CIS 4360: Computer Security Fundamentals

Network Security

Viet Tung Hoang

Network Security
Looking at it from the right perspective

* Classical internet protocols are not robust

— Design assumes benign behavior and correct
implementations

e Typical attack vectors:
— Malformed messages
— Malformed protocol execution

— Combined with faulty implementation / bad
handling of unusual situations

Internet

Alice

’

~ backbone

Local area network (LAN) Internet
Ethernet TCP/IP
802.11 BGP (border gateway protocol)

DNS (domain name system)

Internet threat models

backbone .

(1) Malicious hosts

(2) Subverted routers or links

(3) Malicious ISPs or backbone

Internet protocol stack

Application HTTP, FTP, SMTP, SSH, etc.
Transport TCP, UDP

Network IP, ICMP, IGMP

Link 802x (802.11, Ethernet)
Application Application
Transport Transport
Network «—>| Network le——— Network
Link <> Link <! Link

Internet protocol stack

42 to 1500 bytes

user data
Application
Appl
TCP hdr user data
IP
Ethernet TCP | Appl
hdr hdr user data
IP TCP | Appl
et et s L LSS 022
ENet IP TCP | Appl ENet
s W W eI tlr
14 20 20

TCP segment

IP datagram

Ethernet frame

Agenda

1. Link Layer Issues

Link Layer — WiFi

* Most common way to connect to a network

Packet Sniffing

Every signal can easily be
captured!

Packet Sniffing: WireShark

M cdd-http.peap — O >
File Edit View Go Capture Analyze Statistics Telephony | Wireless | Tools Help
d = ® E Q &= = § == Bluetooth ATT Server Attributes
| annly a display filter | <Cirl-/= Bluetooth Devices '] Expression... =+
Ma Time Source Destination Pr Blueteoth HU Summary ’;
1 &.eeeeee 206.121.1.131 172.16.8.122 Tt eassembled PDU
WLAN Traffic] |
3 8.825738 260.121.1.131 172.16.8.122 TCP 1454 [TCP segment of a reassembled PDU]
4 8.825749 172.16.8.122 286.121.1.131 TCP 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11281 Win=63888 Len=8
7 8.182939 266.121.1.131 172.16.8.122 TCP 1454 [TCP segment of reassembled PDU]
9 8.128285 206.121.1.131 172.16.8.122 TCP 1454 [TCP segment of reassembled PDUJ
11 @.154162 28@.121.1.131 172.16.8.122 TCP 1454 [TCP segment of reassembled PDUJ
13 8.179986 286.121.1.131 172.16.8.122 TCP 1454 [TCP segment of reassembled PDU]

Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)

Ethernet II, Src: Vmware_cB:88:81 (89:58:56:c@:88:81), Dst: Vmware_42:12:13 (@8:8c:29:42:12:13)
Internet Protocol Version 4, Src: 289.121.1.131, Dst: 172.16.8.122

Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 38 (88), Seq: 1, Ack: 1, Len: 1488

10

Packet Sniffing: WireShark

Need to use WireShark in “monitor mode”
e Sees every packet sent over a Wifi channel
e Easy to do in Mac OS but limited in Windows

* Mostly disallowed by network policies

Solution — WPA2 personal (WPA2-PSK)

e Device and access points share pre-shared secret key
PSK (aka PMK, pairwise master key), derived from a
passphrase and SSID

 Upon connect, 4-way handshake protocol generates
temporary session key PTK

* Encrypts with key = PTK

Agenda

2. Network Layer Issues

IP protocol (IPv4)

Goal: The IP protocol is used to relay packets between
two hosts, each assigned a corresponding IP address.

 Connectionless
— no state, packets have no ordering guarantees

* Unreliable
— no guarantees, packets may be dropped

* No integrity

IPv4

ENet IP T ENet Example: Ethernet frame
hdr | hdr tlr containing IP datagram
4-bit 4-bit 8-bit 16-bit
version | hdrlen | type of service total length (in bytes)
16-bit 3-bit 13-bit
identification flags fragmentation offset
8-bit 8-bit 16-bit
time to live (TTL) protocol header checksum
32-bit
source IP address
32-bit
destination IP address
options (optional)

Security issues with IP

Basic issues:
* Anyone can talk to anyone
* No source address authentication in general (spoofing)

16

Automate Sniffing and Spoofing: Scapy

#!/usr/bin/python3

from scapy.all import *

pkt = sniff(iface='enp0s3"',
filter="icmp or udp',
count=10)

pkt.summary()

Automate Sniffing and Spoofing: Scapy

#!/usr/bin/python3
from scapy.all import *

print("SENDING SPOOFED ICMP PACKET......... ")
ip = IP(src="1.2.3.4", dst="93.184.216.34")
icmp = ICMP()

pkt = ip/icmp

pkt.show()

send(pkt,verbose=0)

Denial of Service (DoS) attacks

Goal: prevent legitimate users from accessing
victim (1.2.3.4)

Example: ICMP ping flood

ICMP = Internet Control Message Protocol, used to relay
control / error / diagnostic message, on top of IP

19

$ ping www.example.com

PING www.example.com (93.184.216.119): 56 data bytes

64 bytes from 93.184.216.119: icmp seq=0 ttl=56 time=11.632 ms
64 bytes from 93.184.216.119: icmp seq=1l ttl=56 time=11.726 ms
64 bytes from 93.184.216.119: icmp seq=2 ttl=56 time=10.683 ms
64 bytes from 93.184.216.119: icmp seq=3 ttl=56 time=9.674 ms

--- www.example.com ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 9.674/10.929/11.726/0.831 ms

Send ICMP “echo” message

* Echo request ("ping”): ICMP message whose data is
expected to be received back in an echo reply ("pong”)

* Host must respond to all echo requests with an echo reply
containing the exact data received in the request message.

Denial of Service (DoS) attacks

Goal: prevent legitimate users from accessing
victim (1.2.3.4)

Possible attack: “ICMP ping flood”

- Attacker sends ICMP pings as fast as possible to victim

- When will this work as a DoS? Attacker resources > victim’s
- How can this be prevented? Ingress filtering near victim

21

Denial of Service (DoS) attacks

8.7.3.4

How can attacker avoid ingress filtering?
Attacker can send packet with fake source IP

This is a so-called “spoofed” packet
Packet will get routed correctly, but replies will not

: source: 8.7.3.4
Send IP packet with dest: 1.2.3.4 from 5.6.7.8

22

Filter based on source now is incorrect!

DoS reflection attacks

Note a valid packet sends a reply t0 8.7.3.4
- Attacker can bounce an attack against 8.7.3.4 off 1.2.3.4
- “Frame” 1.2.3.4

23

Denial of Service (DoS) attacks

DoS works better when there is asymmetry between

victim and attacker
- Attacker uses few resources to cause
- Victim to consume lots of resources

Possible approach: Reflection attacks abusing a service
where size of incoming packet << size of outgoing packet

Denial of Service (DoS) attacks

Short DNS request

Longer DNS reply

Example: DNS reflection attacks
Send DNS request w/ spoofed target IP (~65 byte request)
DNS replies sent to target (~¥512 byte response)

25

Dealing with spoofing: BCP 38

e Spoofed IPs means we cannot know where
packets came from

BCP 38 (RFC 2827): upstream ingress filtering
to drop spoofed packets

[Docs] [txt|pdf]

Network Working Group
Request for Comments: 2827
Obsoletes: 2267

P. Ferguson
Cisco Systems, Inc.

D. Senie
BCP: 38 Amaranth Networks Inc.
Category: Best Current Practice May 2000

Network Ingress Filtering:
Defeating Denial of Service Attacks which employ
IP Source Address Spoofing

8.7.3.4
Before forwarding on packets, check at ingress that source IP legitimate

* Easier to doon ISP’s side
* 80% of networks adopt ingress filtering in some form

27

Does this stop DoS attacks?

* Requires widespread adoption and compliance

— Often small incentives for network operator

* More and more DoS-attacks do not use spoofing
— Botnets and distribute DoS (DDoS) attacks

Botnets and DDoS

Backbone

April 27, 2007

Continued for weeks, with varying levels of intensity
Government, banking, news, university websites

Government shut down international Internet connections

29

Other IPv4 issues

Protocol implementation vulnerabilities

e Certain application environments demand complex
ways of handling IP packets

* Fertile ground for mistakes

e Can lead to vulnerabilities

Prototypical example: Packet fragmenting

IPv4 fragmenting

IP allows datagrams of size from: 20 bytes - 65535 bytes

Problem: Some link layers only allow smaller MTU (maximum

transmission unit)
e Ethernet: 1500 bytes (up to 9198 bytes with jumbo frames)

 WLAN: 2304 bytes

Solution: IP figures out MTU of next link, and fragments packet if
necessary into smaller chunk (or refuses to relay!)

IP

hdr data
P IP IP
ta2
hdr datal hdr data hdr data3

Path MTU discovery: Technique to discover least MTU between two IPs to avoid fragmenting.

IPv4 fragmenting

Fragmentation is controlled in the IP header

source IP address

4-bit 4-bit 8-bit 16-bit
version | hdrlen | type of service total length (in bytes)
16-bit 3-bit 13-bit
identification flags fragmentation offset
8-bit 8-bit 16-bit
time to live (TTL) protocol header checksum
32-bit

32-bit

destination IP address

options (optional)

IPv4 fragmenting

16-bit 3-bit 13-bit
identification flags fragmentation offset
Source-specified “unique” number Fragment offset in 8-byte
identifying datagram units
Flags:
0 bl b2

where bl = May Fragment (0) / Don’t Fragment (1)
where b2 = Last Fragment (0) / More Fragments (1)

Reassembly process: Receiver keeps large buffer, and re-
assembles fragments into original packet size!

Possible implementation mistakes when receiving unexpected values!

IPv4 fragmenting — Example

ID = Ox3FCD12FF

001

0000000000000

Datal (1024 bytes)

ID = Ox3FCD12FF

001

0000010000000 = 128

Data2 (1024 bytes)

ID = Ox3FCD12FF

000

0000100000000 = 256

Data3 (1024 bytes)

T Juswsea

Z JudwSeuy

€ Juswdeuy

Fragmentation attacks

Fragmentation assembly can be abused if done incorrectly:
* “Ping of death”: allows sending > 65,536 byte packet, overflows

buffer.

This is because max offset is 65528 = (213 — 1) -8 but IP does
not prevent us from including more than 8B of data

Example: Last offset =1111111111111, followed by 16 bytes of
data.

 “Teardrop” DoS: mangled fragmentation crashes re-assembly code
» Set offsets so that two packets have overlapping data!
* Modify above example so that Datal is 2048 bytes, leave rest

unchanged!

35

Typical Ping-of-death outcome (1990s)

A problem has been detected and windows has been shut down to prevent damage
to your computer.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory option:

If you need to use Safe Mode to remove C bhle components,
your computer, press F8 to select advanced Startup Options, and then
select safe Mode.

Technical information:

W¥W STOP: Ox000000D01 (0x0000000000000010, 0x0000000000000002, 0x0000000000000000, 0
XFFFFFADFCB0B5578)

LI NDIS.sys - Address FFFFFADFCBOBS5S578 base at FFFFFADFCB0ADQQ0, DatesStamp
45d695f1

1 memory dump complete.
our system administrator or technical support group for further

Agenda

3. Transport Layer Issues

TCP (transport control protocol)

* Connection-oriented

— state initialized during handshake and maintained
* Reliability is a goal

— generates segments

— timeout segments that aren’t ack’d

— checksums headers,

— reorders received segments if necessary

— flow control

TCP Protocol

* Establishes a connection between IP1:porti
and IP2:port2

* End-point is established through an Internet
Socket

* Can be in one of many states:
— LISTEN / ESTABLISHED / CLOSED + many more

TCP (transport control protocol)

IP TCP —
hdr | hdr
16-bit 16-bit
source port number destination port number
32-bit
sequence number
32-bit
acknowledgement number
4-bit 6-bits 6-bits 16-bit
hdr len reserved flags window size
16-bit 16-bit
TCP checksum urgent pointer

options (optional)

data (optional)

TCP (transport control protocol)

TCP flags:

P
hdr

TCP
hdr

data

URG

urgent pointer valid

ACK

acknowledgement number
valid

PSH

pass data to app ASAP

RST

reset connection

SYN

synchronize sequence #'s

FIN

finished sending data

TCP Connections

* Every connection is labeled by ClientIP:ClientPort and
ServerlP:ServerPort

 When new connection created by client (new socket),
typically client chooses random ClientPort

e Server must be listening on ServerPort, creating a passive
socket
— New connections handled by separate thread

42

TCP Connection Logic

* Packets sent from client / server are assigned
increasing sequence numbers seqC and seqs,
initialized when establishing connection

— Sequence number are per byte
* Also each packet contains the acknowledgment
number to acknowledge received bytes

* TCP protocol handles missing messages / re-sent
/ etc

Abstractly, socket simply looks like a file with
read/write interface once connection is open

43

TCP handshake

Protocol establishes a TCP session between Client C
and Server S

Connection will be labeled by ClientIP:ClientPort and ServerIP:ServerPort

Client C Server S
SYN seqC, 0O

SYN/ACK seqS, seqC+1

ACKseqC+1,seqS+1

SYN = syn flag set ACK = ack flag set x,y = x is sequence #, y is acknowledge #

44

TCP teardown

Server S

Client C
FIN seqC, seqS
>
ACK seqC+1
<
FIN seqS+1, seqC +1
<
ACK seqS +2
>

SYN = syn flag set
ACK = ack flag set
X,y =X issequence #, y is acknowledge #

45

TCP handshake

Client C Server S
SYN seqC, 0

SYN/ACK segS, seqC+1

<
ACKseqC+1,seqS+1 \J'
>

Server needs to remember that a SYN/ACK message was
sent back to client! This costs some memory

Q: How can this be abused?

TCP SYN floods

Send lots of TCP SYN packetsto 1.2.3.4
e 1.2.3.4 maintains state for each SYN packet for some amount
window of time

e Side question: If 5.6.7.8 sets SRC IP to be 8.7.3.4, what does
8.7.3.4 receive?

47

TCP SYN floods

Send lots of TCP SYN packetsto 1.2.3.4
 Why is this a denial of service attack?

Answer: 1.2.3.4 runs out of memory (if not cleverly implemented!)

48

TCP handshake

Client C Server S
SYN seqC, 0

>

SYN/ACK seqS, secC+1

ACKseqC+1,seqS+1

Sequence numbers are the main

How are secC and SeqS mechanism for reliability allowing us to
Se|ected? know how packets are to be ordered!

Predictable sequence numbers

8.7.3.4

4.4BSD used predictable initial sequence numbers (ISNs)
* At system initialization, set ISN to 1
* Increment ISN by 64,000 every half-second

What can a clever attacker do? [Assume spoofing is possible]

Predictable sequence numbers

Connection b/w 1.2.3.4 and 8.7.3.4

Forge a FIN packet from Forge some application-layer
8.73.4t01.2.3.4 packet from 8.7.3.4t0 1.2.3.4
src: 8.7.3.4 src: 8.7.3.4
dst: 1.2.3.4 dst: 1.2.3.4
seq#(8.7.3.4) seq#(8.7.3.4)
FIN “rsh rm —=rf /”

51

Predictable sequence numbers

Fix idea 1:
 Random ISN at system startup
* Increment by 64,000 each half second

Better fix:
« Random ISN for every connection

Also:
* Cryptography at higher level should prevent injection

8.7.3.4

Agenda

4. Application Layer Issues

DNS: Hosts — IP

We don’t want to have to remember IP addresses

Early days of ARPANET: manually managed hosts.txt served from
single computer at SR

Today’s solution: DNS system (Domain
Name Service)

DNS Recap

Refer to nsl.google.com as authoritative

for google.com

<
<

Local DNS server Root DNS

IP address for

mail.google.com

DNS Recap

142.251.167.19

Local DNS server

IP address for

mail.google.com

A

nsl.google.com

DNS Recap

Cache info for future queries

Local DNS server

P address for 142.251.167.19

mail.google.com non-authoritative

Root name servers — attacks

InformationWeek sesoms zsaimes

Home News & Commentary Authors Slideshows Video Reports White Papers Events Universiy INTEROP F

STRATEGIC CIO |

|SECUBTTT‘CLDUD|HDBILE ‘BIGDATA‘MUCME‘DMLOPER|

SOFTWARE // ENTERPRISE APPLICATIONS

Sharon Gaudin

A 0 COMMENTS
COMMENT NOW

Secrets Of The DoS Root Server
Attack Revealed

Security experts say possibly millions of zombie computers were used
in Tuesday's attack on the Internet's 13 root servers. But the attack
didn't work because people had been planning for it for years.

Do you know what your computer was doing the other night?

That's the question a lot of security professionals and analysts would like to
put to users. On Tuesday, the 13 servers that help manage worldwide Internet
traffic were hit by a denial-of-service attack that nearly took down three of
them. Analysts say the hackers' used possibly millions of zombie computers to
wage the attack -- and they expect that army is populated with the desktops
and laptops of unknowing users around the world.

"Individuals have contributed to this problem without knowing it," says Graham
Cluley, a senior technology consultant with Sophos. "People heard about
hackers doing these things, but guess what? It may have been your computer
doing part of the hacking. ... People need to take more responsibility over the
cleanliness of their PCs."

REPORTS

Informationieek
i eports

Builﬂing aMobile
Business Mindset

Building A Mobile

Among 688 respondents, 46
apps, with an additional 24%
Soon all apps will look like
for those with no plans to ge

DOWNLOAD NOW!

58

Caching

* DNS servers will cache responses
— Both negative and positive responses
— Speeds up queries
— periodically times out. TTL set by data owner

DNS cache poisoning

N google.com
10.1.1.1

Victim DNS server

Clients

Attacker site
©10.9.9.99

Goal: Redirect traffic meant for google.com to
10.9.9.99 by abusing victim’s DNS server

60

An example of DNS poisoning attack

This article is more than 1 year old

DNS cache poisonings foist malware attacks on
Brazilians

'‘Desperate cries' from those visiting innocent sites

A Dan Goodin Mon 7 Nov 2011 21:18 UTC

o An attack on several Brazilian ISPs has exposed large numbers of their subscribers to
malware attacks when they attempt to visit Hotmail, Gmail, and other trusted websites,
security researchers have warned.

61

DNS Cache Poisoning Attack Kaminsky, 2008

Victim DNS server

IP address for

bad.google.com

DNS Cache Poisoning Attack Kaminsky, 2008

Victim DNS server nsl.google.com

IP address for

bad.google.com

Refer to nsl.evil.com as authoritative for google.com

Source = nsl.google.com

DNS Cache Poisoning Attack Kaminsky, 2008

Arrive late and be discarded

<
<

Victim DNS server nsl.google.com

Cache: nsl.evil.com is

authoritative for google.com

Crafting Spoofed DNS Reply: Structure of DNS

IP Header

UDP Header

Transaction ID (id)

Flags

Number of Question Records (gdcount)

Number of Answer Records (ancount)

Number of Authority Records (nscount)

Number of Additional Records (arcount)

Records: gd, an, ns, ar

DNS Header

DNS Data

, T ——

Flags: aa = 1 (authoritative answer), gr= 1 (response)

DNS Record Type

Question Record

Record Type

WWW.example.com “A” Record Internet
-cxampre. 0x0001 0x0001
Answer Record
Record Type Time to Live Data Length Data: IP Address
“A” Record Internet
www.example.com 0x0001 0x0001 0x00002000 (seconds) 0x0004 1.234

Authority Record

Record Type Time to Live Data Length Data: Name Server

“NS” Record Internet

0x0002 0x0001 0x00002000 (seconds) 0x0013 ns.example.com

example.com

Code Example: Poisoning Local DNS

def spoof dns(pkt):
1f(DNS in pkt and 'www.example.com' in
pkt[DNS].qd.gname.decode('utf-8")):

IPpkt = IP(dst=pkt[IP].src, src=pkt[IP].dst)

UDPpkt = UDP(dport=pkt[UDP].sport, sport=53)

Anssec = DNSRR(rrname=pkt[DNS].qd.gname, type='A",
rdata='1.2.3.4"', ttl=259200)

NSsec = DNSRR(rrname="example.com", type='NS"',

rdata='ns.attacker32.com', tt1=259200)

DNSpkt = DNS(id=pkt[DNS].id, aa=1, rd=0,
qdcount=1, qr=1, ancount=1, nscount=1l,
qd=pkt[DNS].qd, an=Anssec, ns=NSsec)

spoofpkt = IPpkt/UDPpkt/DNSpkt
send(spoofpkt)

Flags: aa = 1 (authoritative answer), gr= 1 (response)

