
1

Real-Time Linux
Applications and Design

Victor Yodaiken

Michael Barabanov

New Mexico Institute of Technology

yodaiken@nmt.edu

http://luz.nmt.edu/~rtlinux

Outline of the talk

◆ The meaning of “real-time”.

◆ The purpose of RT-Linux

◆ Writing applications for RT-Linux?

◆ How it works and limitations.

◆ Future directions.

2

I. What does “real-time” mean?

◆ For marketing folks real-time means fast.

◆ Soft real-time means that the program
must usually run at some rate. For example
a video player can miss frames now and
then but not too often.

◆ Hard-real-time means that timing is
critical and deadlines cannot be missed.

Hard-Real-Time requires

◆ Predictability: a real-time task cannot
tolerate much variability in response to
interrupts or in scheduling.

◆ Low latency (fast response)

3

Predictability

◆ If the OS can disable
interrupts for critical
regions, as in standard
Linux and most other
operating systems,
then timing of tasks is
not predictable.

Lack of predictability

◆ Many A/D boards are now advertised as
including a FIFO buffer so that ``most
configurations” of MS Windows will not
lose samples.

4

II. Purpose
 RT-Linux is aimed primarily at

◆ Lab equipment! PCs controlling
instruments or sampling sensors are found
in almost every science and engineering
lab.

◆ Embedded Systems. Robots, engines,
telescopes, even set-top boxes.

Example: Embedded Systems

We are currently making

a control system for a

car that will be an entry

in the solar car race

this year.

This will be the first

solar race car/web server

5

Examples: Instrumentation

◆ Most of the
applications we have
heard about have been
for data acquisition.

◆ A physiology lab is
sampling cardiological
function.

◆ We have a slow scope
and signal generator.

Linux offers

◆ X-windows, TCL/TK etc.

◆ Networking

◆ Compilers

◆ GNU utilities

◆ Great support and source code
– Source code may allow validation

◆ Rapid development and big user base

6

So what we want is

◆ Hard-real time tasks, both periodic and
interrupt driven.

◆ Access to all the tools and services that we
have become accustomed to use on Linux
so that we can develop programs, display
and analyze data, and use the network.

The purpose of RT-Linux is to
mix two incompatible properties

◆ Hard real-time service: predictable, fast,
low latency, simple scheduler

◆ All the services of standard Posix: GUI,
TCP/IP, NFS, compilers, web-servers, …

In the same operating system

7

What’s incompatible?

Real-Time OS Full-Featured OS

Optimize worst case Optimize average case

Predictable schedule Efficient schedule

Simple executive Wide range of service

Minimize latency Maximize throughput

Nevertheless, it works

◆ An interrupt driven sound sampling
application at 8KHz on a 486/33.

◆ Reported data acquistion performance
better than DOS (no operating system).
Sampling at 3KHz on a 33MHz/486 with a
low-cost A/D board connected to the serial
port --- while driving a Motif display and
logging data to disk.

 (application of Harald Stauss, Humbolt University)

8

III. Using Real-Time Linux

◆ RT-Linux applications are usually made up
of two components.
– A hard-real-time component that consists of 1

or more real-time tasks.

– A non-real-time component that consists of 1
or more ordinary Linux processes or thread.

◆ Linux processes and real-time tasks
communicate via special fifos or shared
memory

Organization of a real-time
application

F ifos

R ea l-T im e
Task

L in u x
P rocess

L in u x
P rocess

R ea l-T im e
Task

R ea l-T im e
Task

9

A signal generator application
(developed by Bill Crum on a 486/33)

◆ Two periodic RT-tasks (period @800 µ s)
Each generates points on its own D/A
channel driving a ‘scope. Each task can
generate a canned square, triangular, or
sine wave.

◆ TCL/TK user programs display push-
buttons used to select wave patterns.
Commands are sent over fifos to the real-
time tasks.

Coding

◆ The real-time components are coded in
standard Linux loadable kernel modules.

◆ User processes make system calls to create,
read, and write fifos. The fifos are specially
designed to avoid the dreaded priority
inversion problem.

10

The task module contains

◆ Initialization code.
– Initialize task structures with the rt_task_init

call. This fills in the task structure and allocates
memory, stack, and FIFO.

– Schedule task structures either by attaching to
an interrupt, or by attaching to the periodic
scheduler.

◆ Code and data for the tasks.

Example initialization

int init_module(void){

 RTIME now = rt_get_time();

rt_task_init(&mytask1, wave_handler, 1, 3000, 5);

rt_task_init(&mytask2, wave_handler, 2, 3000, 5);

rt_task_make_periodic(&mytask2, now,993);

rt_task_make_periodic(&mytask1, now+3000,993);

return 0; }

Create two tasks with period 993 = @800µs

11

Task code for signal generator

◆ while(1) {

if (rt_fifo_get(t,&command,1) > 0)

 outdev(PORT, next(command));

 rt_task_wait();

}

◆ This is a much simplified version!

The user part of the signal
generator

◆ Basic idea is to write a standard Linux
application made up of a TCL/TK front
end and a collection of very simply C
programs that initialize the fifos and that
send commands to the RT-tasks.

12

TCL/TK user program

frame .f1 -relief groove -borderwidth 3
frame .f2 -relief groove -borderwidth 3

label .f1.l1 -text " Channel 1 "
label .f2.l2 -text " Channel 2 "
button .f1.widget1 -text " sine wave " -command { exec ./sinewave 1 1}
button .f1.widget2 -text "square wave" -command { exec ./sinewave 1 3}
button .f1.widget3 -text " sawtooth " -command { exec ./sinewave 1 2}
button .f1.widget4 -text " flatline " -command { exec ./sinewave 1 0}
button .f1.widget5 -text " exit " -command { exec rmmod rt_process.o
exit }

Program to send commands

int main(int argc, char **argv){

char outbyte;

int fifo;

fifo = atoi (argv[1]);

outbyte = (char) atoi (argv[2]);

rt_fifo_write(fifo,&outbyte, 1);

exit(0); }

13

IV. How does RT-Linux work?

◆ The basic idea is that Linux code that
disables and enables interrupts is rewritten
to disable and enable soft interrupts.

◆ Hard interrupts are caught by the real-time
executive. It passes these on to Linux if
Linux is handling the interrupt and if Linux
is enabling interrupts.

◆ Interrupts to real-time tasks -- and the timer
-- cannot be disabled by Linux

Organization of RT-Linux
In te rru p t C on tro l

H ard w are

D evice C on tro l
H ard w are

R ea l-Tim e
Task1

R ea l-tim e
Task_ n

U ser P rocess es

M ain L in u x
K ern e l

L in u x
In terru p t H an d lers

R ea l-Tim e E xecu tive

14

Changes to Linux

◆ The lowest level interrupt handlers are
changed to handle soft enable/disable

◆ CLI/STI are replaced by S_CLI and S_STI

◆ Real-time clock handler tracks time.

◆ RT scheduler is a loadable kernel module

◆ RT tasks are loadable kernel modules

Linux device drivers work as usual (unless
they do something they should not)

Current Operation of RT-Linux

◆ All resources for RT-Tasks are statically
allocated. Memory, fifos, and processor
time is fixed at task creation.

◆ Real-time tasks are interruptible and pre-
emptable (RT tasks may disable interrupts)

◆ Communication with user tasks via non-
blocking channels.

15

V. Future Directions
◆ Different scheduling algorithms.

– Rate monotonic with automatic analysis

– Dynamic scheduling especially for QOS

◆ Optimizations in the code

◆ Static analysis tools and testing support

◆ Ports to other architectures

◆ A large collection of libraries

◆ Better documentation.

◆ Inclusion in the Linux distribution?

