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Extensions to Basic Theory 

This section extends the schedulability tests to address 
• nonzero task switching times 
• preperiod deadlines 
• interrupts and non-rate-monotonic priorities

2  



 

Carnegie Mellon University

 

Software

 

 

 

Engineering

 

 

 

Institute

 

Extending Basic Theory

 

Modeling Task Switching as 
Execution Time
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Modeling Preperiod Deadlines 

Suppose task τ, with compute time C and period T, has 
a preperiod deadline D (i.e. D < T ).

Compare total utilization to modified bound:

where ∆i is the ratio of Di to Ti .

Utotal

C1

T1
------ ...

Cn

Tn

------   U n ∆ i , ( ) ≤  + +=

U n ∆i,( )
n 2∆i( ) 1 n/ 1–( ) 1 ∆i–+     

1
2
--- ∆ i 1.0 ≤<,

∆

 

i     ∆ i 
1
2
---                                               ≤, 




 

 
=

 

4  



Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Schedulability with Interrupts

Interrupt processing can be inconsistent with rate 
monotonic priority assignment. 

• interrupt handler executes with high priority 
despite its period 

• interrupt processing may delay execution of tasks 
with shorter periods 

Effects of interrupt processing must be taken into 
account in schedulability model. 

Question is: how to do that?
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Example: Determining Schedulability 
with Interrupts

τ3 is an interrupt handler

C T U
Task τ1: 20 100 0.200
Task τ2: 40 150 0.267
Task τ3: 60 200 0.300
Task τ4: 40 350 0.115
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Example: Execution with Rate 
Monotonic Priorities
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Example: Execution with an Interrupt 
Priority 
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Resulting Table for Example

Task
(i)

Period
(T)

Execution 
Time
(C)

Priority 
(P)

Deadline
(D)

τ3 200 60 HW 200
τ1 100 20 High 100
τ2 150 40 Medium 150
τ4 350 40 Low 350
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UB Test with Interrupt Priority

 

Test is applied to each task.

Determine effective utilization (f  i  ) of each task  i  using 

Compare effective utilization against bound, U(n).
• n = num(

 

Hn

 

) + 1
• num(

 

Hn

 

) = the number of tasks in the set 
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UB Test with Interrupt Priority: 
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Note that utilization bound is U(1): num(
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Plugging in numbers:
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UB Test with Interrupt Priority: 
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3}; Hn = { }; H1 = {τ3}. 

Note that utilization bound is U(1): num(Hn) = 0.

Plugging in the numbers:
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UB Test with Interrupt Priority: τ2

To τ2: H = {τ1,τ3}; Hn = {τ1}; H1 = {τ3}. 

Note that utilization bound is U(2): num(Hn) = 1.

Plugging in the numbers:
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UB Test with Interrupt Priority: 
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Note that utilization bound is U(4): num(
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) = 3.

Plugging in the numbers:
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Exercise: Schedulability with 
Interrupts

 

Given the following tasks:

Use the UB test to determine which tasks are 
schedulable.

 

Task
(i)

Period
(T)

Execution 
Time
(C)

Priority 
(P)

Deadline
(D)
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Solution: Schedulability with 
Interrupts 
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Basic Theory: Where Are We? 

 

We have shown how to handle
• task context switching time: include 2

 

S

 

 within 

 

C

 

• preperiod deadlines: change bound to U(n, 

 

∆

 

i

 

)
• non-rate-montonic priority assignments

We still must address
• task interactions 
• aperiodic tasks 

We still assume
• single processor
• priority-based scheduling
• tasks do not suspend themselves
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Other Important Issues

 

Mode change

Multiprocessor systems

Priority granularity

Overload

Spare capacity assessment

Distributed systems

Post-period deadlines
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