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Purpose of Tutorial

Introduce rate monotonic analysis
Explain how to perform the analysis
Give some examples of usage

Convince you it is useful

2
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Tutorial Format

Lecture
Group exercises
Case study

Questions welcome anytime

3
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RMARTS Project

Originally called Real-Time Scheduling in Ada Project
(RTSIA).

e focused on rate monotonic scheduling theory
e recognized strength of theory was in analysis

Rate Monotonic Analysis for Real-Time Systems
(RMARTYS)

e focused on analysis supported by (RMS) theory

e analysis of designs regardless of language or
scheduling approach used

Project focused initially on uniprocessor systems.

Work continues in distributed processing systems.
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Real-Time Systems

Timing requirements
 meeting deadlines

Periodic and aperiodic tasks
Shared resources

Interrupts

5
Introduction
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What's Important in Real-Time

Criteria for real-time systems differ from that for time-
sharing systems.

Time-Sharing Real-Time
Systems Systems
Capacity High throughput |Schedulability
Responsiveness |Fast average Ensured worst-
response case latency
Overload Fairness Stability

» schedulability is the ability of tasks to meet all hard deadlines
 latency is the worst-case system response time to events

o stability in overload means the system meets critical deadlines even if
all deadlines cannot be met

6
Introduction
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Scheduling Policies

CPU scheduling policy: arule to select task to run next
e cyclic executive
e rate monotonic/deadline monotonic
e earliest deadline first
o least laxity first

Assume preemptive, priority scheduling of tasks
e analyze effects of non-preemption later
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Rate Monotonic Scheduling (RMS)

Priorities of periodic tasks are based on their rates:
highest rate gets highest priority.

Theoretical basis

e optimal fixed scheduling policy (when deadlines are
at end of period)

e analytic formulas to check schedulability

Must distinguish between scheduling and analysis

e rate monotonic scheduling forms the basis for rate
monotonic analysis

 however, we consider later how to analyze systems
In which rate monotonic scheduling is not used

e any scheduling approach may be used, but all real-
time systems should be analyzed for timing
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Rate Monotonic Analysis (RMA)

Rate monotonic analysis is a method for analyzing sets
of real-time tasks.

Basic theory applies only to independent, periodic
tasks, but has been extended to address

e priority inversion

e task interactions

» aperiodic tasks

Focus is on RMA, not RMS.
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Why Are Deadlines Missed?

For a given task, consider
e preemption: time waiting for higher priority tasks
e execution: time to do its own work
* blocking: time delayed by lower priority tasks

The task is schedulable if the sum of its preemption,
execution, and blocking is less than its deadline.

Focus: identify the biggest hits among the three and
reduce, as needed, to achieve schedulability
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Rate Monotonic Theory - Experience

IBM Systems Integration Division delivered a
“schedulable” real-time network.

Theory used successfully to improve performance of
IBM BSY-1 Trainer.

Incorporated into IEEE FutureBus+ standard
Adopted by NASA Space Station Program
European Space Agency requires as baseline theory.

Supported in part by Ada vendors
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Rate Monotonic Analysis - Products

Journal articles (e.g., IEEE Computer, Hot Topics)
Videotape from SEI
Courses from Telos and Tri-Pacific

A Practitioner’'s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time
Systems from Kluwer

CASE tools from Introspect and Tri-Pacific

Operating systems and runtimes from Alsys, DDC-I,
Lynx, Sun, Verdix and Wind River

Standards: Futurebus+, POSIX, Ada 9X

12
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Summary

Real-time goals are: fast response, guaranteed
deadlines, and stability in overload.

Any scheduling approach may be used, but all real-time
systems should be analyzed for timing.

Rate monotonic analysis
* based on rate monotonic scheduling theory
e analytic formulas to determine schedulability

e framework for reasoning about system timing
behavior

e separation of timing and functional concerns

Provides an engineering basis for designing real-time
systems
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Plan for Tutorial

Present basic theory for periodic task sets
Extend basic theory to include

e context switch overhead

* preperiod deadlines

e interrupts
Consider task interactions:

e priority inversion

e synchronization protocols (time allowing)
Extend theory to aperiodic tasks:

e sporadic servers (time allowing)
Present BSY-1 Trainer case study
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A Sample Problem

Periodics Servers Aperiodics
100 msec Emergency
50 msec
T Data Server e

2 msec

Deadline 6 msec
20 msec after arrival

150 msec

Comm Server Routine

y 40 msec
350 msec nl{(\)ﬂr{nvsec

4
10 msec 83; 2 msec
t3 """
-100 msec
Desired response

20 msec average

T,'s deadline is 20 msec before the end of each period

15
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Aperiodic servers

Case Study: BSY-1 Trainer
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A Sample Problem - Periodics

Periodics

350 msec

T o

T

Servers

Data Server

2ms

ec

Aperiodics

Emergency

50 msec

5 msec

AVAVAA 4

20 msec

G

/

NN N7

N7

10 msec

X X X X

\

10 msec

Deadline 6 msec
after arrival

Routine

40 msec

2 msec

Desired response
20 msec average

T,'s deadline is 20 msec before the end of each period.

2
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Concepts and Definitions - Periodics

Periodic task
e initiated at fixed intervals
 must finish before start of next cycle

C.
Task’s CPU utilization: U, = _!

T,

 C; = compute time (execution time) for task T;
e T; = period of task T;

CPU utilization for a set of tasks:

U = U1+U2+...+Un
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Example of Priority Assignment

Semantic-Based Priority Assignment

VIP, RRiiiaiiaw o

IP: U|p = 1_]b =0.10

0 25 11
VIP: U =5 =044
misses deadline VIP = 25
S
IP: | | | |
0 10 20 30
Policy-Based Priority Assignment
IP: § N Q |
0 10 20 30

VIP! | sy 8

0

25
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Schedulability: UB Test

Utilization bound(UB) test: a set of n independent
periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task

phasings, if
C C
Ly +l<um) = n(2l/n_y
T, T
n
U(1) =1.0 U(4) = 0.756 U(7) = 0.728

U(2)=0.828 U(5)=0.743  U(8) =0.724
U(3)=0.779  U(6)=0.734  U(9) =0.720

For harmonic task sets, the utilization bound Is
U(n)=1.00 for all n.

. Note: UB test = Techniques 1 and 2 in handbook.
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Sample Problem: Applying UB Test

C T U
Task ©;: 20 100 0.200
Task to: 40 150 0.267
Task ts: 100 350 0.286

Total utilization is .200 + .267 + .286 = .753 < U(3) =.779

The periodic tasks in the sample problem are
schedulable according to the UB test.
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Timeline for Sample Problem

100 200 300 400
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* Scheduling Points

Periodic Tasks
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Exercise: Applying the UB Test

Given:
Task C T U
Tl 1
T2 2 6
T3 1 10

a. What is total utilization?
b. Is the task set schedulable?
c. Draw the timeline.

d. What is the total utilization if C3 = 2?
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Toward a More Precise Test

UB test has three possible outcomes:
O<U=<=U(n) = Success
U(n) <U =< 1.00= Inconclusive
1.00 < U = Overload

UB test is conservative.

A more precise test can be applied.

10
Periodic Tasks
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Schedulability: RT Test

Theorem: for a set of independent, periodic tasks, if
each task meets its first deadline, with worst-case task
phasing, the deadline will always be met.

Responsetime (RT) test: let a, =response time of task i.
a, may be computed by the following iterative formula:

| —1 a
_ n
—C%+ O —

j=1 T

an+1

I
. h = .
CJ where ao j§1cj

Test terminates when a1 = a,.

Task i is schedulable if its response time is before its

deadline: a, <T;



12
Periodic Tasks

Carnegie Mellon Ur]iversity )
Software Engineering Institute

Example: Applying RT Test -1

Taking the sample problem, we increase the compute
time of T, from 20 to 40; is the task set still schedulable?

Utilization of first two tasks: 0.667 < U(2) = 0.828
o first two tasks are schedulable by UB test

Utilization of all three tasks: 0.953 > U(3) =0.779
 UB test is inconclusive
* need to apply RT test



Carnegie Mellon Ur]iversity )
Software Engineering Institute

Example: Applying RT Test -2

Use RT test to determine if T3 meets its first deadline:

| =3
3
aO = E Cj = C1+C2+C3 = 40+ 40+ 100 = 180
j=1
i_l_ao_ 2 _ao_
= .+ _ . = + _ )
1= 6 2 T. Cj = G 2 T. <)
J=1] 7 J=1] 7

= 100+[@W(40) +[@W(40) = 100+ 80 + 80 = 260
100 150

13
Periodic Tasks



Carnegie Mellon Ur]iversity )
Software Engineering Institute

Example: Applying the RT Test -3

2 Ca. ]
=C,+ 3 | tc = 100+[@W(40)+[@W(40)
=1 T J 100 150
2 o
=C,+ 3 | 2[C = 1oo+[?ﬂﬂ(40) +[3_00W(40)
ST 100 150
ay = a, = 300 Donél

Task T3 Is schedulable using RT test.
a; =300<T = 350

14
Periodic Tasks
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30
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Timeline for Example

0 100 200 300

133‘ B 1 0§ 1_L>

T3z completes its work at t = 300
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Exercise: Applying RT Test
Taskty: C,=1 T,=4

Taskt,: C,=2 T,=6

Taskty: C,=2 T,=10

a) Apply UB test

b) Draw timeline

c) Apply RT Test

16
Periodic Tasks
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Exercise: Worksheet

0 5 10 15 20
Task_____ ‘
0 5 10 15 20
Task ‘
0 5 10 15 20
Task ‘

17
Periodic Tasks
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Summary

UB test is simple but conservative.
RT test is more exact but also more complicated.

To this point, UB and RT tests share the same
limitations:

e all tasks run on a single processor

o all tasks are periodic and noninteracting

» deadlines are always at the end of the period
* there are no interrupts

e rate monotonic priorities are assigned

e there is zero context switch overhead

» tasks do not suspend themselves

Periodic Tasks
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Introduction

Periodic tasks

Extending basic theory

Synchronization and priority inversion
Aperiodic servers

Case study: BSY-1 Trainer
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Extensions to Basic Theory

This section extends the schedulability tests to address
 nonzero task switching times
 preperiod deadlines
e Interrupts and non-rate-monotonic priorities

2
Extending Basic Theory
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Modeling Task Switching as
Execution Time

C +2S
0 100 200 Cq
I v A-----_, < N EEN
[}
T Cy 11 Cy C, E < N <
/ f
| | | B EE EE
R = S
/ f
/ f
' — ! S C S S C
T3 |_ : 1 2 S
) [}
40 | 40 time

T Ts 2T,

Two scheduling actions per task
(start of period and end of period)

3
Extending Basic Theory



Carnegie Mellon Ur]iversity )
Software Engineering Institute

Modeling Preperiod Deadlines

Suppose task T, with compute time C and period T, has
a preperiod deadline D (i.e. D<T).

Compare total utilization to modified bound.:

U :—(-:—1+...+&' <=U(n, A)
total T]_ Tn s By

where A; Is the ratio of D; to T; .

U(na A|) - 1
A A5 /

Extending Basic Theory
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Schedulability with Interrupts

Interrupt processing can be inconsistent with rate
monotonic priority assignment.

o Interrupt handler executes with high priority
despite its period

e Interrupt processing may delay execution of tasks
with shorter periods

Effects of interrupt processing must be taken into
account in schedulability model.

Question is: how to do that?

5
Extending Basic Theory
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Example: Determining Schedulability
with Interrupts

C T U
Task t4: 20 100 0.200
Task t: 40 150 0.267
Task 3! 60 200 0.300
Task t,: 40 350 0.115

T, IS an interrupt handler

Extending Basic Theory



Example: Execution with Rate
Monotonic Priorities

0 100 200 300 400

Extending Basic Theory



Example: Execution with an Interrupt
Priority

0 100 200 300 400
v s EEESER |

Extending Basic Theory
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Resulting Table for Example

Task Period | Execution Priority | Deadline
(1) | (®)
T3 200 60 HW 200
T1 100 20 High 100
T 150 40 Medium 150
Ty 350 40 Low 350

9
Extending Basic Theory



Carnegie Mellon Ur]iversity )
Software Engineering Institute

UB Test with Interrupt Priority

Test Is applied to each task.

Determine effective utilization (f;) of each task i using

C |C
f. = ?J+?'+—1— C,
j

j € Hn I lkeH1

/

Preemption Execution Preemption
from tasks that can from tasks that can
. of task under test :
hit more than once _ hit only once
(with period less than D;) (with period greater than D;)

Compare effective utilization against bound, U(n).
e n=num(Hn) +1
e num(Hn) =the number of tasks in the set Hn

10
Extending Basic Theory
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UB Test with Interrupt Priority: t5

For T3, no tasks have a higher priority: H=Hn =H1={}.

C3
f, = 0+=+0 =U(1)
T3

Note that utilization bound is U(1): num(Hn) = 0.

Plugging in numbers:

Extending Basic Theory
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UB Test with Interrupt Priority: t4

To T4, T3 has higher priority: H={Tt3}; Hn ={}; H1 = {T4}.

=0+ lezgc < U (1)

Note that utilization bound is U(1): num(Hn) =0

Plugging in the numbers:

C,, G 20 . 60
= — 4 — = =
¥ T, T, 100 100 = 0800<10
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UB Test with Interrupt Priority: t,

To Ty: H={T{,T3}; Hn = {'cl}; H1 = {T3}.
—+=)YC, =U(2
z 2 + 2k23 ( )

Note that utilization bound is U(2): num(Hn) =1

Plugging in the numbers:

C, C C;_ 20, 40 , 60
Z+ + + = 0.867 .82
f2 5 T1 T, T2 100 150 150 = 0867 >0.828
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UB Test with Interrupt Priority: t,

To To. H = {Tl,tz,rg}; Hn = {1:171:291:3}; H1 = { }

E +O < U (4)
53]

Note that utilization bound is U(4): num(Hn) = 3

Plugging in the numbers:

C
1+C2+C3+C4

T, T, T, T,

20 L4 60 40
~ 100 " 150 200 350

f, =

=0.882 >0.756
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Exercise: Schedulability with
Interrupts

Given the following tasks:

Task Period | Execution Priority | Deadline
(1) (T) Time (P) (®)
®
Tint 6 2 HW 6
T 4 1 High 3
To 10 1 Low 10

Use the UB test to determine which tasks are
schedulable.

Extending Basic Theory
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Solution: Schedulability with
Interrupts

C.
TL“ <U (1) 0.334 < 1.0

Int
{H1}
L

Cl Cint _ _
—+="<U(1,.75) 0250+0500 = 0.750 = U (1, 75)
1 1

0.334 + 0.250 + 0.100 = 0.684 < 0.779
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Basic Theory: Where Are We?

We have shown how to handle
e task context switching time: include 2S within C
« preperiod deadlines: change bound to U(n, A))
 non-rate-montonic priority assignments

We still must address
e task interactions
e aperiodic tasks

We still assume
e single processor
e priority-based scheduling
e tasks do not suspend themselves

17
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Other Important Issues

Mode change
Multiprocessor systems
Priority granularity
Overload

Spare capacity assessment
Distributed systems

Post-period deadlines

18
Extending Basic Theory
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Rate Monotonic Analysis

Introduction
Periodic tasks

Extending basic theory

Synchronization and priority inversion

Aperiodic servers

Case study: BSY-1 Trainer

1
Synchronization & Priority Inversion
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Sample Problem: Synchronization

Periodics Servers Aperiodics

100 msec Emergency

50 msec

i Data Server =
msec
2 msec .
i Deadl 6
20 msec y afet}ear allpr?valmsec
Ty
Comm Server Routine
vvvvvv 40 msec
350 msec lexrilsec

10 msec 2 msec
T Mioomsec)—
100 msec
Desired response

20 msec average

T,'s deadline is 20 msec before the end of each period.

2
Synchronization & Priority Inversion
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Priority Inversion in Synchronization

Legend
T,:{...P(S1)...V(S1)...} s looked)

T5:4{...P(S1)...V(S1)...}

Executin
attempts to lock S1 (blocked) S1locked S1 unlocked g
T1(H) B \\ AN
Tor(M)
S1 locked S1 unlocked

'
Ta(L) ‘ & s s

Time

3
Synchronization & Priority Inversion
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Priority Inversion

Delay to atask’s execution caused by interference from
lower priority tasks is known as priority inversion.

Priority inversion is modeled by blocking time.
ldentifying and evaluating the effect of sources of

priority inversion is important in schedulability
analysis.

4
Synchronization & Priority Inversion
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Sources of Priority Inversion

Synchronization and mutual exclusion
Non-preemptable regions of code

FIFO (first-in-first-out) queues

5
Synchronization & Priority Inversion
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Accounting for Priority Inversion

Recall that task schedulability is affected by

 preemption: two types of preemption
- can occur several times per period
- can only occur once per period

e execution: once per period
* blocking: at most once per period for each source

The schedulability formulas are modified to add a
“blocking” or “priority inversion” term to account for
Inversion effects.

6
Synchronization & Priority Inversion
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UB Test with Blocking

Include blocking while calculating effective utilization
for each tasks:

=/ \ o

Execution Blocking ?gair%(ie{nopnté%r;

o
o

L
4
|.€
+

_|
_|

Hn Preemption
(can hit n times)

7
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RT Test with Blocking

Blocking is also included in the RT test:
-1 -

Perform test as before, including blocking effect.

Synchronization & Priority Inversion
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Example: Considering Blocking

Consider the following example:

Periodics tasks

100 msec

T
Nata Structure
200 msec 10 msec
300 msec

) =

What is the worst-case blocking effect (priority
Inversion) experienced by each task?

9
Synchronization & Priority Inversion
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Example: Adding Blocking

Task T, does not use the data structure. Task T,
experiences no priority inversion.

Task T4 shares the data structure with t5. Task T, could
have to wait for T3 to complete its critical section. But
worse, if T, preempts while T, is waiting for the data
structure, T, could have to wait for T,'s entire
computation.

This Is the resulting table:

Task Period | Execution Priority | Blocking | Deadline
Time
T 100 25 High 30+50 100
T 200 50 Medium 0 200

T3 300 100 Low 0 300

10
Synchronization & Priority Inversion
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UB Test for Example

Recall UB test with blocking:

C. C B
f. = D R '+i Ck

| j E nTj Ti Ti Tike

C, B 25 80

fl = _I_—l +_ITl = 100 100 = 1.05> 1.00 Notschedulable
C, C 25 50
fo=_1,72_ 2 N _ 9 2
27 T, T, 100 200 050<U(2)
C, G C 25 , 50 , 100
f,= —+—2+— = +=— = 084>U(3)
3
Tl T2 3 100 200 300 RT test shows

T3 IS schedulable
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Synchronization Protocols

No preemption
Basic priority inheritance
Highest locker’s priority

Priority ceiling

Each protocol prevents unbounded priority inversion.

12
Synchronization & Priority Inversion
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Nonpreemption Protocol

T,:{...P(S1)...V(S1)...}

Legend

Ready T4:{...P(S1)...V(S1)...} Sllocked N\
. B Executing | |
Blocked B
Ready
.
Ready
) ¢

S1 locked S1 unlocked

' Jy
TyL) ‘ N

Time

13
Synchronization & Priority Inversion



Basic Inheritance Protocol (BIP)

T,:{...P(S1)...V(S1)...}

Legend
Ty{...P(S1)...V(S1)...} Siocked N
Executing ’—\
T{(H
1(H) Blocked B

Attempts to lock S1  S1locked S1 unlocked

v
T, v BN

S1 locked S1 unlocked

v
Ty4L) ’—{§ N

Time

14
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Highest Locker’s Priority Protocol

T,:{...P(S1)...V(S1)...}
T,:{...P(S1)...V(S1)..}

Legend

S1 locked &

Tl(H) Executing ’—\
Blocked B
Ready
T, ¢B B
Ready
T3 ¢
S1 locked S1 unlocked

'
Ty) H§ k\\\\\

Time

15
Synchronization & Priority Inversion
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Priority Ceiling Protocol (PCP)

T,:{...P(S1)...V(S1)...}
T,:{...P(S1)...V(S1)..}

Legend

N
S1 locked \\\

T1(H)
Attempts to lock S1  S1locked S1 unlocked Blocked B
Ready ¢
T, v BN
Ready
T '

S1 locked S1 unlocked

v
TyL) H@ N

Time

16
Synchronization & Priority Inversion
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Example Of Chained Blocking (BIP)

T{...P(S1)...P(S2)...V(S2)...V(S1)...}

Legend

T,:{...P(S1)...V(S1)...}
T5:{...P(S2)...V(S2)...}

N\
S1 locked \\\

S2 locked //A

Attempts to lock S1 (blocked) Attempts to lock S2 (blocked) Blocked B
N B BN
Ti(H) BB N L
S1locked S1 unlocked

T N AN

S2 locked S2 unlocked

' '
T3(L) ,7/ W

-
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time

A

17
Synchronization & Priority Inversion
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Blocked At Most Once (PCP)

T,:{...P(S1)...P(S2)..V(S2)...V(S1)...}

T, {...P(S1)...V(S1)...} Sllocked N\
T3{...P(S2)...V(S2)...} S2locked 7
Ceiling C

S1 locked S1 unlocked

Attempts to lock S1 (blocked)

v v
: NN

Tq(H)
Attempts to |oci$1 (blocked) S1 Iocki S1 unulcked
\
Tr(M) \\\\\\ ‘
S2 locked S2 unicked

7 # 7,
T3L) /R,

1 2 3 4 5 6 7 8 9 10 11 12 73

Time

Legend
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Deadlock: Using BIP

T,:{...P(S1)...P(S2)..V(S2)...V(S1)...}

Legend

T,:{...P(S2)...P(S1)...V(S1)...V(S2)...} S1 locked

7.

S2 locked

A\

attempts to lock S2 (blocked)

Blocked B

locks S1

|

Ty N

B

S2 locked Attempts to lock S1 (blocked)

Tom 7/ Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time

19
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Deadlock Avoidance: Using PCP

Legend
T1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
S1 locked &
T,:{...P(S2)...P(S1)...V(S1)...V(S2)...} |
S2 locked ///
locks S2 Ceiling C
attempts to lock S1 (blocked)

T c %%%% L

ww | R -

-
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time

Synchronization & Priority Inversion
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Summary of Synchronization

Protocols

Protocol Blé)rlijc;]rciltild Blocked at | Deadlock

Inversion Most Once | Avoidance

Nonpreemptible Yes Yes? Yest
critical sections
Highest locker’s Yes Yes* Yes*
priority
Basic inheritance Yes No No
Priority ceiling Yes Yes? Yes

1 Only if tasks do not suspend within critical sections

2 PCP is not affected if tasks suspend within critical sections

21
Synchronization & Priority Inversion
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Sample Problem with
Synchronization

When basic priority inheritance protocol is used:

Task Period | Execution Priority | Blocking | Deadline
Time
T 100 20 High 20+10 100
Ty 150 40 Medium 10 130

T3 350 100 Low 0 350

22
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UB Test for Sample Problem

This format is sometimes called a schedulability model
for the task set:

C, B
1 1 20 30
— 4+ f— 4+ p— .
fa T, T, 100 100 0500 <U (1)
C, C, B
1 2 2 20 40 10
= —+—=+== + + = 0.534<0.72
fa T, T, T, 100 150 150 0.534 < 0.729
U (2,.80) = 0.729
C, C, C
_ 1 2 3 20 40 100 _
fs = T. 7T +T3 ~ 700 150 T 350 0.53<U(3)

Synchronization & Priority Inversion
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Rate Monotonic Analysis

Introduction
Periodic tasks
Extending basic theory

Synchronization and priority inversion

Aperiodic servers

Case study: BSY-1 Trainer

Aperiodic Servers



Carnegie Mellon Ur_liversity )
Software Engineering Institute

Sample Problem: Aperiodics

Periodics Servers

Data Server

2 msec

20 msec y

Comm Server

AV A AA A A4

350 msec x19xrgsec

10 msec
T3 y —

Aperiodics

Emergency

50 msec

5 msec

Deadline 6 msec
after arrival

Routine

40 msec

2 msec

Desired response
20 msec average

T,'s deadline is 20 msec before the end of each period.

2
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Concepts and Definitions

Aperiodic task: runs at unpredictable intervals

Aperiodic deadline:
 hard, minimum interarrival time
« soft, best average response time

Aperiodic Servers
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Scheduling Aperiodic Tasks

0 100 Polling

i I i Average Response

Time = 50 units
Interrupt Handler

I

N
1

e’ i —
T
;

Cand

Aperiodic Server
| | | Average Response

1™ I_Ta_l Time = 1 unit

¥

(" Legend R
Periodic Task O
Polling Task g

Aperiodic Server
Interrupt Handler B
 Aperiodic Request i y

4
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Aperiodic Servers

Can be compared to periodic tasks:
» fixed execution budget
* replenishment interval (period)

Priority adjusted to meet requirements

Aperiodic Servers
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Sporadic Server (SS)

Modeled as periodic tasks:
» fixed execution budget (C)
* replenishment interval (T)

Priority adjusted to meet requirements

Replenishment occurs one “period” after start of use.

Execution budget @ @
100 200 300
[5] | [5] | |
A

boob )
100 ms 100 ms (SS period)

Aperiodic Servers
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Sample Problem: Aperiodics

The sample problem has the following requirements:

e emergency event:
- 5 msec of work
- arrives every 50 msec, worst-case
- hard deadline 6 msec after arrival

e routine event:
- 2 msec of work on average
- arrives every 40 msec on average
- desired average response of 20 msec after arrival

7
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Sample Problem: Sporadic Servers

Emergency server (ES); for minimum response:
e set execution budget to processing time: C=5

o set replenishment interval to minimum interarrival
time: T =50

Routine server (RS); for average response:
e set execution budget to processing time: C =2

* UsSe queueing theory to determine required
replenishment interval, T

Then assign priorities based on periods, T;, of tasks.

Aperiodic Servers
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Routine Server Period
Using M/D/1 queueing approximation:

(TR)?

| = average interarrival time between events

W = average response time
Cr = capacity of sporadic server = processing time
Tr =required sporadic server replenishment period

Aperiodic Servers
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Routine Server Budget

Computing server replenishment interval:

Tp = (CR—W) + ,/(W-Cp) (W-Cg+2l)

—]
[

~ = (2-20) +.(20-2) (20—2+ 80)

Tp =24

Note: For more details, see RMA handbook.

10
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Sample Problem: Schedulability
Analysis (BIP)

The task set IS now:

Task Period | Execution Priority | Blocking | Deadline
Time
Te 50 5 Very High 0 6
Tr 24 2 High 0 24
T1 100 20 Medium 20 100
T, 150 40 Low 10 150
T, 350 100 Very Low 0 350

11
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Sample Problem:
Schedulability Analysis

Using the RT test, worst-case response times are
e Tg: 5mMsS

Tr: / MS

Tq: 56 ms

To: 88 ms

T3: 296 ms

All requirements for sample problem are satisfied.

12
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Rate Monotonic Analysis

Introduction

Periodic tasks

Extending basic theory
Synchronization and priority inversion

Aperiodic servers

Case study: BSY-1 Trainer

1
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BSY-1 Trainer Case Study

This case study is interesting for several reasons:

« RMS is not used, yet the system is analyzable
using RMA

 “obvious” solutions would not have helped
« RMA correctly diagnosed the problem

Insights to be gained:
o devastating effects of nonpreemption
 how to apply RMA to around-robin scheduler

e contrast conventional wisdom about interrupt
handlers with the results of an RMA

2
BSY-1 Case Study
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System Configuration

Main-
Frame

Mainframe Channels

7\
T
©
A
—

NTDS Channels (1 to 6)

-----------

System Being Stimulated
BSY-1
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Software Design

E1l —»

E2

Mainframe

Mainframe Channel

4
BSY-1 Case Study

E3 —> E4 — E5 —> EG6
Application
AdaRTS
AlX
VRM NTDS Channels (5)
PC-RT
BSY-1
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Scheduling Discipline

/Va't T/l)r signal

| | | Event Flag
—  Pending Event
o L.

ol | .
oL
| | .

|



Carnegie Mellon University

Execution Sequence: Original Design

Interrupt
Application begins ] Interrupt level
0 '/ |:| Application level 258
' | \

0 43;/I nteri‘p;s 129 172 215 258
? h h ] h ] hl_l hl_l h_\ ‘
Missed deadline

0 129 258
| \ \
L S T

I nterrupt
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Problem Analysis by Development
Team

During integration testing, the PC-RT could not keep up
with the mainframe computer.

The problem was perceived to be inadequate
throughput in the PC-RT.

Actions planned to solve the problem:

e move processing out of the application and into
VRM interrupt handlers

 improve the efficiency of AIX signals
e eliminate the use of Ada in favor of C

7
BSY-1 Case Study
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Data from Rate Monotonic

Investigation
Ci C, C T U
(msec) | (msec) | (msec) | (msec)
Event 1 2.0 0.5 2.5 43| 0.059
Event 2 7.4 8.5 15.9 74| 0.215
Event 3 6.0 0.6 6.6 129 | 0.052
Event 4 21.5 26.7 48.2 258 | 0.187
Event 5 5.7 23.4 29.1| 1032| 0.029
Event 6 2.8 1.0 3.8| 4128| 0.001
Total 0.543
). 4

Observe that total utilization is only 54%; the problem
cannot be insufficient throughput.

8
BSY-1 Case Study
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Analyzing Original Design

Arrival | Execution Priority | Blocking | Deadline

Period Time

eli 43 2.0 HW 0 n/a
e2i 74 7.4 HW 0 n/a
e3i 129 6.0 HW 0 n/a
edi 258 21.5 HW 0 n/a
ebi 1032 5.7 HW 0 n/a
eobi 4128 2.8 HW 0 n/a
ela 43 0.5 SW 0 43
e2a 74 8.5 SW 0 74
e3a 129 0.6 SW 0 129
eda 258 26.7 SW 0 258
eba 1032 23.4 SW 0 1032
eba 4128 1.0 SW 0) 4128

9
BSY-1 Case Study
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Schedulability Model: Original Design

ela

ezZa

e3a

eda

eba

eba

T

la

Cia N [Cli G+ Cyy +Cg + Gy +#Cy +Cy + G + Cg + G + G

Ty

a} < U(1)

a} , Coa, [CZi tCait Caat Cuit Cua® Coi t Crat Coi * Coal _ uE)

LY T, T2 -

(C1itCa G ? CZa} , Caa, [CSi i+ Caat Coi* Coa* Coi * Coa _ uE)

T, T, Ty T, i

Ci+Cqy N Coi +Cyoy . Cyi * C3a} N Caa N [Cm *Coi + Coat Cgi * Coa| <U(4)

i Tl T2 T3 T4 T4 i

{Cli +Cia N Coi+Coa . Cgi+Csq N Cyi * C461} . Csa . {CSi +Cei t CGa} -U)
T T, T3 Ty Ts Ts

{Cli +C,, N C, +C,, N Cy +Cqy N C,i ¥ Cya N Cg; + C5a} + C_G + {E@} < U(6)
Tl T2 T3 T4 T5 T6 T6
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Schedulability Test: Original Design

ela 0.5 [2.0 +74+85+6.0+06+215+26.7+57+234+28+10

3" 43 |=u@

74

e2a [Z.OZSO.SJ L85, [7.4 +6.0+0.6+21.5+ 2;34.17 +57+234+28+ 1.0} <U(2)

20+05 74+85 0.6 6.0+215+26.7+57+234+28+1.0
e3a [ 3 12 J+129+[ 129 JSU(‘O’)

20+05 7.4+85 60+06] 267 [2L5+57+234+28+10
eda [ 3 74 129 J+258+[ 258 JSU@)

20+05 74+85 60+06 215+2671 234 [57+28+10
esa [ 23 74 129 T 258 J+1032+[ 1032 JSU(S)

eba [2.0 +0.5 + 74+85 + 6.0+ 0.6 + 215+ 26.7 + 5.7+ 23.4} + 1.0 + [ 2.8 J < U(6)
43 74 129 258 1032 4128 [ 4128

11
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Utilization: Original Design

Event Fn?geocd) Pr{el_(larr]r}:pt Execute Pr{eﬁT}Dt Taf)al
1a 43| 0.000] 0.012 2.456| 2.468
2 74] 0.059 0.115 1.286] 1.460
3a 129|  0.274| 0.005]  0.676 0.955
4a 258| 0.326] 0.104 7‘ 0.211] 0.641
5 1032| 0513) 0023 | 0.010/ 0546
6 4128| 0542 0.001 / 0.001| 0.544

Effective utilizations (f;) for events’4, 5, and 6 are all

under 69%. These events are s

The problem for event

H1 preemption:.

edulable.

2, and 3 IS excessive
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Process Events in RM Order

Mainframe

Mainframe Channel

21.5% 5.2% 18.7% 2.9% 0.1%
7.4 6.0 21.5 5.7 2.8
8.5 0.6 26.7 23.4 1.0
74 129 258 1032 4128
E2 —»| E3 —>»| E4 —>»| E5 [—» EG

Application BSY-1
AdaRTS
Al X
VRM
PC-RT NTDS Channels (5)
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Schedulability Model:
Process Events iIn RM Order

C,.,C

ela ta,|™ (Cow Caar Caw Csar Coa) +Cui + Gy + Cgi + Cy + G5 + Gy
T T,
e2a C,+Cy, N Coa N max (C,,, C,, Cc, Cg) +Cy +Cyi +C + Cy + C
Tl Tz T2

e3a [Cli +Ciq N Coi + CZa} N Cza N [max (Cye Coa Coa) +C3i+Cy +Cy; + CGi}

T T T T

1 2 3

o&

eda (Cyi t C1a+ Co + C2a+ Cgi + CBa} . C4a+ {max(c
T

L T T

e5a (C1i +Cyq N Coi +Coy N Csi +Caq N Cui * C4a} N Csa . [C6a+ Cgi + Cﬂ

L T T T

Cea) TCyi +Cg; + CGi}

2 3 4

2 3 4

6i

eba T

+ 924
T T T T T T

Cli+Ciq . Coi +Cyy . Csgi +Cgy . Chi +Cya . Cg; + C5a} Cea C

1 2 3 4 5 6

14
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Schedulability Test:
Process Events iIn RM Order

ela 0;54_ [(26.7) +2.0+7.4+6.0+21.5+5.7+2.8J
43 43
251,85 [(26.7) +74+60+215+57+238
eza |3]+33+| 74 J
e3a (2.5 N 15.9J N 0.6 4 [ (26.7) +6.0+21.5+57+ 2.8}
143 74 129 129

43

eba -

74

J + 26.7 + [ (23.4) +21.5+57 + 2.8}
129] 258 258

74

2.5 + 15.9 + 6.6 + 48.2} + 23.4 + [1.0+ 5.7+ 2.8}

129 258 1032 1032

eba [2_5+ 15.9+ 6.6 +48.2+ 29.1} + 1.0 + [ 2.8}

43

74

129 258 1032] 4128 14128
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Utilization:
Process Events iIn RM Order
Period | Preempt Preempt | Total | Previous

EVeNt| imsec)| {Hn} |EX€CUtelrpny () Total
1a 43|  0.000] 0.012 1.677| 1.689 2.468
2a 74| 0059 0.115 0.948| 1.122 1.460
3a 129| 0274 0.005 0.487| 0.766 0.955
4a 258| 0.326] 0.104 0.207| 0.637 0.641
5 1032 0513 0.023 0.010| 0.546 0.546
6a 4128| 0542 0.001 0.001| 0.544 0.544
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Increasing Preemptibility

Preemptible I/O Packetized Data Movement
U 5.9% 21.5% 5.2% 18.7% 2.9% 0.1%
Ci 2.0 7.4 (1.5) 6.0 21.5 5.7 2.8
C, 0.5 8.5 (1.7) 0.6 26.7 (4.5) 23.4 (3.9) 1.0
T 43 74 129 258 1032 4128

E1l | » Ez|ir’||]—> e3 = EMlf-~ [HE[ll—~ =6
M ainframe \ \‘ /
Application BSY-1
AdaRTS
Al X
VRM

Mainframe Channel PC-RT NTDS Channels (5)

17
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Schedulability Test: Preemptible 1/0O
and Packetized Data Movement

05 . [(45) +2.0+15+60+2L5+57+28
ela 3 [ 43 J

e2a [2_51 .85, [ (45) +7.4+60+215+57+ 2.8}

43 ] 74 74

e3a 2.5 15.9J N 0.6 4 [ (45) +6.0+215+57+ 2.8}

23 74 | T 120 129

eda 2.5 + 15.9 + 6.6} + 26.7 + [(3.9) +215+57+ 2.8}
143 74 129] 258 258

e5a 2.5 + 15.9 + 6.6 + 48.2} + 23.4 + [1.0+ 5.7+ 2.8}
143 74 129 258] 1032 1032

eba [2_5_'_ 159,66 482 29.1} + 10 | [ 2.8}
43 74 129 258 1032] 4128 14128

18
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Utilization: Preemptible 1/0 and
Packetized Data Movement

19
BSY-1 Case Study

Event | Period | Preempt g e | Preempt | Total | Previous
la 43 0.000 0.012 1.024| 1.036 1.689
2a 74 0.059 0.115 0.648| 0.822 1.122
3a 129 0.274 0.005 0.314| 0.593 0.766
4a 258 0.326 0.104 0.132| 0.562 0.637
5a 1032 0.513 0.023 0.010| 0.546 0.546
6a 4128 0.542 0.001 0.001| 0.544 0.544

According to the utilization bound test, all events now
are schedulable, except event 1.




Carnegie Mellon Ur]iversity )
Software Engineering Institute

Streamlined Interrupt Handler

U 59% 215% 52%  18.7% 2.9% 0.1%
Ci 2.0 7.4 (1.5) 6.0 6.5 5.7 2.8
C, 0.5 85 (1.7) 0.6 41.7 (4.5) 234 (3.9 1.0
T 43 74 129 258 1032 4128

E1 ||| . 4—»55|E|5|]—>E6

L

Application BSY-1
AdaRTS
Al X
VRM
Mainframe Channel PC-RT NTDS Channels (5)

20
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Schedulability Test:
Streamlined Interrupt Handler

05
ela =+

25 8.5
e2a |[|+53+

25 159
eda |Z+37

eda ‘25+ 15.9+ 6.6

43

[ (45) +20+15+6.0+65+57+ 28

B |

[ (45) +74+60+65+57+ 2.8}
74

L 06, [ (45) +6.0+65+57+ 2.8}

129 129

74

J LALT [ (39) +65+57+ 2.8}
129] 258 258

e5a (2.5 + 15.9 + 6.6 + 48.2} + 23.4 + [1.0+ 5.7+ 2.8}

43

74

129 258 1032 1032

eba [2_5+ 15.9+ 6.6 +48.2+ 29.1} + 1.0 + [ 2.8}

43

74

129 258 1032] 4128 14128
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Utilization:
Streamlined Interrupt Handler
Period | Preempt Preempt | Total | Previous

Event| msec)| {Hn} |EX€CUtel rpny (f) | Total
la 43| 0.000] 0.012 0.675| 0.687 1.036
2 74|  0.059| 0.115 0.445| 0.619| 0.822
3a 129| 0.274] 0.005 0.198| 0.477| 0.593
4 258| 0.326] 0.162 0.074| 0.562| 0.562
5 1032| 0.513| 0.023 0.010| 0.546|  0.546
6a 4128 0.542| 0.001 0.001| 0.544| 0.544
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Summary: BSY-1 Trainer Case Study

Recall original action plan:
 improve efficiency of AlX signals
e move processing from application to interrupts
e recode 17,000 lines of Adato C

Final actions:
e increase preemption and improve AlX
e move processing from interrupts to application
 modify 300 lines of Ada code
« RMA took 3 people 3 weeks

23
BSY-1 Case Study



