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Network Security

The slides are based on those of Prof. Stefano Tessaro, University of Washington and the book “Internet 

Security: A hands-on approach” by Kevin Du
1



Network Security
Looking at it from the right perspective

• Classical internet protocols are not robust

– Design assumes benign behavior and correct 
implementations

• Typical attack vectors:

– Malformed messages

– Malformed protocol execution

– Combined with faulty implementation / bad 
handling of unusual situations
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Internet

backbone

ISP1 ISP2

Local area network (LAN) Internet

Ethernet

802.11 BGP  (border gateway protocol)

DNS (domain name system)

Alice

Bob

TCP/IP 
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Internet threat models

backbone

ISP1 ISP2

(1) Malicious hosts

(2) Subverted routers or links

(3) Malicious ISPs or backbone
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Internet protocol stack

Application HTTP, FTP, SMTP, SSH, etc.

Transport TCP, UDP

Network IP, ICMP, IGMP

Link 802x (802.11, Ethernet)

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link
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Application

TCP

IP

Ethernet

user data

user data
Appl
hdr

user data
Appl
hdr

TCP 
hdr

user data
Appl
hdr

TCP 
hdr

IP 
hdr

user data
Appl
hdr

TCP 
hdr

IP 
hdr

ENet
hdr

ENet
tlr
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IP datagram
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14 20 20

42 to 1500 bytes

Internet protocol stack
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Agenda

1. Link Layer Issues

2.Network Layer Issues

3. Transport Layer Issues

4. Application Layer Issues



Link Layer – WiFi

• Most common way to connect to a network

ISP1



Packet Sniffing

ISP1

Every signal can easily be 
captured!



Packet Sniffing: WireShark
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Packet Sniffing: WireShark

Need to use WireShark in “monitor mode”

• Sees every packet sent over a Wifi channel

• Easy to do in Mac OS but limited in Windows

• Mostly disallowed by network policies
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Solution – WPA2 personal (WPA2-PSK)

• Device and access points share pre-shared secret key 
PSK (aka PMK, pairwise master key), derived from a 
passphrase and SSID

• Upon connect, 4-way handshake protocol generates 
temporary session key PTK

• Encrypts with key = PTK
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IP protocol (IPv4)

Goal: The IP protocol is used to relay packets between 
two hosts, each assigned a corresponding IP address.

• Connectionless

– no state, packets have no ordering guarantees

• Unreliable

– no guarantees, packets may be dropped

• No integrity
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IPv4

data
ENet
hdr

ENet
tlr

Example: Ethernet frame 
containing IP datagram

IP 
hdr

4-bit 
version

4-bit 
hdr len

8-bit 
type of service

16-bit 
identification

16-bit 
total length (in bytes)

3-bit 
flags

13-bit 
fragmentation offset

8-bit 
time to live (TTL)

8-bit 
protocol

16-bit 
header checksum

32-bit 
source IP address

32-bit 
destination IP address

options (optional)
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backbone

Security issues with IP

ISP1 ISP2

Basic issues:
• Anyone can talk to anyone
• No source address authentication in general (spoofing)

5.6.7.8

1.2.3.4
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Automate Sniffing and Spoofing: Scapy

Source: “Internet Security: A hands-on approach” by Kevin Du



Automate Sniffing and Spoofing: Scapy

Source: “Internet Security: A hands-on approach” by Kevin Du



Denial of Service (DoS) attacks

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

Goal: prevent legitimate users from accessing 
victim (1.2.3.4) 

Example: ICMP ping flood

ICMP = Internet Control Message Protocol, used to relay 
control / error / diagnostic message, on top of IP 
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$ ping www.example.com

PING www.example.com (93.184.216.119): 56 data bytes

64 bytes from 93.184.216.119: icmp_seq=0 ttl=56 time=11.632 ms

64 bytes from 93.184.216.119: icmp_seq=1 ttl=56 time=11.726 ms

64 bytes from 93.184.216.119: icmp_seq=2 ttl=56 time=10.683 ms

64 bytes from 93.184.216.119: icmp_seq=3 ttl=56 time=9.674 ms

--- www.example.com ping statistics ---

4 packets transmitted, 4 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 9.674/10.929/11.726/0.831 ms

Send ICMP “echo” message

• Echo request ("ping”): ICMP message whose data is 
expected to be received back in an echo reply ("pong”)

• Host must respond to all echo requests with an echo reply 
containing the exact data received in the request message.
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Denial of Service (DoS) attacks

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

Possible attack: “ICMP ping flood”
- Attacker sends ICMP pings as fast as possible to victim
- When will this work as a DoS? 
- How can this be prevented?  Ingress filtering near victim

Attacker resources > victim’s

Goal: prevent legitimate users from accessing 
victim (1.2.3.4) 
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Denial of Service (DoS) attacks

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

How can attacker avoid ingress filtering?
Attacker can send packet with fake source IP  
This is a so-called “spoofed” packet
Packet will get routed correctly, but replies will not

source: 8.7.3.4
dest: 1.2.3.4

Send IP packet with from 5.6.7.8

ISP3 

8.7.3.4

Filter based on source now is incorrect! 22



DoS reflection attacks

ISP1 ISP2 

Note a valid packet sends a reply to 8.7.3.4
- Attacker can bounce an attack against 8.7.3.4 off 1.2.3.4 
- “Frame” 1.2.3.4

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4
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Denial of Service (DoS) attacks

DoS works better when there is asymmetry between
victim and attacker
- Attacker uses few resources to cause
- Victim to consume lots of resources

Possible approach: Reflection attacks abusing a service 
where size of incoming packet << size of outgoing packet
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Denial of Service (DoS) attacks

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

Example: DNS reflection attacks
Send DNS request w/ spoofed target IP (~65 byte request)
DNS replies sent to target (~512 byte response)

ISP3 

8.7.3.4

Short DNS request

Longer DNS reply
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Dealing with spoofing: BCP 38

• Spoofed IPs means we cannot know where 
packets came from

• BCP 38 (RFC 2827): upstream ingress filtering 
to drop spoofed packets
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BCP 38

ISP1 ISP2 

Before forwarding on packets, check at ingress that source IP legitimate
• Easier to do on ISP’s side
• 80% of networks adopt ingress filtering in some form

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4
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Does this stop DoS attacks?

• Requires widespread adoption and compliance

– Often small incentives for network operator

• More and more DoS-attacks do not use spoofing

– Botnets and distribute DoS (DDoS) attacks 
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Botnets and DDoS

ISP1 ISP2 

1.2.3.4
5.6.7.8

Backbone 

ISP3 

8.7.3.4

8.7.1.3

1.2.4.3

April 27, 2007

Continued for weeks, with varying levels of intensity

Government, banking, news, university websites

Government shut down international Internet connections
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Other IPv4 issues

Protocol implementation vulnerabilities
• Certain application environments demand complex 

ways of handling IP packets
• Fertile ground for mistakes
• Can lead to vulnerabilities

Prototypical example: Packet fragmenting
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IPv4 fragmenting

data
IP 

hdr

IP allows datagrams of size from: 20 bytes - 65535 bytes 

Problem: Some link layers only allow smaller MTU (maximum 
transmission unit) 
• Ethernet: 1500 bytes (up to 9198 bytes with jumbo frames)
• WLAN: 2304 bytes

Solution: IP figures out MTU of next link, and fragments packet if
necessary into smaller chunk (or refuses to relay!)

data1 data2 data3
IP 

hdr

IP 
hdr

IP 
hdr

Path MTU discovery: Technique to discover least MTU between two IPs to avoid fragmenting. 



IPv4 fragmenting

4-bit 
version

4-bit 
hdr len

8-bit 
type of service

16-bit 
identification

16-bit 
total length (in bytes)

3-bit 
flags

13-bit 
fragmentation offset

8-bit 
time to live (TTL)

8-bit 
protocol

16-bit 
header checksum

32-bit 
source IP address

32-bit 
destination IP address

options (optional)

Fragmentation is controlled in the IP header
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IPv4 fragmenting

16-bit 
identification

3-bit 
flags

13-bit 
fragmentation offset

Source-specified “unique” number
identifying datagram

Flags:
0  b1  b2

where b1  = May Fragment (0)  / Don’t Fragment (1)
where b2  = Last Fragment (0)  /  More Fragments (1)

Fragment offset in 8-byte
units

Reassembly process: Receiver keeps large buffer, and re-
assembles fragments into original packet size!

Possible implementation mistakes when receiving unexpected values!
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IPv4 fragmenting – Example

ID = 0x3FCD12FF 001 0000000000000

Data1 (1024 bytes)

ID = 0x3FCD12FF 001 0000010000000 = 128

Data2 (1024 bytes)

ID = 0x3FCD12FF 000 0000100000000 = 256

Data3 (1024 bytes)

Fragm
e

n
t 1

Fragm
e

n
t 2

Fragm
e

n
t 3
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Fragmentation attacks
Fragmentation assembly can be abused if done incorrectly:
• “Ping of death”: allows sending > 65,536 byte packet, overflows 

buffer. 

This is because max offset is                                            but IP does 
not prevent us from including more than 8B of data

Example: Last offset = 1111111111111, followed by 16 bytes of 
data.

• “Teardrop” DoS: mangled fragmentation crashes re-assembly code 
• Set offsets so that two packets have overlapping data!
• Modify above example so that Data1 is 2048 bytes, leave rest 

unchanged! 
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Typical Ping-of-death outcome (1990s)
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TCP (transport control protocol)

• Connection-oriented

– state initialized during handshake and maintained

• Reliability is a goal

– generates segments

– timeout segments that aren’t ack’d

– checksums headers, 

– reorders received segments if necessary

– flow control
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TCP Protocol

• Establishes a connection between IP1:port1
and IP2:port2

• End-point is established through an Internet 
Socket

• Can be in one of many states:

– LISTEN / ESTABLISHED / CLOSED + many more
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TCP (transport control protocol)

data
IP 

hdr
TCP 
hdr

16-bit 
source port number

16-bit 
destination port number

32-bit 
sequence number

32-bit 
acknowledgement number

4-bit 
hdr len

6-bits 
reserved

16-bit 
window size

6-bits 
flags

16-bit 
TCP checksum

16-bit 
urgent pointer

options (optional)

data (optional)
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TCP (transport control protocol)

data
IP 

hdr
TCP 
hdr

URG urgent pointer valid

ACK acknowledgement number 
valid

PSH pass data to app ASAP

RST reset connection

SYN synchronize sequence #’s

FIN finished sending data

TCP flags:
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TCP Connections

• Every connection is labeled by ClientIP:ClientPort and 
ServerIP:ServerPort

• When new connection created by client (new socket), 
typically client chooses random ClientPort

• Server must be listening on ServerPort, creating a passive 
socket

– New connections handled by separate thread
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TCP Connection Logic

• Packets sent from client / server are assigned 
increasing sequence numbers seqC and seqS, 
initialized when establishing connection
– Sequence number are per byte

• Also each packet contains the acknowledgment 
number to acknowledge received bytes

• TCP protocol handles missing messages / re-sent 
/ etc

Abstractly, socket simply looks like a file with 
read/write interface once connection is open
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TCP handshake

SYN  seqC , 0 
Client C Server S

SYN/ACK  seqS , seqC+1 

ACK seqC + 1, seqS + 1  

SYN = syn flag set ACK = ack flag set x,y = x is sequence #, y is acknowledge #

Protocol establishes a TCP session between Client C 
and Server S

Connection will be labeled by ClientIP:ClientPort and ServerIP:ServerPort
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TCP teardown

FIN  seqC , seqS
Client C Server S

ACK  seqC+1 

ACK  seqS + 2  

SYN = syn flag set
ACK = ack flag set
x,y = x is sequence #, y is acknowledge #

FIN  seqS + 1, seqC +1 
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TCP handshake

SYN  seqC , 0 
Client C Server S

SYN/ACK  seqS , seqC+1 

ACK seqC + 1, seqS + 1  

Server needs to remember that a SYN/ACK message was 
sent back to client! This costs some memory

Q: How can this be abused?
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TCP SYN floods

ISP1 ISP2 

Send lots of TCP SYN packets to 1.2.3.4
• 1.2.3.4 maintains state for each SYN packet for some amount

window of time
• Side question: If 5.6.7.8 sets SRC IP to be 8.7.3.4, what does 

8.7.3.4 receive?

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4
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TCP SYN floods

ISP1 ISP2 

Send lots of TCP SYN packets to 1.2.3.4
• Why is this a denial of service attack?

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4

Answer: 1.2.3.4 runs out of memory (if not cleverly implemented!)
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TCP handshake

SYN  seqC , 0 
Client C Server S

SYN/ACK  seqS , secC+1 

ACK seqC + 1, seqS + 1  

How are secC and seqS
selected?

Sequence numbers are the main 
mechanism for reliability allowing us to 
know how packets are to be ordered!
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Predictable sequence numbers

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4

4.4BSD used predictable initial sequence numbers (ISNs)
• At system initialization, set ISN to 1
• Increment ISN by 64,000 every half-second

What can a clever attacker do? [Assume spoofing is possible]



Predictable sequence numbers

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4

src: 8.7.3.4
dst: 1.2.3.4

seq#(8.7.3.4)
FIN

src: 8.7.3.4
dst: 1.2.3.4

seq#(8.7.3.4)
“rsh rm –rf /”

Forge a FIN packet from 
8.7.3.4 to 1.2.3.4

Forge some application-layer
packet from 8.7.3.4 to 1.2.3.4

Connection b/w 1.2.3.4 and 8.7.3.4
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Predictable sequence numbers

ISP1 ISP2 

1.2.3.4

5.6.7.8

Backbone 

ISP3 

8.7.3.4

Fix idea 1:
• Random ISN at system startup
• Increment by 64,000 each half second

Better fix:
• Random ISN for every connection

Also: 
• Cryptography at higher level should prevent injection 52
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DNS: Hosts         IP

We don’t want to have to remember IP addresses

Early days of ARPANET: manually managed hosts.txt served from
single computer at SRI

Today’s solution: DNS system (Domain 
Name Service)
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Local DNS server

IP address for 

mail.google.com

Refer to ns1.google.com as authoritative 

for google.com

Root DNS

DNS Recap
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Local DNS server

IP address for 

mail.google.com

142.251.167.19

ns1.google.com

DNS Recap
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Local DNS server

IP address for 

mail.google.com

142.251.167.19

non-authoritative

Cache info for future queries

DNS Recap
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Root name servers – attacks
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Caching

• DNS servers will cache responses

– Both negative and positive responses

– Speeds up queries 

– periodically times out. TTL set by data owner
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DNS cache poisoning

Internet

Victim DNS server

Clients

google.com
10.1.1.1

Attacker site
10.9.9.99

Goal: Redirect traffic meant for google.com to 
10.9.9.99 by abusing victim’s DNS server 
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An example of DNS poisoning attack
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DNS Cache Poisoning Attack Kaminsky, 2008

Victim DNS server

IP address for 

bad.google.com
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DNS Cache Poisoning Attack Kaminsky, 2008

Victim DNS server

IP address for 

bad.google.com

ns1.google.com

Refer to ns1.evil.com as authoritative for google.com

Source = ns1.google.com
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DNS Cache Poisoning Attack Kaminsky, 2008

Victim DNS server ns1.google.com

Arrive late and be discarded

Cache: ns1.evil.com is 

authoritative for google.com
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Crafting Spoofed DNS Reply: Structure of DNS 

Flags: aa = 1 (authoritative answer), qr= 1 (response)



DNS Record Type



Code Example: Poisoning Local DNS

Flags: aa = 1 (authoritative answer), qr= 1 (response)


