
Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Rate Monotonic Analysis

Introduction

Periodic tasks

Extending basic theory

Synchronization and priority inversion

Aperiodic servers

Case study: BSY-1 Trainer

1

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Extensions to Basic Theory

This section extends the schedulability tests to address
• nonzero task switching times
• preperiod deadlines
• interrupts and non-rate-monotonic priorities

2

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

Modeling Task Switching as
Execution Time

time

S S S S S

C1

C1

C2

C2τ3

τ2

τ1

40 40

0 100 200

C1

C2C2

C1 C1

T1 T2 2T1

Ci + 2S

Ti
Ui =

Two scheduling actions per task
 (start of period and end of period)

3

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Modeling Preperiod Deadlines

Suppose task τ, with compute time C and period T, has
a preperiod deadline D (i.e. D < T).

Compare total utilization to modified bound:

where ∆i is the ratio of Di to Ti .

Utotal

C1

T1
------ ...

Cn

Tn

------ U n ∆ i , () ≤ + +=

U n ∆i,()
n 2∆i() 1 n/ 1–() 1 ∆i–+

1
2
--- ∆ i 1.0 ≤<,

∆

i ∆ i
1
2
--- ≤, 




 

=

4

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Schedulability with Interrupts

Interrupt processing can be inconsistent with rate
monotonic priority assignment.

• interrupt handler executes with high priority
despite its period

• interrupt processing may delay execution of tasks
with shorter periods

Effects of interrupt processing must be taken into
account in schedulability model.

Question is: how to do that?

5

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Example: Determining Schedulability
with Interrupts

τ3 is an interrupt handler

C T U
Task τ1: 20 100 0.200
Task τ2: 40 150 0.267
Task τ3: 60 200 0.300
Task τ4: 40 350 0.115

6

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Example: Execution with Rate
Monotonic Priorities

τ1

τ2

τ3

τ4

0 100 200 300 400

7

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Example: Execution with an Interrupt
Priority

τ1

τ2

Interrupt

τ4

0 100 200 300 400

8

Carnegie Mellon University
Software Engineering Institute

Extending Basic Theory

Resulting Table for Example

Task
(i)

Period
(T)

Execution
Time
(C)

Priority
(P)

Deadline
(D)

τ3 200 60 HW 200
τ1 100 20 High 100
τ2 150 40 Medium 150
τ4 350 40 Low 350

9

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

UB Test with Interrupt Priority

Test is applied to each task.

Determine effective utilization (f i) of each task i using

Compare effective utilization against bound, U(n).
• n = num(

Hn

) + 1
• num(

Hn

) = the number of tasks in the set

Hn

f i

C j

T j

j Hn∈
∑

Ci

Ti

1
Ti

---- Ck
k H1∈
∑+ +=

Preemption
from tasks that can
hit more than once

Execution
of task under test

Preemption
from tasks that can

hit only once
(with period less than Di) (with period greater than Di)

10

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

UB Test with Interrupt Priority:

τ

3

For

τ

3

, no tasks have a higher priority:

H

 =

Hn

 =

H1

 = { }.

Note that utilization bound is U(1): num(

Hn

) = 0.

Plugging in numbers:

f3 0
C

3

T

3

 ------ 0 + += U 1 ()≤

f3

C3

T3

------ 60
200
--------- 0.3 1.0<= = =

11

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

UB Test with Interrupt Priority:

τ

1

To

τ

1

,

τ

3

 has higher priority:

H

 = {

τ

3}; Hn = { }; H1 = {τ3}.

Note that utilization bound is U(1): num(Hn) = 0.

Plugging in the numbers:

f1 0
C1

T1

1
T1

----- Ck
k 3=
∑+ + = U 1 ()≤

f1

C1

T1

C3

T1

------+ 20
100
--------- 60

100
---------+ 0.800 1.0<= = =

12

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

UB Test with Interrupt Priority: τ2

To τ2: H = {τ1,τ3}; Hn = {τ1}; H1 = {τ3}.

Note that utilization bound is U(2): num(Hn) = 1.

Plugging in the numbers:

f2

C j

T j

j 1=
∑

C2

T2

1
T2

----- Ck
k

3=

 ∑ + += U 2 ()≤

f2

C1

T1

C2

T2

C3

T2

------+ + 20
100
--------- 40

150
--------- 60

150
---------+ + 0.867 0.828 > = = =

13

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

UB Test with Interrupt Priority:

τ

4

To

τ

2

:

H

 = {

τ

1

,

τ

2

,

τ

3

};

Hn

 = {

τ

1

,

τ

2

,

τ

3

};

H1

 = {

}.

Note that utilization bound is U(4): num(

Hn

) = 3.

Plugging in the numbers:

f4

C j

T j

j 1 2 3, ,=
∑

C4

T4

------ 0 U 4 ()≤ + +=

 =
20
100
--------- 40

150
--------- 60

200
--------- 40

350
---------+ + + 0.882 0.756 > =

f

4

C

1

T

1

C

2

T

2

C

3

T

3

C

4

T

4

------+ + +=

14

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

Exercise: Schedulability with
Interrupts

Given the following tasks:

Use the UB test to determine which tasks are
schedulable.

Task
(i)

Period
(T)

Execution
Time
(C)

Priority
(P)

Deadline
(D)

τ

int

6 2 HW 6

τ

1

4 1 High 3

τ

2

10 1 Low 10

15

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

Solution: Schedulability with
Interrupts

Cint

Tint

--------- U 1()≤ 0.334 1.0<

C1

T1

Cint

T1
--------- U 1 .75,()≤+ 0.250 0.500+ 0.750 U 1 .75,()= =

Cint

Tint

C1

T1

C2

T2
------+ + U 3()≤

0.334 0.250 0.100+ + 0.684 0.779<=

{Hn}

{H1}

16

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

Basic Theory: Where Are We?

We have shown how to handle
• task context switching time: include 2

S

 within

C

• preperiod deadlines: change bound to U(n,

∆

i

)
• non-rate-montonic priority assignments

We still must address
• task interactions
• aperiodic tasks

We still assume
• single processor
• priority-based scheduling
• tasks do not suspend themselves

17

Carnegie Mellon University

Software

Engineering

Institute

Extending Basic Theory

Other Important Issues

Mode change

Multiprocessor systems

Priority granularity

Overload

Spare capacity assessment

Distributed systems

Post-period deadlines

18

