Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Rate Monotonic Analysis

Introduction

Periodic tasks

Extending basic theory

Synchronization and priority inversion
Aperiodic servers

Case study: BSY-1 Trainer

1
Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Extensions to Basic Theory

This section extends the schedulability tests to address
 nonzero task switching times
 preperiod deadlines
e Interrupts and non-rate-monotonic priorities

2
Extending Basic Theory

Carnegie Mellon Ur]iversity _
Software Engineering Institute

Modeling Task Switching as
Execution Time

C +2S
0 100 200 Cyq
B S Ao, < A FRN
[} [}
T Cy 11 Cy C, ! A N <
[} [}
E : 2 g L~ < 2
— | L~ <
L] e =
[} [}
] [}
' — 4 S C S S C
T3 |_ : 1 2 S
40| 40 time

T Ts 2T,

Two scheduling actions per task
(start of period and end of period)

3
Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Modeling Preperiod Deadlines

Suppose task T, with compute time C and period T, has
a preperiod deadline D (i.e.D<T).

Compare total utilization to modified bound:

U :9—1+...+&' <U(n, A)
total Tl Tn = i

where A; Is the ratio of D; to T; .

N ((28) " -1) +1-4, %<Aisl.o[

Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Schedulability with Interrupts

Interrupt processing can be inconsistent with rate
monotonic priority assignment.

e interrupt handler executes with high priority
despite its period

e Interrupt processing may delay execution of tasks
with shorter periods

Effects of interrupt processing must be taken into
account in schedulability model.

Question is: how to do that?

5
Extending Basic Theory

Carnegie Mellon Ur]iversity _
Software Engineering Institute

Example: Determining Schedulability
with Interrupts

C T U
Task 14: 20 100 0.200
Task 15: 40 150 0.267
Task 13! 60 200 0.300
Task 14: 40 350 0.115

T;is an interrupt handler

Extending Basic Theory

Carnegie Mellon University

Example: Execution with Rate
Monotonic Priorities

0 100 200 300 400
S NEERENEREE SEEEN SRR

Extending Basic Theory

Carnegie Mellon University

Example: Execution with an Interrupt
Priority

0 100 200 300 400
oS EEESESEERN
S EERENES SIEEEEE AR |

Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Resulting Table for Example

Task Period | Execution Priority | Deadline
(1) (T) | ()
T3 200 60 HW 200
18] 100 20 High 100
T 150 40 Medium 150
Ty 350 40 Low 350

9
Extending Basic Theory

Carnegie Mellon Ur]iversity _
Software Engineering Institute

UB Test with Interrupt Priority

Test Is applied to each task.

Determine effective utilization (f;) of each task i using

C. 1
f = A | T el C
| j;m-rj Ti Tik;u ‘

/

Preemption Execution Preemption
from tasks that can from tasks that can
. of task under test :
hit more than once _ hit only once
(with period less than D;) (with period greater than D;)

Compare effective utilization against bound, U(n).
e n=num(Hn) +1
e num(Hn) =the number of tasks in the set Hn

10
Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

UB Test with Interrupt Priority: 14

For T3, no tasks have a higher priority: H=Hn=H1={}.

C3
f, = 0+=+0 <U(1)
T3

Note that utilization bound is U(1): num(Hn) = 0.

Plugging in numbers:

Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

UB Test with Interrupt Priority: 14

To T4, T has higher priority: H={T3}; Hn ={}; H1 ={T3}.

f—O+C C., <U(1)
R le23 k =

Note that utilization bound is U(1): num(Hn) =0

Plugging in the numbers:

C; G 20 60
= — 4 — = =
£ T, T, 100 100 = 0800<10

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

UB Test with Interrupt Priority: 1,

To Ty, H={T{,T3}; Hn ={T4}; H1 = {T3}.

C. C 1
=N Jd+2+=%NC
f2__z B3k E . <U(2)

=1] 2 2k=3

Note that utilization bound is U(2): num(Hn) = 1.

Plugging in the numbers:

G, 6 G20, 40, 60

f -
2T, T, T, 100 150 150

= 0.867 >0.828

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

UB Test with Interrupt Priority: 14

To T2: H= {Tl,Tz,T3}; Hn = {Tl,Tz,T3}; H1 :{ }

Z +O < U (4)
23]

Note that utilization bound is U(4): num(Hn) = 3

Plugging in the numbers:

C
1+C2+C3+C4

T, T, T, T,

20 L4 60 40
~ 100 " 150 200 350

f, =

=0.882 >0.756

15

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

EXxercise: Schedulability with
Interrupts

Given the following tasks:

Task Period | Execution Priority | Deadline
(1) (T) Time (P) (®)
(C)
Tint 6 2 HW 6
T 4 1 High 3
Ty 10 1 Low 10

Use the UB test to determine which tasks are
schedulable.

Extending Basic Theory

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Solution: Schedulability with
Interrupts

C.
—M<U (1) 0.334<1.0
Tint

{H1}

~

Cl Cint _ _
—+=-<U(1,.75) 0.250+0500 = 0.750 = U (1,.75)
1 1

0.334 + 0.250 + 0.100 = 0.684 < 0.779

Carnegie Mellon Ur]iversit){ _
Software Engineering Institute

Basic Theory: Where Are We?

We have shown how to handle
e task context switching time: include 2S within C
e preperiod deadlines: change bound to U(n, 4;)
 non-rate-montonic priority assignments

We still must address
e task interactions
o aperiodic tasks

We still assume
e single processor
e priority-based scheduling
e tasks do not suspend themselves

17
Extending Basic Theory

Carnegie Mellon Ur]iversity _
Software Engineering Institute

Other Important Issues

Mode change
Multiprocessor systems
Priority granularity
Overload

Spare capacity assessment
Distributed systems

Post-period deadlines

18
Extending Basic Theory

