

(L1,C1) ≤ (L2,C2)
L1 < L2 (L1 “less secret” than L2)

C1 subset of C2

Example:
(Secret, {European}) ≤ (Top Secret, {European,Special Intel}) 13

Bell-LaPadula Confidentiality Model

“no reads up”, “no writes down”

Top secret

Secret

Confidential

Unclassified

European Special intelligence

Read
should
fail

Write should fail

14

Bell-LaPadula Confidentiality Model

“no reads up”, “no writes down”

User with (L1,C1) can read file with (L2,C2) if?

Simple security condition

(L1,C1) ≤ (L2,C2) or (L1,C1) ≥ (L2,C2)

User with (L1,C1) can write file with (L2,C2) if?

*-property

(L1,C1) ≤ (L2,C2) or (L1,C1) ≥ (L2,C2)
15

Some issues

• It may well be that someone at (“top-secret”,
“Europe, Specint”) needs to write an
unclassified document.

• Implementation should allow explicit lowering
of security level.

• Only deals with confidentiality – what about
integrity?

16

Circumventing access controls
Covert channels

Process 1
(L1,C1)

Process 2
(L2,C2)

(L1,C1) ≥ (L2,C2)

Operating
System

send M to
Process 2

Fail

17

Process 1
(L1,C1)

Process 2
(L2,C2)

(L1,C1) ≥ (L2,C2)

Operating
System

write to my
file on disk

ok

Hard disk

read from my
file on disk

ok

Process 1 sends a 1 bit
to Process 2 by writing
lots of bits to files it
controls on hard disk

Process 1 sends a 0 bit
by idling

Process 2 measures time
to read from its files on disk

Longer read time = 1 bit sent
Shorter read time = 0 bit sent

Circumventing access controls
Covert channels

18

DAC – Two common implementation paradigms

file 1 file 2 … file n

user 1 read,
write

read,
write,
own

read

user 2

…

user m append read,
execute

read,
write,
own

(1) Access control lists

Column stored with file

(2) Capabilities

Row stored for each user

Tokens given to user

19

ACLs compared to Capabilities

ACLs requires
authenticating user

Token-based approach
avoids need for auth

Tokens can be passed
around

Operating System must
manage tokens

Processes must be given
permissions

Operating System must
protect permission setting

20

Agenda

1. Multi-user Systems

2. Access control in UNIX

3. Attacks on SetUID programs

UNIX-style file system ACLs

Permissions:
- Directory?
- Owner (r,w,x) , group (r,w,x), all (r, w, x)

Owner (tessaro)
Group (faculty)

22

Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale

User 1

User 2

User 3

/etc/passwd

User

Guest

Administrator

/usr/local/

/tmp/

23

UNIX file permissions

• Owner, group

• Permissions set by owner / root

• Resolving permissions:

– If user=owner, then owner privileges

– If user in group, then group privileges

– Otherwise, all privileges

24

Processes

• So far, we have talked about permissions of files.

• Process: Instance of computer program being
executed, generally associated with an
executable file.

• Processes also have permissions

– Which files can a process read from/write to?

25

UNIX Process permissions

• Process (normally) runs with permissions of
user that invoked process

/etc/shadow is owned by root

Users shouldn’t be able to write to it generally
26

How do you reset your password?

Real user ID (RUID) --
same as UID of parent (who started process)

Effective user ID (EUID) --
from set user ID bit of file being executed or due to sys call

UID 0 is root

Process permissions continued

28

Executable files have 2 setuid bits

So passwd is a setuid program

program runs at permission level of
owner, not user that runs it

• Setuid bit – set EUID of process to owner’s ID
• Setgid bit – set EGID of process to group’s ID

29

How do you reset your password?

Because the setuid bit is set, passwd
can run with root’s privileges even if
executed by any other users, and
can thus operate on /etc/shadow!

seteuid system call

uid = getuid();

eid = geteuid();

seteuid(uid); // Drop privileges

…

seteuid(eid); // Raise privileges

file = fopen(“/etc/shadow”, “w”);

…

seteuid(uid); // drop privileges

Idea: raise privileges only when needed within your code!

31

Agenda

1. Multi-user Systems

2. Access control in UNIX

3.Attacks on SetUID programs

Setuid allows privilege escalation but…

• Source of many privilege
escalation vulnerabilities

Example 1:
Capability Leaking

Example 2:
Race conditions

Example 3:
Env variables

33

Capability leaking

• In some cases, privileged programs downgrade
themselves during execution. Example: su

… // Some privileged code

setuid(getuid()); // Disable privilege

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

• Issue: Program may not clean up privileged
capabilities before downgrading

34

Capability leaking: An example

fd = open(“/etc/shadow”, O_RDWR|O_APPEND)

setuid(getuid()); // Disable privilege

// Execute /bin/sh

v[0] = “/bin/sh”, v[1] = 0

execve(v[0], v, 0)

Forget to close the file, so the file descriptor is still valid

Exploit: Write to /etc/shadow with the content of myfile
cat myfile >& 3

File descriptor 3 is usually allocated for the first opened file
35

Race conditions
Time-of-check-to-time-of-use (TOCTTOU)

if(access(“/tmp/myfile”, R_OK) != 0)

{

exit(-1);

}

file = open(“/tmp/myfile”, “r”);

read(file, buf, 100);

close(file);

print(“%s\n”, buf);

Say the following is run with EUID = 0

Ensures that RUID can access file. If not abort

36

access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK)

open(“/tmp/myfile”, “r”);

ln –s /home/root/.ssh/id_rsa /tmp/myfile

print(“%s\n”, buf); Prints out root’s secret key…

Outcome?

SetUID process

Non-privileged process

37

Environment variables

SetUID Program(User-controlled)
env variables

Examples: PATH, LD_PRELOAD

List of shared libraries that will be searched by dynamic linker

Location of commands that will be searched by shell if full path is not provided

38

39

Example: Attack via PATH

#include <stdlib.h>

int main()

{

system(“cal”); // Run calendar

}

Say the following is run with EUID = 0

40

How to attack

#include <stdlib.h>

int main()

{

system(“/bin/bash -p”); // Run shell

}

Set up a malicious “calendar” program in the home directory

41

How to attack

$ export PATH = .:PATH

Tell the shell to look up commands in the home directory first

system(“cal”);

Run the SetUID program

Malicious “calendar” is run, and attacker gets root shell

Outcome?

