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ABSTRACT
Spamming botnets present a critical challenge in the control
of spam messages due to the sheer volume and wide spread
of the botnet members. In this paper we advocate the ap-
proach for recipient mail servers to filter messages directly
delivered from remote end-user (EU) machines, given that
the majority of spamming bots are EU machines. We de-
velop a Support Vector Machine (SVM) based classifier to
separate EU machines from legitimate mail server (LMS)
machines, using a set of machine features that cannot be
easily manipulated by spammers. We investigate the ef-
ficacy and performance of the SVM-based classifier using
a number of real-world data sets. Our performance stud-
ies show that the SVM-based classifier is indeed a feasible
and effective approach in distinguishing EU machines from
LMS machines. For example, training and testing on an
aggregated data set containing both EU machines and LMS
machines, the SVM-based classifier can achieve a 99.27% de-
tection accuracy, with very small false positive rate (0.44%)
and false negative rate (1.1%), significantly outperforming
eight DNS-based blacklists widely used today.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; H.4.3 [Information Systems Ap-

plications]: Communications Applications—Electronic mail
; I.5.4 [Pattern Recognition]: Applications—Text pro-

cessing

General Terms
Security, Algorithms, Performance

Keywords
Content-Independent Spam Control, Spamming Bot, Ma-
chine Classification, Learning
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Given the importance of controlling spam to improve the
trustworthiness and usability of the Internet email system,
many anti-spam systems have been developed over the years
(see [2, 9, 18, 19, 21, 23] and the references therein). In
response, spammers have also developed advanced spam-
ming infrastructures and techniques to infiltrate and evade
the deployed anti-spam systems. In particular, the spam-
ming infrastructure has evolved from spammers’ own mail
servers, to open relays [1], and nowadays to spamming bot-
nets (networks of compromised machines used for sending
spam) [10, 24]. Various studies have shown that spam mes-
sages sent from botnets accounted for above 80% of all spam
messages on the Internet in recent years [10, 12]. For exam-
ple, the MessageLabs Intelligence 2010 annual security re-
port showed that approximately 88.2% of all spam in 2010
were sent from botnets.

Spamming botnets present a significant challenge in the
control of spam messages because of the sheer volume and
wide spread of their members. These two natures of spam-
ming botnets render many anti-spam techniques less effec-
tive, such as the reactive DNS-based blacklists (DNSBL)
and reputation-based spam filtering schemes. Given that
spammers have a large pool of spamming bots to use, it
is essentially impossible for reactive DNSBLs to maintain
a complete and up-to-date list of IP addresses involved in
spamming. Similarly, given the large number of members
in a spamming botnet, each spamming bot only needs to
send a small portion of the total spam messages in a spam
campaign. From an individual recipient network domain’s
perspective, the number of spam messages sent from a spam-
ming bot could be too small to trigger a reputation system
to respond. More importantly, the majority of existing anti-
spam schemes allow for the arms race between the spammers
and the anti-spam community, and they encourage spam-
mers to recruit large number of spamming bots and explore
novel usage of these spamming bots.

Rather than allowing for the arms race between spammers
and the anti-spam community in the war of botnet-based
spamming, in this paper we will develop a novel scheme that
targets the root cause of the problem to discourage (and ide-
ally, to prohibit) spammers from using botnets to send spam
messages. A key observation that motivates this approach
is that the majority of spamming bots are end-user (EU)
machines instead of legitimate mail server (LMS) machines,
given that legitimate (mail) server machines are normally
well protected and less likely to be compromised. A legiti-
mate email message is normally composed on an EU machine



and then delivered to the local mail server of the sender net-
work domain, from where it is further delivered to the recip-
ient mail server. In contrast, spam messages originated from
spamming botnets are normally directly delivered from the
EU machines (where a customized mail server software is in-
stalled) to the recipient mail servers. By blocking messages
directly delivered from remote EU machines, we can effec-
tively prohibit spammers from using compromised machines
to send spam messages.

In this paper we aim to develop a lightweight yet effective
scheme to distinguish EU machines from LMS machines so
that messages delivered from remote EU machines can be
blocked. Many features can be used to determine if a send-
ing machine is an EU machine or an LMS machine. However,
in this paper we focus on the features of a sending machine
that cannot be easily manipulated by a spammer, and are
already available at or can be easily obtained by a recipient
mail server. In particular, we consider two types of features
associated with a sending machine: the operating system
(OS) and the hostname lexical structure of the sending ma-
chine. Based on the OS and hostname lexical features of
sending machines, we develop a lightweight Support Vector
Machine (SVM) based classifier to separate EU machines
from LMS machines [17].

In addition to presenting the SVM-based classifier, we also
evaluate the efficacy and effectiveness of the classifier us-
ing real-world data sets, and compare the performance of
the developed classifier with eight commonly used DNSBL
systems. The evaluation studies show that our SVM-based
classifier has a very high detection accuracy (percentage of
machines that are classified correctly) with very low false
positive and false negative rates. For example, on an ag-
gregated data set containing both EU machines and LMS
machines, the SVM-based classifier can achieve a 99.27%
detection accuracy, with a false positive rate of 0.44% and
false negative rate of 1.1%, significantly outperforming all
eight DNSBLs considered in the study.

The remainder of the paper is structured as follows. In
Section 2 we present the design of the SVM-based classi-
fier including the machine features used in the study. In
Sections 3 and 4 we describe the data sets used for the per-
formance studies and the results of the performance stud-
ies of the SVM-based classifier, respectively. In Section 5
we discuss the related work, the potential techniques that
spammers may develop to evade the SVM-based classifier,
and the limitations of the SVM-based classifier. We con-
clude the paper and discuss future work in Section 6.

2. METHODOLOGY
As we have discussed in Section 1, the majority of spam

messages were sent from spamming botnets in recent years,
and the majority of the spamming bots are likely to be EU
machines, given that server machines are normally well pro-
tected. Based on these observations we can effectively block
spam messages and discourage spammers from using spam-
ming botnets if we can distinguish EU machines from LMS
machines and block messages directly delivered from a re-
mote EU machine.

In this paper we develop a Support Vector Machine (SVM)-
based classifier to separate EU machines from LMS ma-
chines [17], and then messages directly delivered from re-
mote EU machines can be filtered by the system deploying
the SVM-based classifier. We refer to the message filtering

system using the SVM-based classifier as the SVM-based fil-
tering system (or simply the SVM-based system, when there
is no confusion). In this system, we train the SVM-based
classifier using a data set including both EU machines and
LMS machines, based on the history of the emails received
by the local system. In building the SVM-based classifier,
a set of machine features that cannot be easily manipulated
by spammers will be used.

When an incoming email delivery request comes, the re-
cipient mail server can use the SVM-based classifier to deter-
mine if the sending machine is an EU machine or an LMS
machine. Based on the type of the sending machine, the
recipient mail server can process the message differently de-
pending on the local configured policy. For example, one
policy could be to directly reject the message delivery re-
quest from the remote machine if it is an EU machine. An-
other possible policy is to feed the machine classification
information to a more comprehensive spam filtering system
such as SpamAssassin [18], which can use this classification
information as one of the factors to determine the likelihood
of the incoming message being a spam. In this paper we
only focus on the machine classification problem and will
not discuss further how classification results may be used by
individual recipient mail servers.

In the following we will first present a brief description of
SVM and then we will discuss the machine features that we
use in the design of the SVM-based classifier.

2.1 Support Vector Machines
SVM is a popular machine learning method due to its ro-

bust performance in a wide range of problem domains. In
essence, SVM is a linear learning algorithm by transforming
input data (where the decision function may not be linear)
into a high-dimensional feature space (where the decision
function is linear), using a mapping function φ(x). In real-
ity, the mapping function is never performed by using the
so called “kernel trick”, which is used to compute the dot
product of two data points in the mapped high-dimensional
feature space. There are a number of well studied kernel
functions for this purpose. To a degree, kernel function of
two data points measures the similarity (closeness) between
the two data points.

Given a set of training data containing m data points
(xi, yi), for i = 1, 2, . . . , m, where xi ∈ Rn, and yi = {−1, +1},
SVM aims to identify the linear separating hyperplane with
the maximum margin of separation between the two classes
of the data points in the mapped high-dimensional feature
space. This choice of separating hyperplane has the prop-
erty of providing optimal generalization in the sense that the
classification error on unseen data points can be minimized,
when we use the trained model to predict the class of the
unseen data points. Formally, SVM requires to solve the
following (primal) optimization problem

min
w,b,ξ

1

2
‖w‖2 + C

m
X

i=1

ξi

subject to yi(φ(xi)w + b) ≥ 1 − ξi

ξi ≥ 0

for i = 1, 2, . . . , m

The above formulation of the optimization problem is the
C-classification soft margin classifier in order to accommo-



date the situation where a linear separating hyperplane does
not exist. We may also want to use the soft margin classi-
fier to prevent the overfitting issue so that the model can
be better generalized to predict new data points. In this
formulation, ξi is the slack variable to what degree we allow
a training data point (xi, yi) to fall between the margin of
the two classes, and C is the penalty parameter controlling
the error terms. Note also that in reality, the above pri-
mal optimization problem is not directly solved to obtain
the separating hyperplane; instead, the Lagrangian dual op-
timization problem is solved to obtain the model. We refer
interested readers to the details of SVM to [17].

2.2 Machine Features
In applying SVM to classify the machines (EU machine

vs. LMS machine), we only consider the machine features
that cannot be easily manipulated by spammers. A num-
ber of studies have confirmed that EU machines and LMS
machines have different distributions of installed operating
systems (OS) [5, 14]. In addition, our previous study also
showed that EU machines and LMS machines have quite
different hostname naming structures [16]. Therefore in this
study, we consider two types of machine features: OS and
hostname lexical structure of a machine. In total, we extract
53 features from these two types of machine features. In the
following we will discuss these machine features.

OS features: We extract two OS features related to a
machine: 1) whether or not the OS type of a machine can
be determined, and 2) the type of the OS on the machine (if
we can determine the OS type). Due to various set-ups and
configurations on the remote network, we may not always
be able to obtain the OS fingerprint of a remote machine.
Moreover, due to the limitation of OS fingerprint tools, we
may not be able to determine the specific type of an OS,
even if we can obtain the OS fingerprint. We consider this
as one of the features instead of ignoring the machines that
we cannot determine the OS type. If we can determine the
OS type of a machine, we further classify the OS into eight
categories: Linux, BSD, Solaris, AIX, IronPort, Windows
Server, Windows 98/2000/XP, and other. The type “other”
means that the OS is not one of the first 7 OS types.

Hostname lexical features: we extract 51 features re-
lated to the hostname of a machine. In the following we
briefly discuss them.

• Number of dots on a hostname. This feature informs
the length of a hostname in terms of number of labels
contained in the hostname. In general, EU machines
(in particular, EU machines on broadband networks)
have a longer hostname than LMS machines.

• Number of dashes on the local name portion of a host-
name. Note that for this feature we only consider the
local name portion of a hostname, given that some net-
works have dashes in their domain names. Similarly,
due to certain DNS naming conventions, EU machines
tend to have more dashes in their local names [16, 20].

• If a hostname encodes IP address as part of the host-
name. Due to some suggested DNS naming conven-
tion [20], it is common for broadband service providers
to include IP address of a client machine into the host-
name of the machine. Examples include 192-168-10-
5.example.com and 192.168.10.5.example.com. We use

Table 1: Summary of Data Sets.

Data set # of machines # of domains
LMS 8282 1765
EU1 6339 505
EU2 19729 1623

a number of regular expressions to match hostnames
containing an IP address.

• If the reverse DNS lookup of the machine IP address
resolves to a valid hostname. Note that, a large por-
tion of EU machines do not have a valid reverse DNS
hostname [15, 16].

• Common keywords found on the local name portion
of a hostname. Each keyword is considered as a ma-
chine feature. We extract two common keywords from
hostnames of LMS machines: server and relay. We
extract 11 common keywords from hostnames of EU
machines in data sets we have: dhcp, host, rev(ip)?,
broadband, bb, ip, user, cust(omer)?, ppp, catv, and
pool. This ad-hoc method gives us a total of 13 fea-
tures. Note that two of the features are regular expres-
sions (rev(ip)? and cust(omer)?).

• Keywords on the local name portion of a hostname
as suggested by the Internet draft [20]. This Inter-
net draft describes suggestions for a common DNS
naming scheme for automatically generated DNS re-
source records for large networks such as Internet ser-
vice providers. We extract 34 keywords to be used
on local names of automatically generated hostnames
for machines in networks where the naming conven-
tion is followed. Example keywords include mx, mail,
and dsl. Note that, some of the features are regular
expressions.

3. DATA SETS
In this section we describe the data sets used in our study.

In order to investigate the performance of the SVM-based
classifier in classifying machines, we use three data sets. One
of them contains LMS machines (we refer to it as the LMS
data set), and another two contain EU machines (we refer
to them as the EU1 and EU2 data sets, respectively). In
the following we describe how the data sets are collected
and processed. Table 1 shows a summary of the three data
sets in terms of number of machines and network domains
in each data set.

First, we describe the LMS data set. An email trace
was collected at a number of mail servers on the Florida
State University (FSU) campus network from 10/01/2008
to 10/15/2008 (inclusive). During the course of the email
trace collection, the mail servers received about 53M mes-
sages destined for 82 sub-domains in the FSU campus net-
work, of which about 47M, or about 88.7%, were spam.
This email trace contains about 6.4 M connecting remote
machines (which requested to deliver messages to FSU mail
servers).

In order to ensure that the LMS machines selected are
from relatively trustworthy network domains (not spammer
network domains), we identify LMS machines in the fol-
lowing way based on the FSU email trace. We first group



connecting machines into their corresponding network do-
mains. We rely on the public suffix list maintained at [13]
to determine the network domain given a hostname. We
then rank the network domains according to the ham ra-
tio (the percentage of messages that are non-spam). In this
study, we only consider the network domains that have sent
to FSU at least 100 messages and the ham ratio is at least
90%. Given the relatively large number of email messages
delivered from these network domains and high ham ratio,
we consider them as trustworthy well-behaved network do-
mains. In this way we obtain 1765 trustworthy network
domains.

We then look up the MX and SPF records of these network
domains. For each retrieved SPF record, we only include
the entries that identify a unique machine using either an
IP address or a hostname. We do not include the entries
in a SPF record that identify a range of IP addresses such
as a.b.0.0/16, which are likely to be a placeholder for future
use instead of indicating real mail servers currently being
used. In this way we obtain 8282 LMS machines. If an
entry in a SPF record only contains an IP address, we also
try to obtain the corresponding reverse DNS hostname. We
then use the tool nmap to collect the OS fingerprint of these
machines.

We next describe the EU1 data set. The EU1 data set
is obtained based on a spam trace collected by Cortez et
al [5]. The spam trace was collected by advertising several
spam traps in the popular websites in the US. The trace
contains 12137 spam messages, collected over a time span
from 04/21/2009 to 11/09/2009 (inclusive). In addition to
the content of the spam messages, the spam trace also con-
tains auxiliary information, including the OS fingerprint of
the sending machine (not all messages contain OS finger-
print of the sending machine), and if the sending machine
was blacklisted by any of eight DNSBLs at the time when
the spam message was delivered. We will provide the details
of the eight DNSBLs when we study the performance of the
SVM-based classifier.

We would like to obtain a set of (compromised) EU ma-
chines from this spam trace. However, a spam message in
the trace may not be delivered from an EU machine (it could
be from a spammer’s own mail server, or relayed by some
other mail servers). In order to obtain a set of EU machines,
we adopt the following heuristic [16]. If a message only tra-
verses a single external hop before being delivered into the
recipient network domain, the sending machine is considered
as an EU machine. As we have discussed above, spamming
bots tend to directly deliver a spam message from them-
selves to the recipient mail server, while legitimate messages
are composed on an EU machine, and then delivered to the
local mail server of the sending network domain before being
forwarded to the recipient mail server.

To be more precise, we use network-level consistent (NLC)
path to determine the number of hops that a message tra-
verses [16]. At a high level, an NLC path is a portion of the
message delivery path as carried in the Received: header.
An NLC path requires that the from-domain of the current
Received: header belongs to the same network prefix as the
by-domain of the previous Received: header. In essence,
NLC path allows a mail server to use two different IP ad-
dress for the incoming process and the forwarding process in
the mail server. (See [16] for the details on NLC path.) For
simplicity, we only consider the /16 network prefix in this

study.
After obtaining the NLC message delivery path of a mes-

sage, we claim that the sending machine be an EU machine
if the NLC path has only one single external hop (i.e., di-
rectly delivered from the originating machine to the recipi-
ent network domain). In this way we obtain 6339 EU ma-
chines from 505 network domains. If a valid reverse DNS
hostname is carried in the corresponding Received: header
for the external sending machine, we also include the host-
name in the data set for the corresponding IP address. If
no valid reverse DNS hostname is carried in the correspond-
ing Received: header for the external sending machine, we
claim that the sending machine does not have a reverse DNS
hostname at the time of the message delivery. We do not
perform a reverse DNS lookup on the corresponding IP ad-
dress, given that the configuration may have changed from
the time when the message was delivered to the current time.

The last data set EU2 is obtained in a similar fashion as
EU1 but based on a different spam trace, which contains one
month (January 2011) spam messages collected by a public
spam archive site [7]. This spam trace contains 32274 spam
messages. Similarly, we consider the sending machine of a
message whose NLC path only contains one external hop
to be an EU machine. In this way, we are able to obtain
19729 EU machines from 1623 network domains. As we have
done for EU1, we also include the corresponding hostname
of a sending machine to the data set, if a valid reverse DNS
hostname to the IP address is carried in the corresponding
Received: header. Unfortunately, this spam archive does
not have any OS fingerprint information, nor the information
if the sending machine is listed by any DNSBLs.

4. PERFORMANCE EVALUATION
In this section we will conduct experimental studies to

investigate the performance of the SVM-based classifier in
classifying EU machines from LMS machines. We will first
discuss the performance metrics and the software packages
we use, and then we will perform three sets of experimental
studies. We will first study the performance of the SVM-
based classifier when all 53 features are considered and both
the test set and training set are drawn from the same data
set. We also compare the performance of the SVM-based
classifier with eight DNSBLs coming with the spam trace
associated with data set EU1. We then evaluate the impor-
tance (weight) of individual machine features in affecting
the performance of the SVM-based classifier. In the last
performance study, we investigate how well the SVM-based
classifier can perform when the training set and the test set
are drawn from two different data sets.

4.1 Performance Metrics and Software Pack-
ages

Given a data set, we partition it into two subsets: a train-
ing set and a test set. We use the training set to train
the SVM-based classifier, and then apply the trained SVM
model to the test set to evaluate the performance of the
trained SVM-based classifier. We use three common met-
rics to evaluate the performance of the SVM-based classi-
fier. The first one is detection accuracy (or simply accuracy),
which measures the percentages of total machines (includ-
ing both EU machines and LMS machines) that are classified
correctly. More formally (all numbers are with regard to the



test set)

Accuracy =
# of EU and LMS classified correctly

Total # of machines
.

The second one is false positive rate, which measures the
percentage of LMS machines that are misclassified. The last
metric is false negative rate, which measures the percentage
of EU machines that are misclassified. More formally (sim-
ilarly, all numbers are with regard to the test set)

False positive rate =
# of LMS misclassified

Total # of LMS machines
,

False negative rate =
# of EU misclassified

Total # of EU machines
.

Next we describe the software packages we use and the
configurations. We use the SVM classifier included in the
e1071 package of the R programming language [11], which
in essence provides a wrapper interface to the widely used
SVM implementation libsvm [3]. For all our experiments we
use the C-classification SVM with the Gaussian Radial Basis
Function (RBF) kernel k(x, x′) = exp(−γ‖x − x′‖2), given
the reported robust performance of this kernel function.

For training the SVM classifier, we need to specify two
parameters, the γ value in the kernel function, and C the
penalty value (see Section 2). We rely on the tune inter-
face included in the package to identify the optimal values
of the two parameters in a specified range C = (22, 28) and
γ = (2−2, 22), respectively. The tune interface aims to iden-
tify the optimal parameters to minimize the classification
error, by performing a grid search over the specified pa-
rameter range. Note that the tuning is only applied to the
training data set. After obtaining the optimal values for the
parameters C and γ, we re-train the SVM classifier using
the optimal parameters to obtain the final SVM model used
to predict the machines in the test set.

4.2 Performance with All Features
In the first set of performance studies, we consider all

53 features and also compare the performance of the SVM-
based classifier with eight DNSBLs coming with the spam
trace associated with EU1.

For these studies, we merge the EU1 and LMS data sets
to build an aggregated data set that includes both EU ma-
chines and LMS machines (there are totally 14621 machines.
See Table 1). We then randomly sample 1/3 (4873) of the
machines to form the training set, and the remaining 2/3
(9748) of the machines form the test set. We use the proce-
dure outlined in the previous subsection to train the SVM-
based classifier on the training set, and apply the resulting
SVM model to classify the machines in the test set.

Table 2 shows the performance of the SVM-based classi-
fier in this study. As we can see, the SVM-based classifier
can achieve a very high detection accuracy (99.27%) with
very small false positive and false negative rates (0.44% and
1.1%, respectively). The results show that the SVM-based
classifier is indeed feasible and effective in distinguishing EU
machines from LMS machines, when the training set and the
test set are from the same source. This observation indicates
that the SVM-based classifier can be deployed by individual
network domains to effectively block messages from remote
spamming bots, when it is trained using the sender machine
information as observed by the corresponding network do-

mains.

Table 2: Performance of the SVM-based classifier

with all 53 features.
Metric Result
Accuracy 99.27% (9677/9748)
False positive rate 0.44% (24/5487)
False negative rate 1.1% (47/4261)

Next we compare the performance of the SVM-based clas-
sifier with the eight DNSBLs coming with the spam trace
used to create the EU1 data set. Given that the spam trace
contains the information if a sending machine was black-
listed by any of the eight DNSBLs at the time when the
message was delivered, we can compute the detection rate
of each of the eight DNSBLs, that is, the percentage of the
sending machines being blacklisted by a DNSBL. We simi-
larly compute the detection rate of the SVM-based classifier.
To make the comparison fair, we compute the detection rate
of both the SVM-based classifier and the eight DNSBLs only
using the EU machines included in the test set coming from
the aggregated data set. Table 3 shows the result.

Table 3: Performance comparison between the

SVM-based classifier and DNSBLs.
Schemes Detection rate (%)
SVM classifier 98.90

zen-spamhaus.org 82.61
sbl-xbl.spamhaus.org 69.63
cbl.abuseat.org 64.47
dnsbl.sorbs.net 49.99
bl.spamcop.net 47.34
psbl.surriel.com 36.00
blackholes.five-ten-sg.com 28.35
dul.dnsbl.sorbs.net 19.62

From the table we can see that the SVM-based classi-
fier significantly outperforms all eight DNSBLs. The SVM-
based classifier has a detection rate of 98.90%, while the
detection rate of the eight DNSBLs ranges from 19.62% to
82.61%. The DNSBL that achieves the highest detection
rate is the zen blacklist from the Spamhaus project [19],
which combines all the blacklists maintained by the Spamhaus
project.

4.3 Feature Relevance
In this subsection we study the importance (weight) of

the 53 features in affecting the performance of the SVM-
based classifier. For this study we use the F-score tool [4].
Intuitively, the F-score of a feature measures the discrimina-
tiveness of the feature in determining the classes that data
points belong to. The higher the value of an F-score of a fea-
ture, the more likely that the feature is more discriminative.
Note that the F-scores of a set of features do not directly
determine the absolute rank of the features in affecting the
performance of an SVM classifier. However, they do provide
us with some guidelines on the potential importance of the
features on affecting the performance of an SVM classifier.

Table 4 shows the top 10 features according to their F-
scores obtained based on the training set of the aggregated
data set. As we have discussed, the higher ranked features



tend to have more impacts on the performance of the SVM-
based classifier. From the table we can see that both features
if IP address is encoded in hostname and if an IP address has
a reverse DNS hostname play a critical role in affecting the
performance of the SVM-based classifier. This result is in-
tuitively understandable in that EU machines (with dynam-
ically allocated IP addresses) tend to encode IP addresses in
their hostnames or not have a reverse DNS hostname at all.
To a degree, this ranking result confirms the effectiveness of
the F-score tool.

From the table we can also see that the F-scores of the
ranked features decrease quickly, which indicates that the
top few features largely determine the overall performance
of the SVM-based classifier. We also note that 11 out of the
53 features we extracted have an F-score of 0 (not shown in
the table); it is likely that they do not play any significant
role in determining the performance of the SVM-based clas-
sifier. All these 11 features are keywords we extracted from
the Internet draft on suggested naming schemes for large
networks [20]. They did not appear often in our data set.
This could be that the corresponding suggestions have not
been commonly followed or it is due to the limitation of our
data collection vantage points.

Table 4: Top 10 features in terms of F-scores.

Rank Feature F-score
1 IP address encoded in hostname 3.51
2 If reverse DNS hostname exists 1.25
3 Number of dots in hostname 0.60
4 If OS type can be determined 0.15
5 Keyword “mx” in local name 0.12
6 Keyword “mail” in local name 0.11
7 Type of OS 0.10
8 Local name matches “dsl” 0.05
9 Local name matches “dyn(amic)?” 0.03
10 Local name matches “adsl” 0.027

Using the ranking of the features based on the F-scores,
we study how the number of features affect the performance
of the SVM-based classifier. Figure 1 shows the performance
of the SVM-based classifier as a function of the number of
features (features are ranked according to the F-scores). As
we can see from the figure, we can already achieve a detec-
tion accuracy of 97.53% (with a false positive rate of 1.9%
and a false negative rate of 3.26%), using only the top 5 fea-
tures. In general, adding more features to an extent slightly
improves the performance of the SVM-based classifier. Af-
ter the number of features reaches certain threshold (around
11 in our data set), the performance does not change much.
It is also worth noting that the performance of the SVM-
based classifier fluctuates slightly after the number of fea-
tures reaches the threshold (for all three performance met-
rics).

In summary, features do not play the same role in con-
tributing to the performance of the SVM-based classifier.
It is critical to identify the most discriminative features in
order to achieve a good performance.

4.4 Performance Across Data Sets
It is common that different spammers may control dif-

ferent spamming botnets and possess different databases
of spamming target email addresses (for both, membership
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Figure 1: Impact of features on performance of the

SVM-based classifier.

may overlap but not the same). As a consequence, distinct
recipient mail servers may receive spam message delivery re-
quests from different set of sending machines. It is therefore
interesting to see if an SVM-based classifier trained using
data trace in one network domain can be applied to distin-
guish EU machines from LMS machines at a different net-
work domain. It could have critical importance for DNSBLs
that rely on their own spam traps to collect spamming bots
to construct the blacklist of spamming IP addresses, should
they want to deploy the developed SVM-based classifier.

To understand how well the SVM-based classifier can per-
form in this environment, we apply the trained SVM model
using the aggregated data set to classify machines contained
in the EU2 data set. Note that the EU2 data set does not
contain any OS related information. Therefore, we remove
the two OS features from the aggregated data set and re-
train the SVM classifier by following the same procedure as
in Subsection 4.2. In particular, we use the same 1/3 of the
aggregated data set as the training set to build the SVM
model. Applying the model on the test set of the aggre-
gated data set (2/3 of the data), we obtain an accuracy of
98.37%, with a false positive rate of 0.56% (31/5487) and a
false negative rate of 3% (128/4261).

We then treat the entire EU2 data set as the new test
set and apply the trained SVM model (on the training set
of the aggregated data set) to investigate the performance
of the SVM-based classifier on data set across different net-
work domains. Note that the EU3 data set does not contain
any LMS machines. The SVM-based classifier can achieve
a detection accuracy of 91.81% (18114/19729) with a false
negative rate of 8.19% (note that the accuracy is also the
detection rate in this case, given that there are no LMS ma-
chines in the data set). This shows that the SVM classifier
can achieve robust performance even if it is used in the sit-
uations where the classification has to be performed in a
network different from the network where the SVM model
is trained.

5. RELATED WORK AND DISCUSSION
In this section we first discuss the related literatures and

systems that are most relevant to our work. We then discuss
potential techniques that a spammer may develop to try to
evade the SVM-based system, and the limitations of the
developed SVM-based classifier.



5.1 Related Work
The closest work to the SVM-based classifier developed

in this paper is the SpamAssassin Botnet plugin [15], which
identifies if a message has been submitted by a spamming
bot based on the domain name characteristics of the sending
machine. A set of rules (regular expressions) are used in the
identification of spamming bots, including if a reverse DNS
lookup of an IP address resolves to a valid domain name,
if the corresponding hostname contains keywords such as
“client”, and if the hostname contains the IP address of the
sending machine, among others. Our SVM-based classifier
is a more comprehensive machine classification scheme. In-
stead of relying on static rules of domain name character-
istics of sending machines to identify spamming bots, we
use a machine learning algorithm to determine the nature
of a sending machine with a richer set of features. The
SVM-based classifier can be viewed as a generalization of
the SpamAssasssin Botnet plugin.

In our previous work [16], we have performed a prelimi-
nary study on the naming structures of both legitimate mail
server machines and spamming (EU) machines. That study
showed that LMS machines and spamming machines have
strikingly different naming structures. For example, about
34% of LMS machines have “mail” as their local names in
their domain names. In contrast, about 45% of spamming
machines only have IP addresses and do not have a domain
name. Moreover, about 23% of spamming machines contain
IP addresses in their domain names. This study indicates
that it is possible to distinguish EU machines from LMS ma-
chines based on simple features associated with the sending
machines. The current work extends our previous study to
develop a SVM-based classifier to identify EU machines.

Another approach to identifying machines that should not
be used to send email messages to a remote network domain
is the Policy Block List (PBL) maintained by the Spamhaus
project [19]. PBL is a database of end-user IP addresses that
are maintained by both the participating network domains
and the Spamhaus team. PBL contains various (end-user)
IP addresses that should not initiate a message delivery re-
quest to a remote network domain, for example, dynamic IP
addresses. However, PBL is far from complete based on our
recent experience with the database. A possible reason is
that the voluntary participation of network domains is still
quite limited.

Sender authentication schemes such as SPF and DKIM [22,
8] help to verify if a message has been originated from the
claimed network domain. However, although they are crit-
ical in preventing spammers from spoofing an existing net-
work domain belonging to others, they cannot prevent spam-
mers from using spamming botnets by registering their own
network domains and pointing to the spamming bots. As
an example, a spammer can register a new domain and set
up an SPF record to point to a spamming bot. Then from
SPF’s perspective, the spamming bot is a valid mail server
for the new domain belonging to the spammer.

Recently, a number of reputation based spam filtering
schemes have been developed that use the network-level fea-
tures to determine the likelihood of an incoming message to
be a spam [5, 9]. Example network-level features include the
Autonomous System (AS) number of the sender network,
sender-receiver geographic distance, the sender IP neigh-
borhood spamming density, the number of traceroute hops
from receiver to sender, the geographic coordinates of the

sender, among others. These schemes have a different mo-
tivation and take a fundamentally different approach from
ours. While they aim to detect the likelihood of an incoming
message to be a spam based on the network-level features
associated with the sender, we try to classify machines into
EU machines and LMS machines, and block messages from
EU machines. In addition, these network-level reputation
systems may have an undesirable side effect to classify a
message sent from a legitimate mail server as a spam mes-
sage if the mail server is surrounded by a large number of
spamming machines.

5.2 Potential Evasion Techniques
After the SVM-based classifier is deployed on the Inter-

net, spammers may try to develop schemes to evade to the
system to continue using spamming bots to send spam mes-
sages. In the following we will outline a few potential evasion
techniques and examine how likely they can succeed.

An obvious technique a spammer can try to evade the sys-
tem is to relay the spam messages using the local legitimate
mail server, instead of directly delivering the messages to
the remote network domain, where the SVM-based classifier
is deployed. By local legitimate mail server, we mean the
mail server that is used by the owner of the (compromised)
machine. It could be the local mail server on a campus net-
work, a smart host on an ISP network, or a web-based mail
server of an email service provider. After botnets become
an infeasible solution for spammers to send spam messages,
they will look for new approaches to spamming, including
sending spam messages via legitimate mail servers. How-
ever, sending spam via legitimate mail servers does increase
the difficulty and raise the cost of spamming.

First, we note that relaying through the legitimate mail
server requires the spammer to obtain the authentication
information such as user account and password, which ap-
plies to local mail servers, smart hosts, and web-based email
servers. Although arguably it is not hard to obtain the
user account and password information after a machine has
been compromised, it does add another layer of difficulty
for spammers to use spamming bots. Another technique for
spammers to obtain user accounts and passwords is phish-
ing [6], which itself has become a major security problem on
the Internet.

Second, many spam messages are addressed to non-existing
destination email addresses, because, for example, the email
address database of the spammer contains outdated address
information, or the database is built from a dictionary by
permuting common names. This will result in many re-
turned undeliverable messages. Depending on the specifics
of the spamming set-up, the owner of the compromised ma-
chine may receive such returned emails and more likely to
notice that the machine has been compromised and his au-
thentication information has been stolen.

In addition, legitimate mail servers (such as web-based
email service providers) can help their users to identify the
possibility that their authentication information has been
stolen if information such as login history can be provided
to the users. Currently, such history information is avail-
able to law enforcement under search warrant. In order to
minimize undeliverable messages and to make the messages
more appealing to the recipients, spammers may only send
(spam) messages to the contacts of the account owner. One
potential technique a user can use to monitor such behavior



is to add a separate account owned by the same user to his
own contact list.

Third, many legitimate mail servers nowadays employ a
spam filter to outgoing messages in addition to the spam
filter on incoming messages. Relaying via a legitimate mail
server makes it easier for the mail server to detect the abnor-
mal spamming behavior of the corresponding account and
inform the owner.

A second evasion technique that a spammer may try is to
relay spam messages via open relays [1]. However, as open
relays are being actively detected and blocked, forwarding
spam messages via open-relays is not a reliable approach for
spammers. Moreover, if the open relays is on an EU ma-
chine, it will be automatically detected by the SVM-based
classifier and all the message delivery requests from it will
be rejected by the system.

5.3 Limitations
The SVM-based classifier may have an undesirable im-

pact on small home business owners who run mail servers
on their home networks. Given that the SVM-based system
filters messages directly sent from EU machines, the mes-
sages originated from these mail servers will be filtered, if
these machines are on broadband networks and not config-
ured properly. A simple approach to addressing this problem
is for these mail servers on home networks to forward outgo-
ing messages via smart hosts provided by the corresponding
network service provider. Relaying outgoing messages via
smart hosts of the corresponding network service provider
is a common practice nowadays, and it is the required ap-
proach to sending outgoing messages on some networks.

A key premise of the SVM-based classifier is that suffi-
cient differences exist between EU machines and LMS ma-
chines so that we can identify simple features to separate
the two. In this study we considered two types of features,
the OS and the hostname lexical structure of EU and LMS
machines. Various studies have shown that spamming bots
and LMS machines do tend to have different distributions
of operating systems [5, 14], and spamming bots and LMS
machines do tend to have different naming patterns of their
hostnames [16, 20]. However, our data sets are limited, and
networks may have different practices in managing and nam-
ing their machines. It is imperative to investigate the per-
formance of the SVM-based classifier using more diverse and
larger data sets, which we plan to do in our future work.

6. CONCLUSION AND FUTURE WORK
In this paper we advocated the technique of filtering mes-

sages directly delivered from remote end-user machines as an
effective approach to control spam messages sent by spam-
ming botnets. We developed an SVM-based classifier to
separate end-user machines from legitimate mail server ma-
chines, using a set of machine features that cannot be easily
manipulated by spammers. Using real-world data sets, we
investigated the efficacy and performance of the SVM-based
classifier. Our performance studies confirmed that the SVM-
based classifier is indeed a feasible and effective approach in
distinguishing end-user machines from legitimate mail server
machines, significantly outperforming eight DNSBLs widely
used today. As future work, we plan to explore a more
comprehensive set of machine features and study the per-
formance of the SVM-based classifier on more diverse and
larger data sets.
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