CIS 5371, FALL 2024

SOME ODD PROBLEMS IN CRYPTO

VIET TUNG HOANG

Agenda

1. The dating problem

2. Telephone coin flipping

The Dating Problem

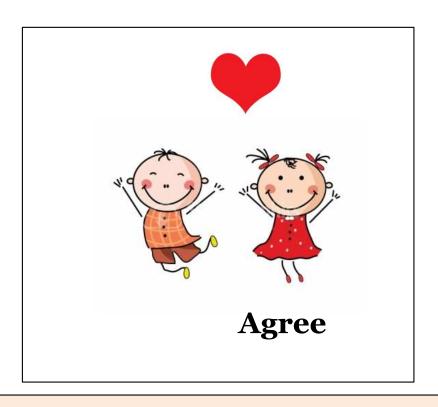
Issue: Embarrassing if one wants a second date while the other doesn't.

Privacy for The Dating Problem

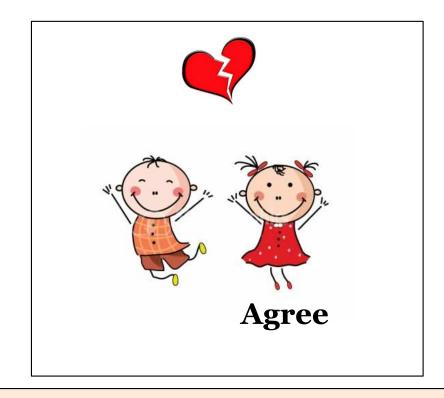
Want: Each person only knows:

- His/her choice & the final outcome
- Whatever can be inferred from the above

Bob's Privacy for the Dating Problem



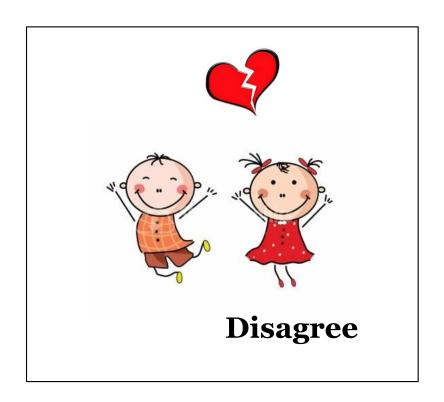
Alice knows Bob's input = "agree"



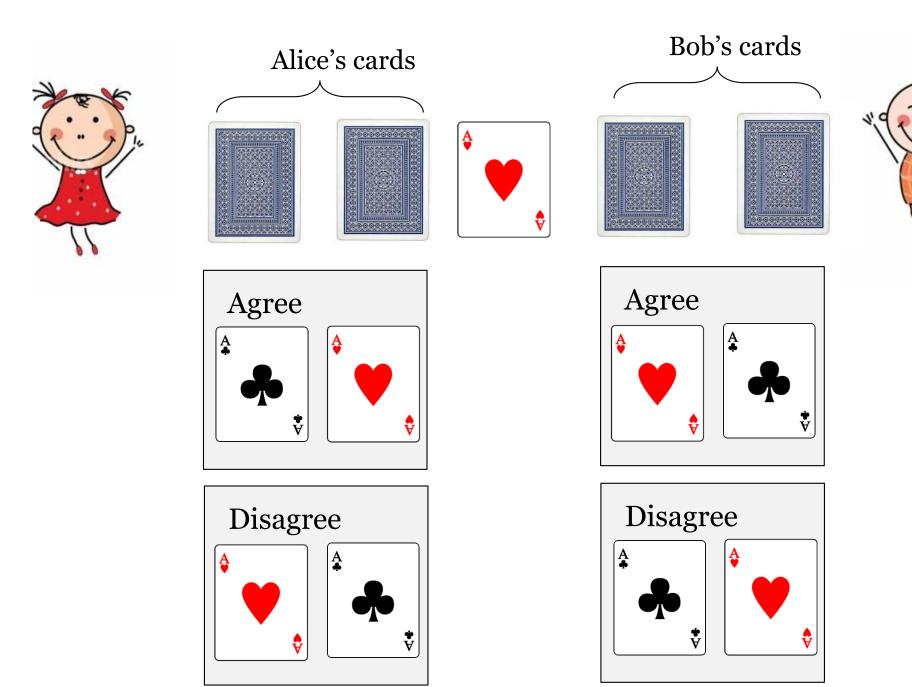
Alice knows Bob's input = "disagree"

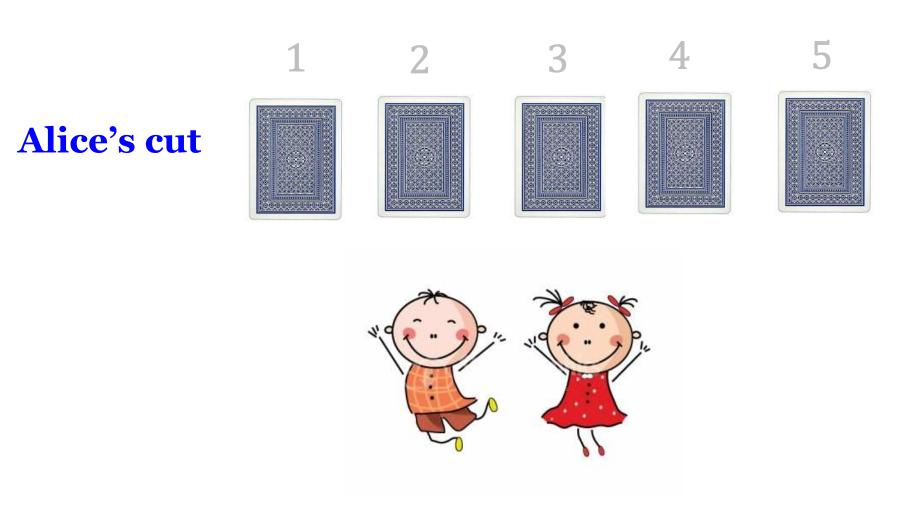
In those cases Bob's privacy is moot

Bob's Privacy for the Dating Problem

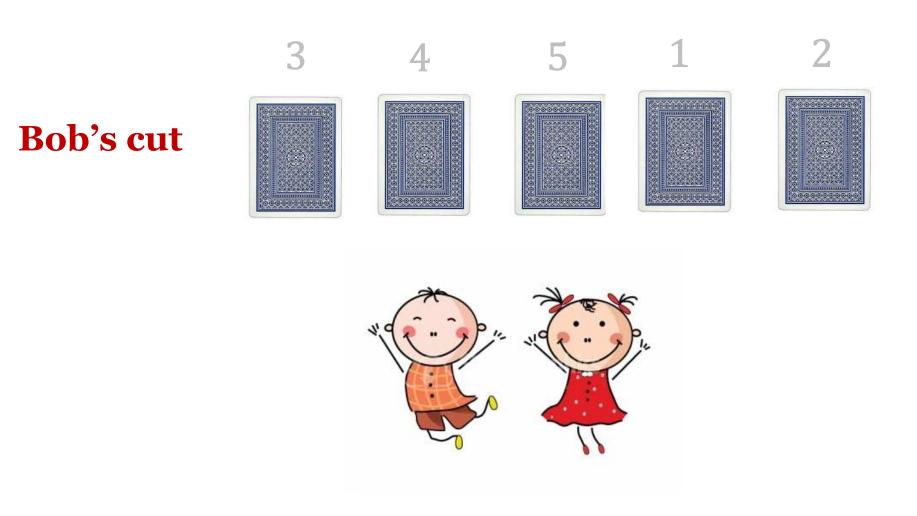


Must reveal no information about Bob's input

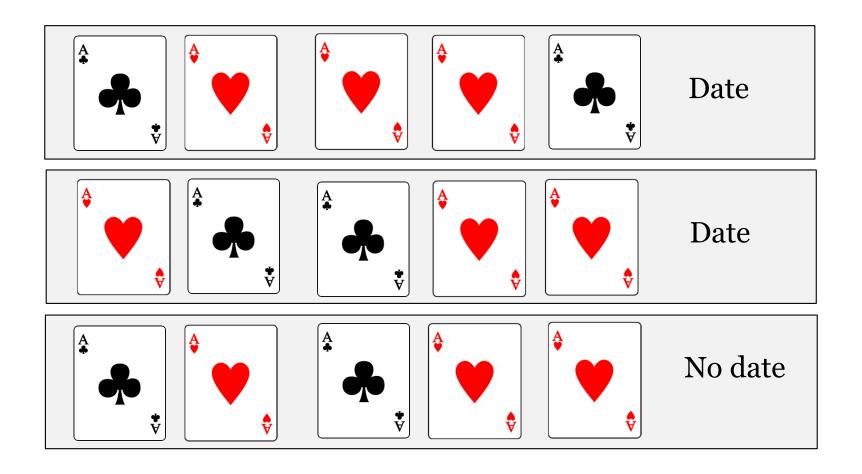




Each takes turn to make a **private** cut

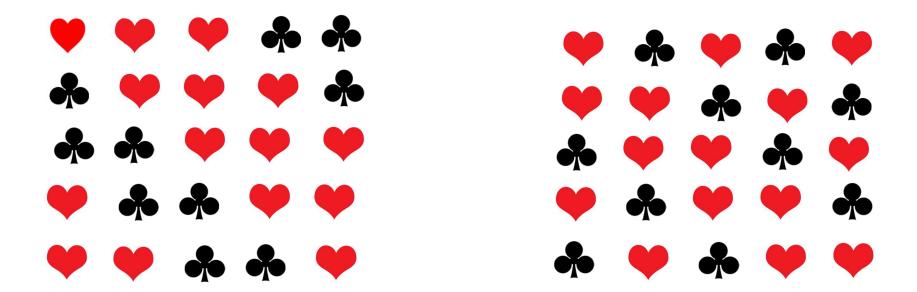


Each takes turn to make a **private** cut



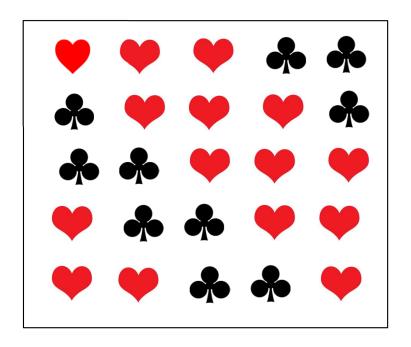
If three 💚 in a (wrap-around) row then date. Otherwise no date

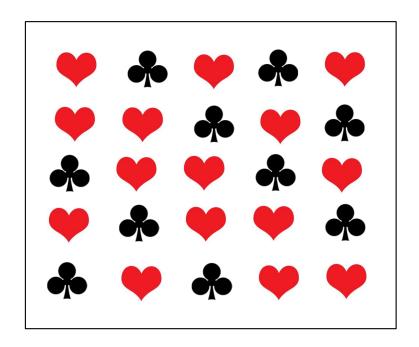
Why Is the Solution Correct?

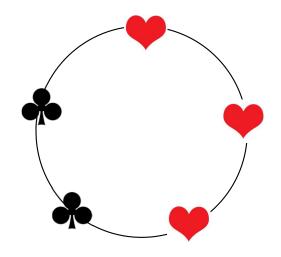


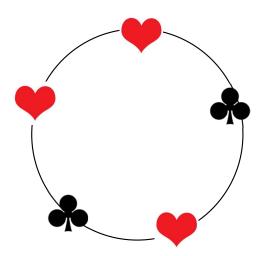
There are ten ways to place 3 • and 2 • in a line

But There Are Two Groups When Wrap Around

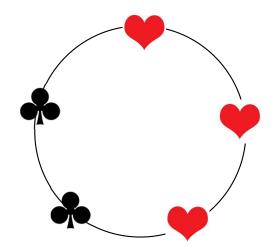


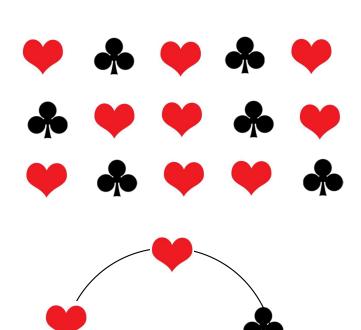






The Initial Place

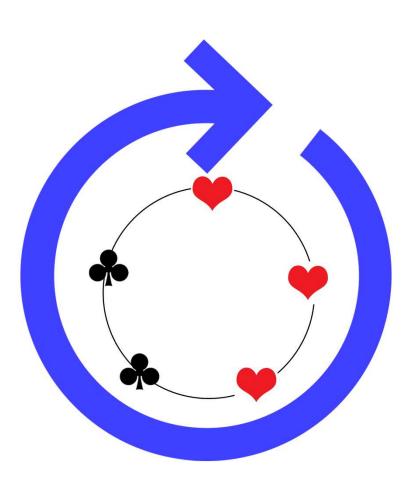


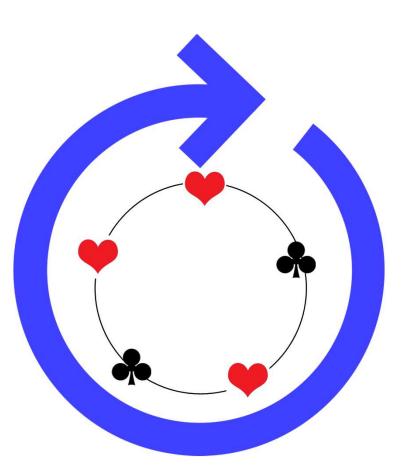


No Date: Group 2

Cutting Doesn't Change the Group

Circular shift





Why Is the Solution Private?

Your Exercise

Agenda

1. The dating problem

2. Telephone coin flipping

Telephone Coin Flipping

Alice and Bob wan to decide who gets the car (over the phone)

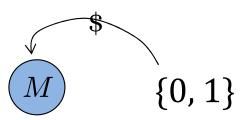
Alice's proposal:

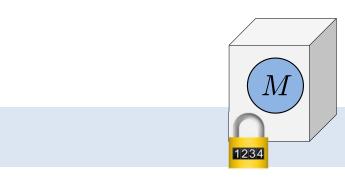
- •Alice tosses a coin and **informs** Bob of the outcome
- •Bob gets the car if the coin lands head

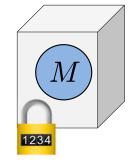
Telephone Coin Flipping

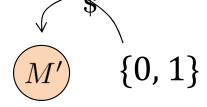
Goal:

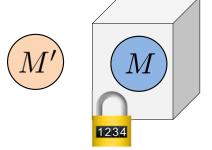
- -Both Alice and Bob learn the outcome of a fair coin toss
- -Nobody can cheat the other

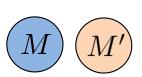


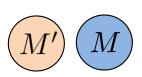












How to Implement A Digital Locked Box

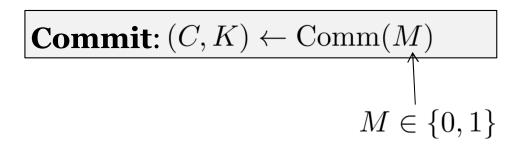
First attempt:

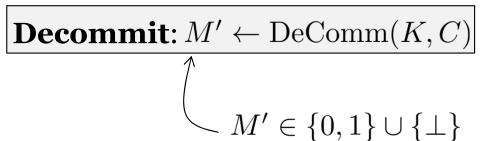
- -A locked box containing a bit M is an encryption $C \leftarrow E_K(M)$
- -The key to open the box is the key K

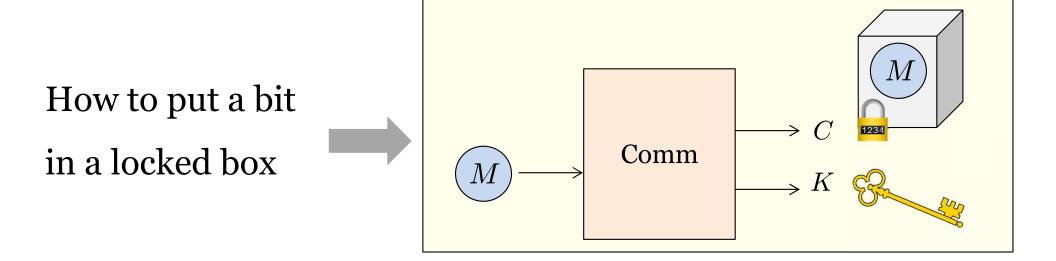
What can go wrong?

- Bob can send a **fake** key K'so that $E_{K'}^{-1}(C)$ is **another** bit of her choice

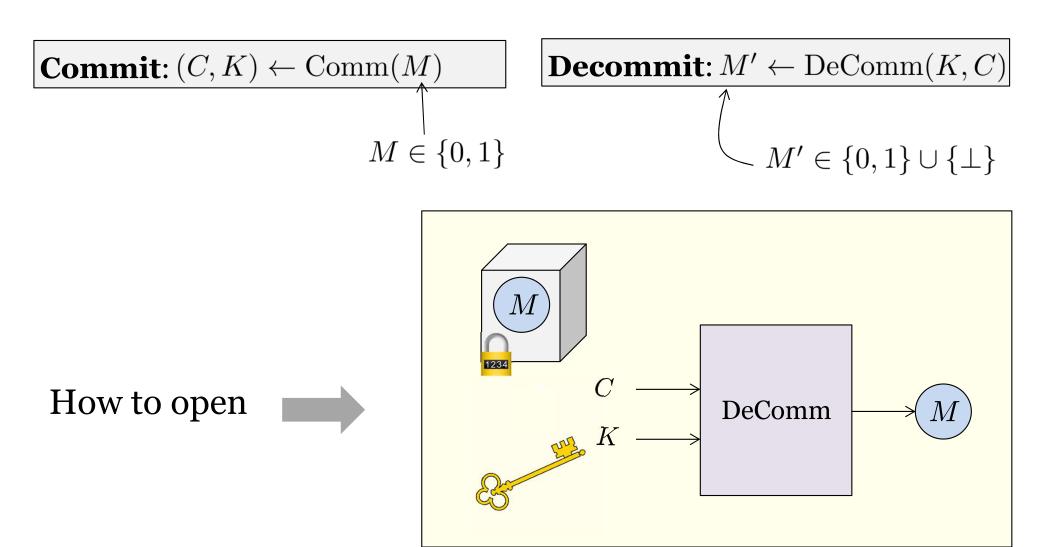
We Actually Need a Bit Commitment Scheme





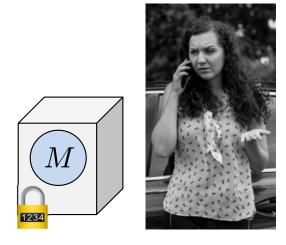


We Actually Need a Bit Commitment Scheme



Security Requirements of Bit Commitment

Hiding: Committal C reveals **nothing** about M

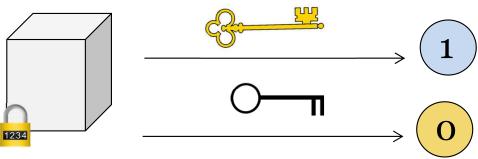


Alice can't learn the value in the locked box

Security Requirements of Bit Commitment

Binding: It's **hard** to find C^*, K_0, K_1 such that

 $DeComm(K_0, C^*) = 0$ and $DeComm(K_1, C^*) = 1$



Bob can't construct a box that he can open to both 0 and 1

A Simple Bit Commitment Scheme

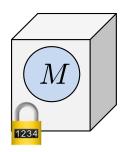
Commit to 0:

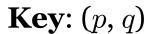
- Pick two 1024-bit primes
$$p, q$$
 such that
$$\begin{cases} p < q \\ p \equiv 3 \pmod{4}, \ q \equiv 1 \pmod{4} \end{cases}$$

Commit to 1:

- Pick two 1024-bit primes
$$p, q$$
 such that
$$\begin{cases} p < q \\ p \equiv 1 \pmod{4}, \ q \equiv 3 \pmod{4} \end{cases}$$

Commital: N = pq





Implementing Decommitment

Try this at home